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Foreword

IS-IS has always been my favourite Interior Gateway Protocol. Its elegant simplicity, its
well-structured data formats, its flexibility and easy extensibility are all appealing — IS-IS
epitomizes link-state routing. Whether for this reason or others, IS-IS is the IGP of choice
in some of the world’s largest networks. Thus, if one is at all interested in routing, it is well
worth the time and effort to learn IS-IS.

However, it is hazardous to call any routing protocol “simple”. Every design decision,
be it in architecture, implementation or deployment, has consequences, some unantici-
pated, some unknowable, some dire. Interactions between different implementations, the
dynamic nature of routing, and new protocol features all contribute to making routing
protocols complex to design, write and deploy effectively in networks. For example, IS-IS
started as a link-state routing protocol for ISO networks. It has since evolved signifi-
cantly: IS-IS has IPv4 and IPv6 (and IPX) addressing; IS-IS can carry information about
multiple topologies; link attributes have expanded to include traffic engineering parame-
ters; a new methodology for restarting IS-IS gracefully has been developed. IS-IS even
has extensions for use in “non-packet networks”, such as SONET and optical networks,
as part of the Generalized Multi-Protocol Label Switching (G-MPLS) protocol suite.

Understanding all of what IS-IS offers and keeping abreast of the newer protocol fea-
tures is a weighty endeavour, but one that is absolutely essential for all serious network-
ing engineers, whether they are developing code or running networks. For a long time,
there were excellent books on OSPF, but very little on IS-IS. This encyclopaedic work
changes that. Now, at last, there is a book that does IS-IS justice, explaining the theoret-
ical aspects of IS-IS, practical real-life situations, and quirks in existing implementa-
tions, and gives glimpses into some troubleshooting tools.

You couldn’t ask for a better-matched pair of guides, either. Hannes: intense, passionate,
expert; and Walter: calm, clear, expert. Between the two, they have produced a compre-
hensive, up-to-date text that can be used for in-depth protocol study, as a reference, or to catch
up with the latest developments in IS-IS.

Happy reading!
Kireeti Kompella

Distinguished Engineer, Juniper Networks Inc.
Common Control and Measurement Plane (ccamp) IETF Working Group Chair
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Introduction, Motivation and
Historical Background

The Intermediate System to Intermediate System (IS-IS) routing protocol is the de facto
standard for large service provider network backbones. IS-IS is one of the few remnants
of the Open System Interconnect (OSI) Reference Model that have made their way into
mainstream routing. How IS-IS got there makes a colourful story, a story that was deter-
mined by a handful of routing protocol engineers. So in this very first chapter, it makes
sense to explore the need for a book about IS-IS, cover some recent routing protocol history
and give an overview about various IS-IS development stages. Finally, the chapter intro-
duces a sample network and explains the style used in the figures throughout the book.

1.1 Motivation

One of the oddities of IS-IS is that there are hardly any materials available covering the
entire protocol and how IS-IS is used for routing Internet Protocol (IP) packets. The base
specification of the protocol was first published as ISO 10589 in 1987 and did not apply
to IP packets at all. From then on, however, most of the work on the protocol has been
done in the IS-IS working group of the Internet Engineering Task Force (IETF). The
IETF was responsible for two major changes to the OSI vision of IS-IS. First, they
extended the protocol by defining additional Type-Length-Values (TLVs) carrying new
functionality. But then the IETF went much further and clarified many operational
aspects of IS-IS. For example, adjacency management had not been exactly defined in
RFC 1195, the first request for comment (RFC) to relate IS-IS to an IP environment. The
lack of details caused implementers to code behaviours differently from what the basic
specification required the protocol to do. As a result, there is a lot of good IS-IS literature
available that covers the base IS-IS protocol and its extensions, but not the implementa-
tion details. However, discussing IS-IS purely on a theoretical basis is not enough.
Throughout this chapter, you will find that a lot of the reasons why things are the way they
are in IS-IS is dependent on implementation choices (often caused by router operating
system (OS) constraints), not the fundamentals of the IS-IS specification. And that is the
whole reason for this book.

Real-world IS-IS implementations are the main focus of this book. The two vendors
shipping all but a tiny fraction of the IS-IS code used for IP routing on the Internet are
Cisco Systems, Inc. and Juniper Networks, Inc. The routing OS suite of Juniper Networks
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Inc. (JUNOS Internet software) and Cisco Systems (IOS) are subjected to close examination
throughout this book. We will compare implementation details, and compare the overall
implementation against the specification. Furthermore, both IOS and JUNOS carry scal-
ability improvements for IS-IS, which will be highlighted as well.

The purpose of this book is to provide a good start for the self-education of both the
novice and the seasoned network engineer in the IS-IS routing protocol. The consistent
approach is to explain the theory and then show how things are implemented in major
vendor routing OSs. That way, we hope to close the gap between barely specified speci-
fication and undocumented vendor-specific behaviour.

1.2 Routing Protocols History in the 1990s

IS-IS started off as a research project of Digital Equipment Corporation (DEC) in 1986.
Radia Perlman, Mike Shand and Dave Oran had worked on a successor network archi-
tecture for Digital’s proprietary minicomputer system family. The suite of protocols was
named DECNET. By the time the product became DECNET phase IV, it was obvious
that the architecture lacked support for large address spaces and displayed slow conver-
gence times after re-routing events like link failures. Clearly, a new approach to these
problems, which occurred in all networks and with all routing protocols at the time, was
desperately needed.

1.2.1 DECNET PhaseV

The new architecture called DECNET Phase V was based on an entirely new routing tech-
nology called link-state routing. All previous packet-based network technology at that
time was based on variations of distance-vector routing (sometimes also referred to as
Bellman-Ford routing) or the Spanning Tree Algorithm. The idea of routers disseminat-
ing and maintaining a topological database on which they all performed a Dijkstra (Shortest
Path First, or SPF) calculation was a revolutionary approach to networking. This database
processing demanded a certain amount of sophistication in router CPUs (central process-
ing units) and not all routers had what it took. However, all of the urban legends revolv-
ing around the “CPU-intensive” and cycle-wasting properties of link-state algorithms
mostly had their origin in subjective opinions about router power at that time. Certainly
no modern router needs to worry about the CPU cycles needed for link-state algorithms.

The most interesting property about DECNET Phase V was that it was — and is —
a very extensible protocol. It runs directly on top of the OSI Data Link Layer protocol.
That makes the protocol inherently independent of any higher Network Layer Reach-
ability Protocol. In 1987, the International Organization for Standardization (usually abbre-
viated as ISO) adopted the protocols used in DECNET Phase V as the basis for the OSI
protocol suite. A whole array of networking protocols was standardized at the time. A brief
list of the adopted protocols would include:

e Transport Layer (TP2, TP4)
e Network Layer Reachability (CLNP)
e Router to Host (ES-IS)
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e Router to Router, Interdomain (IDRP)
e Router to Router, Intradomain (IS-IS)

Finally, the Intermediate to Intermediate System Intradomain Routing Exchange
Protocol (to give IS-IS its official name) was published as ISO specification ISO 10589.
First-time readers tend to get confused by the sometimes arcane “ISO-speak” used in the
document. IS-IS itself, in contrast to its specification, is actually a fine, lean protocol. After
learning which sections of ISO 10589 to avoid, readers find that IS-IS is a simple protocol
with almost none of the complicated state transitions that make other interior gateway
protocols (IGPs) so difficult to operate properly under heavy traffic loads today. Besides the
ISO jargon in the specification, readers often get caught up in and confused by the distinc-
tions between the routing protocol definitions (IS-IS itself) and the higher-level network
reachability definitions (known as the connectionless network protocol, or CLNP) and this
makes differentiating IS-IS and CLNP more difficult. Henk Smit, a well-respected imple-
menter of the IS-IS protocol, once with Cisco Systems, noted on the NANOG Mailing List:

IS-IS is defined in ISO document 10589. It defines the base structures of the protocol (adjacencies,
flooding, etc). Unfortunately it also defines lots of CLNP specific TLVs. So it looks like IS-IS is a
routing protocol for CLNP, and the IP thing is an add-on. That is partly true, but the ability to carry
routing info for any layer 3 protocol is a well designed feature. I suspect IS-IS might be easier to
understand if the CLNP specific part was separated from the base protocol.

So IS-IS can be used for routing IP packets just as well as the other major link-state
protocol, the Open Shortest Path First (OSPF) protocol. But why bother having another
link-state IGP for routing TCP/IP, especially if it is so similar to OSPF? At first sight,
supporting both OSPF and IS-IS seems to be a double effort. Only by looking back can
it be easily understood why IS-IS has its place in today’s Internet.

1.2.2 NSFNet Phase I

In 1988, the NSFNet backbone of the Internet was commissioned and deployed. The
NSFNet was the first nationwide network that routed TCP/IP traffic. The IGP of choice for
the NSFNet was a lightweight knockoff version of IS-IS, which was later documented in
RFC 1074 as “The NSFNET Backbone SPF based Interior Gateway Protocol”. The
implementer and author of the document is now a famous name in the history of inter-
networking: Dr Yakov Rekhter, at this time working at IBM on networking protocols at
the Thomas Watson Research Center. The main differences between the IS-IS as defined
in ISO 10589 and that used on the NSFNet were encapsulation, addressing, media sup-
port and the number of IS-IS levels. The NSFNET backbone IGP ran on top of IP rather
than directly on top of the OSI Link Layer, and IP Protocol Type 85 was used as a trans-
porting envelope. ISO 10589 only specified a CLNP-related address space called the
Network Service Access Point (NSAP). Rather than defining an extra TLV that carried
IPv4 addresses and administrative domain information, both types of information are
folded into a 9-byte NSAP string which is illustrated in Figure 1.1.

The next NSFNet compromise in total IS-IS functionality involved the support for
only point-to-point (p2p) interfaces. This greatly simplified the program coding as the
adjacency management code did not have to worry about things like Designated Routers
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Bytes
Administrative Domain 2
Reserved 2
IPv4 Address 4
Reserved 4

FIGURE 1.1. The early NSFNet protocol maps an IPv4 address in the NSAP field for IP routing

(DRs) and what IS-IS called “pseudonode’ origination. Pseudonode origination and LAN
“circuits” will be covered in greater detail in Chapter 7, “Pseudonodes and Designated
Routers”. At that time, this change was perceived as no big deal as the NSFNet was a
pure WAN network consisting of a bunch of T1 (1.544 Mbps) lines.

The NSFNet link-state routing protocol gave NSFNet its first experience with the
sometimes catastrophic dynamics of link-state protocols and resulted in network-wide
meltdowns. We will cover the robustness issues and the lessons learned from the infancy
of link-state routing protocols in Chapter 6, “Generating Flooding and Ageing LSPs”.
But early bad experiences ultimately provided a good education for the early imple-
menters, and their knowledge of “how not to do things” helped to create better imple-
mentations the second time around.

1.2.3 OSPF

In 1988, the IETF began work on a replacement for the Routing Information Protocol
(RIP), which was proving insufficient for large networks due to its “hop count” metric
limitations. Also, the limited nature of the Bellman-Ford algorithm with regard to con-
vergence time provided serious headaches in the larger networks at that time. It was clear
that any replacement for RIP had to be based on link-state routing, just like IS-IS. The
Open Shortest Path First Working Group was born. The OSPF-WG group closely
watched the IS-IS developments and both standardization bodies, the IETF and ISO,
effectively copied ideas from each other. This was no major surprise, as mostly the same
individuals were working on both protocols.

The first implementation of OSPF Version 1 was shipped by router vendor Proteon.
A short while later, both DECNET Phase V (which was effectively IS-1S) and OSPF were
being deployed. Controversy and dispute raged within the IETF concerning whether to
adopt IS-IS or OSPF as the officially endorsed IGP of the Internet. At that time, there was
much fear expressed by some influential individuals about the perceived “OSI-fication” of
the Internet. Those fears were fed by the belief on the part of the OSI camp that IPv4 was
just a temporary, “non-standard” phenomenon that ultimately would go away, replaced by
firm international standards like CLNP, CMIP and TP2, TP4. Most discussions about
what was the best protocol were based on emotions rather than facts. At one IETF meeting
there was bickering and shouting, and even a T-shirt distributed displaying the equation:

IS-1S =0
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It is hard to believe today that there were ever any serious doubts about the future of IP.
But things did not change until 1992. With the rise of the World Wide Web as the “killer
application” for the new, global, public Internet, it was evident that the Network Layer
protocol of choice was to be the Internet Protocol (IP) and not CNLP. The projected demise
of CNLP nurtured the belief that the entire OSI suite of protocols would disappear soon.

The IETF reckoned that there should be native IP support for IS-IS and formed the
IS-IS for IP Internets working group. In 1990, IS-IS had become “IP-aware” with the pub-
lication of RFC 1195, authored by Ross Callon, a distinguished protocol engineer now
with Juniper Networks. RFC 1195 describes a set of IP TLVs for Integrated IS-IS which
can transport both CLNP and IP routes. These early IP TLVs and their current successors
are discussed in greater detail in Chapter 12, “IP Reachability Information” and Chapter
13, “IS-IS Extensions”.

The IETF continued both IGP working groups (OSPF-WG, ISIS-WG) and wisely left
the decision which protocol to adapt to the marketplace. The IETF declared both proto-
cols as equal, which proved in fact not to be really true, since there was some soft, but per-
sistent, pressure to give OSPF preference for Internet applications. Hence people often
say, “IS-IS and OSPF are equal, but OSPF is more equal” Ultimately, Cisco Systems
started to ship routers with support for both OSPF and CLNP-only IS-IS (useless for IP),
but commenced work on Integrated IS-IS, which could be used with IP.

1.2.4 NLSP

In the 1980s, LAN software vendor Novell gained popularity and finally emerged as the pri-
mary vendor of PC-based server software. The Novell Packet Architecture was composed of
both a Network Layer protocol they called the Internet Packet Exchange (IPX) protocol and
arouting protocol to properly route packets between sub-nets. Novell’s first generation rout-
ing protocol was based on RIP and used distance vector technology. Novell then decided to
augment their network architecture with link-state routing. At that time, DEC was widely
known for their link-state routing experience, and so Novell recruited Neil Castagnoli, who
was one of the key scientists at DEC responsible for DECNET Phase V.

One of the prime goals of IS-IS from the very start was independence from Network
Layer routing protocols. In other words, IS-IS just distributed route information, and did
not particularly care which protocol was actually used to transport traffic. Novell came
up with NLSP, which was effectively an IS-IS clone. Many of the original IS-IS mechan-
isms and protocol data unit (PDU) types were retained. For IPX-specific routing infor-
mation and Novell-specific service location protocols (used to find which stations on the
LANSs were servers) the TLVs from 190 to 196 have been allocated for Novell-specific
routing needs. Although NLSP looks largely the same as IS-IS, some of the mechanisms,
particularly the “stickiness” of the DR election process, make NLSP incompatible with
regular IS-IS routers.

Both the IP and the NSLP extensions demonstrate the flexibility built into IS-IS from the
very start. Adding another protocol family, for example IPv6, is just a matter of adding a few
hundred lines of code, rather than having to rewrite the entire code base. OSPF, on the other
hand, needed to be re-engineered twice until it got to be both extensible and IPv6-ready. And
OSPF is still not completely neutral towards Network Layer protocols other than IP.



6 1. Introduction, Motivation and Historical Background

Responding to increasing demand from customers, Cisco Systems began shipping
NLSP in 1994. Because NLSP and IS-IS are so similar, Cisco’s engineering department
decided to do some internal code housekeeping and merged the base functions of the two
protocols in one “tree”. This rewriting work was the springboard for one of the most
respected IGP routing protocol engineers in the world. Cisco Systems hired a software
engineer named Dave Katz from Merit, the management company of the NSFNet backbone.
Merit was, in the early 1990s, the place where many of the huge talents in Internet history
got their routing expertise.

1.2.5 Large-scale Deployments

Cisco gained a lot of momentum in the early 1990. The company attracted all the key
talent in routing protocol and IP expertise and finally got more than a 98 per cent market
share in the service provider equipment space. When the first big router orders were
placed and the routers deployed for the Web explosion, Internet service provider (ISP)
customers started to ask their first questions about scalability. Service providers were
interested in a solid, quickly converging protocol that could scale to a large topology
containing hundreds or even thousands of routers. Cisco’s proprietary, distance-vector
EIGRP was not really a choice because the convergence times and stability problems of
distance-vector-based protocols were well known from word-to-mouth in the service
provider community. Ironically, it was Cisco’s recent code rewrite that made IS-IS more
stable than the implementations of OSPF available at the time. For a while, IS-IS was
believed to be as dead as the OSI protocols. However, the 1980s mandate of the US gov-
ernment for supporting OSI protocols under the Government OSI Profile (GOSIP) speci-
fication (which was still in effect), plus recently gained stability, made IS-IS the logical
choice for any service provider that needed an IGP for a large number of nodes.

From about 1995 to 1998 the popularity of IS-IS within the ISP niche continued to
grow, and some service providers switched from OSPF. Even in large link-state areas,
IS-IS proved to be a stable protocol. At the beginning of 1998, the European service
providers switched from their trying EIGRP and OSPF experiences to IS-IS, most
notably because of the better experiences that the US providers had with IS-IS. That
trend continues today. All major European networks are running routing protocols based
on IS-IS.

1.2.6 IETF ISIS-WG

From 1999, most of the IS-IS extensions for IP are done within the IETF and not within
ITU-T or ISO committees. Most of the basic IS-IS protocol is maintained in ITU-T, but
little of it has changed in the past decade. The IS-IS working group inside the IETF
(http://www.ietf.org/html.charters/isis-charter.html) maintains the further development
of IS-IS. Most IETF work is typically carried out in the form of mailing lists. There are
further details about this split of responsibilities and the resulting issues in Chapter 17,
“Future of IS-IS”.

There is a small group of individuals from vendors and ISPs interested in the further
development of IS-IS. Because the community is so small, consensus is reached very fast
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and the standardization process itself is often just a matter of documenting the existing
behaviour that has already been deployed in the field.

All the most recent enhancements to IS-IS have initially been published as Internet
drafts. At the end of the year, all the major extensions are either republished as an RFC
or are placed in the RFC editors’ queue for release. Activity on the IETF mailing list is nowa-
days moderate to low, as all of the most pressing problems and extension behaviours have
already been solved. Chapter 17 deals with the future of the protocol and highlights some
of the not-yet deployed extensions, which concern service discovery and aids to network
operations.

1.3 Sample Topology, Figures and Style

In an effort to make the individual chapters more concise and to be consistent, we have
applied a common style and topology to illustrations. In order to put the different scen-
arios that are explained throughout into perspective, we refer to a small service provider
network as illustrated in Figure 1.2. We believe that a realistic reference topology is of

Area 49.0001

Level 2-only

FIGURE 1.2. Throughout the book a consistent Multivendor Sample Network is used for better
illustration
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FIGURE 1.3. IP sub-net addressing in the sample network

much more use than symbolic names like Router A or Router B, particularly when it
comes to explaining complex procedures like flooding in a distributed environment.
The reader will also find a vast amount of debug, show command and tcpdump output
containing IPv4 addresses. Figure 1.3 illustrates the IPv4 sub-net address allocation for
the sample topology. Although the majority of display output has been taken from live
routers on the Internet, we have changed the addressing to a common scheme. Although
in a real network one would never deploy addressing based on non-routable RFC 1918
addresses, this is done throughout the book in order to protect the integrity of public,
routable address spaces. The 172.16.33/24 address range has been allocated to link
addressing and the 192.168.0/27 pool is allocated for router loopback addresses.
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This book should also serve as a reference for people learning about the encoding style
of the IS-IS protocol. Too often the authors found the entire TLV and sub-TLV structure
difficult to understand. Figure 1.4 illustrates the shading style used to colour all protocol-
related illustrations. The darker the background colour, the lower the field is located in
the OSI protocol stack. So the dark gray shading indicates link-layer encapsulation such
as Ethernet or PPP or C-HDLC. Then gray tones are used for the IS-IS common header,
IS-IS PDU specific headers, the TLVs and its sub-TLVs.

I1S-IS common header

PDU

TLV

subTLV

FIGURE 1.4. The shading of the fields in the illustrations indicates the layering in the OSI
Reference Model
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Router Architecture

Every networking professional knows the situation. You’re at a party with relatives where
people always seem to know somehow that you deal with the Internet (probably those
relatives). If you have bad luck, at some stage the conversation at the table is about the
Internet and how it might work. The trickiest task is then to explain to Grandma in five
minutes how the Internet works. Not that Grandma bothers to try and understand. In fact,
she still thinks that all those cables that disappear into the wall go all the way under the
Atlantic and that’s the way that it works.

But the truth is, explaining how the Internet works is surprisingly easy: the Internet
consists of a vast collection of hosts and routers. Routers are the “glue” that holds these
hosts together. The routers form a meshed network, very much like the road system
where the routers can be compared to interchanges or junctions and the fibre optic cables
in between the routers are the highways. The host computers are like houses placed on
smaller roads (these side roads are smaller networks or sub-nets), each having a unique
address.

Surprisingly, Internet hosts and routers are almost completely isolated from each
other. Hosts do not generally exchange any signalling information with routers. All that
hosts need to know (normally by static configuration) is the address of the router on their
local sub-net. Hosts can forward any non-local traffic for hosts on other networks to this
default router or default gateway. Almost everyone reading this book has probably con-
figured this default on their local PC or workstation. In contrast to the hosts, which
almost have no routing information at all besides the default route, the routers have all
the routing information they need. However, the routers do not have any idea about the
applications (such as a Web browser) or the transport protocols (such as TCP) that
applications rely upon. It is the hosts that do indeed have to know about the state of the
transport protocol and how applications access the network. This is the first instance
where, for the sake of simplicity, a clever partitioning of the problem has occurred. This
chapter presents more examples where you realize that there is more than one place in
the overall Internet and router architecture where partitioning the original problem has
helped to resolve the issue. Partitioning is the architectural tool that helps scale the TP
universe further than at first appears possible.

In the last 20 years the Internet has scaled from just a bunch of hosts to a global mesh
of hundreds of millions of computers. This chapter discusses the architecture of the
global public Internet and the global routing paradigm. Next, it takes a close look at the
building block of the Internet, which is the router. Common router architectures, and
terms like control plane and forwarding plane and why partitioning a router into a
control plane and forwarding plane makes sense, will all be explained. For further

11
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illustration, common routing platforms from both Cisco Systems and Juniper Networks
will be discussed at the end of the chapter.

2.1 Architecture and the Global Routing Paradigm

The current routing and forwarding architecture follows a datagram-based, End-System
(host) controlled, unidirectional, destination-oriented, hop-by-hop routing paradigm.
Don’t worry, all of these technical terms are explained piece-by-piece below.

1. Datagram-based: Routers only think in terms of datagrams, which are packets that
flow independently from host to host without regard for sequence or content integrity.
In this respect routers are unlike End Systems which have to track the state of con-
nections, perform all kind of transport protocol (TCP) functions like making sure
arriving packets are in sequence, asking for resends of missing packets, and so on.
A router is completely oblivious to the sessions that it has to transport between hosts.
Early routers had knobs (small, on/off configuration tags like “disable/enable”) for
packet lookup, filtering and accounting on a per-flow (session) basis. However, the
impact of introducing a session or flow orientation to core routers and the resulting
load of the system was just too big. Today, flow orientation, which demands session
awareness in every router, and high-speed circuits are mutually exclusive. Flow orien-
tation is only enabled on low-bandwidth circuits (2 Mbps or less), due to its high CPU
impact. Core routers today are completely unaware of any sessions or flows. This
stateless behaviour means that a route lookup for a packet at time N + 1 is totally
independent of the packet lookup at time N. The router just tries to deliver the packet
as fast as it can. If a packet cannot be delivered because the outbound interface is con-
gested, then the packet will be queued. If the queues (some call them buffers) are satu-
rated then the packet will be silently discarded. Silent discard is a technique that does
not send explicit congestion messages to the sender. Suppressing explicit congestion
messages does not further harm the networks’ resources if the network is already satu-
rated. Although core routers should not worry about individual flows they must not
change reorder packets within a given flow. Typically, it is expected that the end
systems receive packets in sequence. There might be situations, as in re-routing
scenarios or badly implemented load-sharing mechanisms, where packets in a single
flow are re-sequenced by the transit routers. The IP routing architecture completely
offloads key functions like flow control, reliable transmission, and re-sequencing to
the End Systems. This allows simpler router functions.

2. End System controlled: Sometimes the term end-to-end principle is used when dis-
cussing transport protocols like TCP. In the TCP architecture, all of the complexity of
providing a reliable streaming service is on the shoulders of the end systems.
Functions like flow control, reliable transmission and re-sequencing of messages
(packet content) in a stream are the duties of the transport protocol. An End System
opens a session, transmits data and eventually closes the session. For the transmission
of data all it relies upon is the unreliable datagram relaying service that the routers
offer to the End Systems. Figure 2.1 shows how an application like the Simple Mail
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FIGURE 2.1. A basic networking stack, showing the different responsibilities for hosts and routers

Transfer Protocol (SMTP) augments the stream with transport protocol level infor-
mation like sequence numbers. The augmented transport stream next is passed down
the network protocol stack to the IP layer where each message segment is prepended
with an IP header. The packet then leaves the End System and is either sent directly
to the receiving end system (if it is on the same network) or passed to the default
router. Then the transport protocol just hopes that the message segment eventually
arrives at the receiving end system. All the transport protocols can do on both sides
is detect a missing segment. By looking at the sequence numbers, the transport proto-
col detects a missing segment and requests retransmission if desired (some forms
of real-time traffic, like voice and video, do not have the luxury of this option). Even
more sophisticated actions are performed by the transport protocols. For example, if
the pace of the receiving segments is varying, typically an indication of congestion,
the receiver can signal back to the sender to back off and reduce the transmit rate. The
only way of communicating congestion from the routers to the End Systems is
increased delay or packet loss, which is just a case of infinite delay.

3. Unidirectional: Some communication architectures like ATM or Frame Relay have
the implicit assumption that the circuit going from End System A to End System B is
utilized for the opposite direction. This means that traffic from End System B to End
System A follows exactly the same path (a connection) through the network. In the TP
routing world, this is not necessarily the case. Routing information, which are point-
ers to traffic sources, are always unidirectional. For working communication a router
needs to have two routes: one route pointing to the sender’s network and one route
pointing to the receiver’s network. Popular networking troubleshooting tools like the
ping program always check to see if there is bidirectional connectivity between a pair
of hosts.
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4. Destination-oriented: Each router along the transmission path between a pair of End
Systems has to make a decision where to forward the packets. This decision could,
hypothetically speaking, be based upon any field in the IP header, such as marked in
Figure 2.2. All of the bright-gray fields like destination IP address, source IP address
and precedence bits (also called the Type of Service (TOS) byte) could form the basis
for a routing decision. But today on the Internet, only the destination IP address is
used by routers for making forwarding decisions. Since the early 1990s there have
been efforts to use the TOS byte for routing lookups as well; however, this routing
paradigm has had no great success. Today the TOS (or Diffserv byte, as it is often
called today) only helps to control the queuing schedule of packets inside a router, but
cannot influence the forwarding decision. Both Cisco Systems and Juniper Networks
offer features called policy routing or filter based forwarding, where the network
operator can override the default destination-based routing scheme by specifying
arbitrary fields in the IP header to influence the routing decision. But these features
are typically deployed at the edge or access portions of the network. It is safe to say
that the core of the Internet is purely destination-oriented.

5. Hop-by-hop routing: Communication architectures like ATM rely on a connection
setup where the sender predetermines the route to the destination. Once a message is
put on a previously established Switched Virtual Connection (SVC) the message will
be relayed straight from the source to the destination without complex routing deci-
sions in the intermediate systems (usually called switches in such connection-oriented
architectures). The whole transmission path is pre-computed by the source. The ATM
forwarding paradigm thereby follows a source routing model. The IP routing archi-
tecture is very different. Clearly there are common ideas, such as that the packet
should use the shortest path from the source to the destination. But contrary to ATM
switches, IP routers each compute independently what the best route is from A to B.
Obviously, this must follow a common scheme that each router follows, otherwise
forwarding loops could result from conflicting path selection algorithms. The com-
mon path selection algorithms are various forms of least-cost routing. Each routing
protocol defines a set of metrics, and if there is more than one next hop with equal
metrics, a tie-breaking scheme allows each router to determine the “best” route to a

Bytes
Version E‘:‘zﬁﬁr TOS Total length 4
Identification Flags Fragment offset 4
Time to live Protocol Header checksum 4
Source address 4
Destination address 4

FIGURE 2.2. In the IP routing paradigm forwarding decisions are based on the destination IP inside
the IP header
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given destination, but only from the viewpoint of the local router. This concerted, but still
independent, computing of forwarding tables in routers is called hop-by-hop routing.

Four of the above five points specify how routers should “think™ in terms of forward-
ing traffic. In 1985, when the first commercial routers shipped, peak processing of packets
at 1000 packets per second (pps) were feasible. With the explosion of Internet traffic,
routers today must offer sustained packet processing rates of hundreds of millions pps.
What has changed? While the original forwarding paradigms are still in place, router
hardware and architectures have constantly improved a router built in 2004 can forward
at a factor of 10,000 more traffic than a router made in 1992.

2.2 General Router Model

In the Internet model, smaller networks are connected to bigger networks through
routers. Originally routers were implemented on general purpose workstations (typically
UNIX-based platforms; PCs running DOS or Windows were much too slow). These
early routers had a single CPU, which had to do two things:

e Routing
e Forwarding

Routing means discovering the network topology and disseminating information
about directly connected sub-nets to other neighbour routers. Forwarding refers to the
look-up and transfer of packets to the matching outbound next-hop for a given packet.
Routing, as defined here, mainly concerns signalling information and forwarding mainly
concerns user information.

As long as the general purpose processor has infinite processing power and memory,
the union of both routing and forwarding functions in the same device does no harm.
Practically speaking, processing power and memory are always finite resources and
experience has shown that the two functions mutually influence each other in their
competition for processing and storage resources. Unifying routing and forwarding may
cause stability problems during transient conditions, for instance, when a large traffic
trunk needs to be rerouted. Typically, during these transient situations, both the routing
subsystem of the box as well as the forwarding subsystems are extraordinarily stressed.

The stress occurs because the routing subsystem has to calculate alternative paths for
the broken traffic trunk and, at the same time, the forwarding process may be hit by a
large wave of traffic being rerouted through this router by another router. And that is
exactly the problem with the unified design combining routing and forwarding. It only
works as long as just one subsystem is stressed, but not both.

For example, what happens when the central CPU is 100 per cent utilized? Not all traf-
fic can be routed and packets have to be dropped. If the signalling or control traffic gen-
erated by the routing protocols is part of the dropped traffic, this may result in further
topology changes and result in endless stress (churn) that propagates through the whole
network.

Such meltdowns have occurred in every major ISP network throughout the last decade,
and the result was a radical design change in how routers are built. The forwarding
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subsystem was separated from the general purpose platform, and migrated to custom
hardware that can forward hundreds of millions of packets per second. Customized hard-
ware development was necessary as the Internet growth outperformed any PC-based
architecture based on, for example, PCI buses.

Figure 2.3 shows essentially how modern routers are structured. The router is parti-
tioned into a dedicated control plane and a forwarding plane. The control plane holds the
software that the router needs to interact with other routers and human operators. Routers
typically employ a powerful command line interface (CLI), which is used for provision-
ing services, configuration management, router troubleshooting and debugging pur-
poses. Operator actions are written down in a central configuration file. Changes of the
configuration file are propagated to the routing processes that “speak” router-to-router
protocols like OSPF or IS-IS or Border Gateway Protocol (BGP). If the same routing
protocol is provisioned on both ends of a direct router-to-router link, then the routers
start to discover each other in their network. Next, IP routing information is exchanged.
The remote network information is entered in the local routing table of the route processor.
Next, the forwarding table entries in the control plane and the packet forwarding plane
have to be synchronized. Based on this routing table, the forwarding plane starts
to program the router hardware, which consists of Application Specific Integrated
Circuits (ASICs) or Field Programmable Gate Arrays (FPGAs), with a subset of the rout-
ing table, which is now called the forwarding table. The forwarding table is usually a
concise version of the full routing table containing all IP networks. The forwarding table
only needs to know routes useful for packet forwarding.

The fowarding plane consists of a number of “input interfaces” (IIF) and a number of
“output interfaces” (OIF). The router itself thinks in terms of logical interfaces. The
physical interface is the actual wire (or fibre) over which the packets flow. In order to
actually use a physical interface for forwarding traffic, there needs to be at least one IP
address assigned to the interface. The IP address combined with a physical interface is
called a logical interface. There can be more than one logical interface per physical inter-
face if the underlying physical media supports channel multiplexing like 801.1Q, Frame

Routing cLl SNMP
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Transit traffic Transit traffic

FIGURE 2.3. A blueprint of a modern router showing a clear separation of control plane and
forwarding plane
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Relay DLCIs or ATM VCs, since each can have an IP address associated with it. If there
is no IP address assigned to a logical interface, then any traffic arriving on that interface
will be discarded.

Once traffic arrives on the input interface there is typically a lookup engine that tries
to determine the next-hop for a given IP address prefix (the prefix is the network portion
of the IP address). The next-hop information consists of an outgoing interface plus Layer
2 data link framing information. Since the outgoing interface is not enough for multi-
access networks like Ethernet LANS, the router needs to prepend the destination Media
Access Control (MAC) address of the receiver as well.

Next, the packet is transported inside the router chassis by any form of switch fabric.
Common switch fabric designs are crossbars, shared memory, shared bus and multistage
networks. The last stage before final sending of a packet to the next-hop router is the
queuing stage. This buffers packets if the interface is congested, schedules and deliver
packets to an outgoing interface.

2.3 Routing and Forwarding Tables

Just what is the difference between a routing and a forwarding table? The short answer is
size and amount of origin information. The routing table of a well-connected Internet
core router today uses dozens of megabytes (MB) of memory to store complete infor-
mation about all known Internet routes. Figure 2.4 shows why such a massive amount of
memory is needed. A router needs to store all the routes that it receives from each neigh-
bour. So for each neighbour an Input Routing Information Base (RIB-in) is kept. Due to
path redundancy in network cores, a prefix will most likely be known by more than one
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FIGURE 2.4. Internet core routers need to store what routes have been learned and advertised on a
per neighbour basis
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path. What the routing software does is to determine the “best” path for a given prefix,
sometimes through a complicated tie-breaking process when metrics are the same. After
this route selection process the routing software knows the outgoing interface for all of
the prefixes it has learned from all of its neighbours. This processed table is called the
Local Routing Information Base (RIB-local). The RIB-local table also stores a large
amount of data associated with the prefix, information such as through which protocol
was the route learned, which ISP originated the route information, if the route is subject
to frequent failures (flapping), and so on. Modern routers store about 50-300 bytes of
additional administrative information for each route, useful for troubleshooting routing
problems, but adding to the resource requirements of the router.

A full-blown Internet routing table from a single upstream contains about 140,000
routes consumes about 20-30 MB of memory. This is still a massive amount of memory
if it has to be implemented in an expensive semiconductor technology. For example, the
ultra fast SRAMs typically used for CPU caches provide faster lookup speeds than
DRAM memory chips, but at great cost, so DRAM is often used for this purpose. The
benefit of DRAMs is smaller cost per bit of storage compared to SRAM chips. The router
designer has to make a call between speed and size to keep the cost competitive and is
always looking for tradeoffs like this.

Luckily, the forwarding plane does not need all of the administrative information in the
routing table. All it needs to know is the IP address prefix and a list of next-hop interfaces.
The route processor typically extracts the forwarding table out of the routing table. The
route processor generates the Route Processor Forwarding Information Base (RP-FIB)
and downloads a copy to the forwarding plane. The forwarding plane uses the matching
Forwarding Information Base (FP-FIB) for traffic lookups and sends packets to the corres-
ponding interface.

2.3.1 Forwarding Plane Architectures

The forwarding plane is the workhorse of the router. It has to match prefixes against the
forwarding table and try to find the best matching route at a rate of millions of lookups
per second both in the steady state of typical loads, and under transient, heavy load con-
ditions. From a forwarding plane perspective the Internet is an absolutely hostile envir-
onment. Why? Because the forwarding tables of the core routers are under constant flux.
The typical background noise of routing updates on the Internet is about 1 to 5 updates
per second. Many times this information results in a change to the forwarding table as
well. An ideal forwarding plane architecture implements a new forwarding state with
zero delay and has no traffic impact to other, unaffected prefixes. Therefore, a new next-
hop is effective immediately in the forwarding ASICs. In reality, however, there are some
pieces of software in between that delay these RIB to FIB updates.

The relationship between RIB and FIB is a key to understanding modern router oper-
ation. These tables must be coordinated for correct router functioning. The next section
presents a naive implementation of how the RIB to FIB state inside a router is propa-
gated, but no real router implementation does it this way. Then some refinements are
added to the basic procedure, which results in what is considered as the state-of-the-art
forwarding plane implementation.
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FIGURE 2.5. There are transient stages during the update of an entire FIB, which would cause a
bogus forwarding table state

2.3.1.1 Naive Implementation of RIB to FIB Propagation

Figure 2.5 shows the timing of events that occur once a better route to a destination IP
prefix is found. First of all, the routing protocols perform a tie-break to find the new
“best” route, then the reduction of the RIB-local table information has to be performed.
The RIB-local table, which is about 20-30 MB, needs to get reduced to the 1-2 MB FIB
table size. Next, the FIB needs to be downloaded to the forwarding plane, which then
reprograms the forwarding tables of the ASICs. Because of this time lag, the overall con-
vergence time on the network is impacted. Much worse, if the old FIB is being overwrit-
ten with the new FIB, the traffic typically does not stop flowing. So it might happen that
the traffic is forwarded based on an outdated FIB. Now, the old FIB was consistent and
the new FIB is also consistent — however, for the transient period when the old FIB is
being overwritten, an incorrect bogus forwarding state may occur.

2.3.1.2 Improved Implementation of RIB to FIB Propagation

There are three ways to fix the incorrect transient FIB stages that may occur during
rewrites of the FIB.

1. Stopping (and buffering) the inbound interfaces. If the router has dedicated lookup
engines at the input side it may simply turn off the respective inbound interface or
buffer inbound traffic for a short period of time. If there is no traffic to look up, there
is also no incorrect transient stage that may harm forwarded traffic. The downside of
this method is that other interfaces may be affected. In most router architectures sev-
eral input interfaces share a route-lookup processor. Therefore all input interfaces that
share a common route-lookup processor need to be turned off. If the update rate is
high enough, for instance, from rerouting large trunks, which results in many prefixes
pointing to new next-hop interfaces, this approach could easily paralyze the box.

2. Paging between FIBs. Paging is a quite effective way of avoiding any kind of transient
stage. The idea is simple: double the amount of lookup memory and divide it into two
halves, one called Page #1 and the other Page #2. Figure 2.6 shows the basic paging
principle. The lookup processor uses Page #1 and Page #2 is used to hold the new FIB
table. Once the FIB update is complete the lookup processor swaps pages, which is
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FIGURE 2.6. Page swapping is an old but still effective way of presenting always-consistent FIB
structures to the lookup system

typically a single write operation, into a register on the lookup ASIC. While this fix
completely avoids the transient problem it can be very expensive since it requires doub-
ling the size of memory. And most implementations that use paging still suffer from
the problem of FIB regeneration. Reducing approximately 30 MB of control informa-
tion down to 1-2MB of forwarding table up to 5 times per second has still a large
impact on the CPU. The next approach completely avoids this huge processing load.

. Update-friendly FIB table structures: One of the classic problems of computer science

is the speed vs. size problem. For Internet routing tables there are known algorithms
to compress the overall table size down to 150-200 KB of memory and thus optimiz-
ing the lookup operation. However, applying slight changes to those forwarding struc-
tures is an elaborate operation because in most cases the entire forwarding table needs
to be rebuilt. Table space-reducing algorithms have long run-times and do not con-
sider the time it takes to compute a newer generation of the table. It is nice that the full
Internet routing table can be compressed down to 150 KB, however, if the actual cal-
culation takes several seconds (a long time for the Internet) on Pentium 3 class micro-
processors, another problem is introduced. The router might have to process every
BGP update 200 milliseconds (ms), or 5 times per second. So if an algorithm (for
example) has a run-time of 200 ms it is 100 per cent busy all the time. The atomic FIB
table structure, introduced to address this situation, has an important property: it is
neither designed for minimal size nor is it designed for optimal lookup speed. Atomic
FIB table structures are optimized for a completely different property, which is called
update-friendliness. Atomic is a term borrowed from the SQL database language and
addresses the same issue in database structures. For example, in an SQL database, if
a user is updating a price list, they are facing exactly the same problem: there could
be several other processes accessing portions of the same database record that is try-
ing to be updated. You can either put a lock on the database record (the counterpart of
stopping the interfaces) or arrange your database structure in a way that a single write
operation cannot corrupt your database. Each write process now leaves the database
in a consistent state, and such behaviour is called an atomic update. The same tech-
nique can be applied to forwarding tables as well. If a FIB has to be updated, it can be
done on-the-fly without disrupting or harming any transit traffic. Figure 2.7 shows



Routing and Forwarding Tables 21

Forwarding plane
(Binary tree data structure)
Old pointer New pointer
Lookup
processor
Deleted sub-tree New sub-tree
Lookup
SRAM
memory

FIGURE 2.7. An atomic update of a routing table sub-tree does not harm any transit traffic

how an entire branch of new routing information is first stored in the lookup SRAM,
and then a new sub-tree is built up. This operation does not harm any transit traffic
lookups at all, because the new sub-tree is not yet linked to the old tree. A final write
operation switches a single pointer between the old sub-tree and the new sub-tree.

Not all of these three approaches are mutually exclusive. In later examples of real
routers, it will be shown that sometimes more than one of these techniques is used in
order to speed up RIB to FIB convergence.

It is clear from this forwarding plane discussion that updating even simple data struc-
tures like forwarding tables on-the-fly, particularly on routers that have to carry full
Internet routes, is not an easy task and requires careful system design. Similar diligence
is necessary when writing software for the control plane, or routing engine, and the next
section considers these architectures.

2.3.2 Control Plane Architectures

Control plane software suffers from similar problems first encountered on first-generation
routers implemented on general purpose routing platforms. There are several sub-systems
that compete for CPU and memory resources. In first-generation routers the forwarding
sub-system always hogged CPU cycles. Partitioning the system into a forwarding plane
and control plane avoided the packet processing stress placed on the routing protocols.
However, a modern control plane has to do more than just run a single instance of a routing
protocol. It usually also has to run a variety of software modules like:

e Several instances of the command line interface (CLI)
e Several instances of multiple routing protocols including OSPF, IS-IS and BGP
e Several instances of MPLS-related signalling protocols like RSVP and LDP
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e Several instances of accounting processes, such as the Simple Network Management
Protocol (SNMP) stack

2.3.2.1 Routing Sub-system Design

Each process that runs on a router operating system (OS) has time-critical events that
need to be executed in real-time, otherwise the neighbour routers might miss one “Hello”
message and declare the router down, causing a ripple effect that destabilizes the entire
router network. Therefore, all OSs have a scheduler which dispatches CPU cycles
depending on how timely the process needs to get revisited in order to meet time-critical
events like sending out IGP Hellos.

Historically the scheduler has been implemented inside the routing protocol module.
That design decision has important consequences. First, the routing protocols need to be
implemented in a way that is cooperative to the scheduler. Figure 2.8 shows that routing
software and their schedulers work almost like the old Windows 3.11, offering a form of
cooperative multitasking. An application can run as long as it passes control back to the
scheduler. In order for the scheduling to work it has to cooperate with the scheduler and
try not to run too long. Often the routing protocols processes need to be sliced and run a
piece at a time in order to meet timing constraints.

On busy boxes sometimes the individual sub-processes do not return control in time
back to the scheduler, which causes the following well-known message logs. In the case
of a sub-process not returning control in a timely manner to the scheduler, Cisco Systems
routers would log a CPU-HOG message like the following:

10S logging output

Aug 7 01:24:07.651: %SYS-3-CPUHOG: Task ran for 7688msec (126/40),
process = ISIS Router, PC = 32804A8.

Process A Applicaiion Process B

senzdular

FIGURE 2.8. Per-application scheduling requires that the routing software is written in a cooperative way
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A similar message type exists for Juniper Networks routers where the sub-processes
cannot be revisited in time. The Routing Protocol Daemon (RPD) logs an RPD-
SCHEDULER-SLIP message to its local logging facility:

JUNOS logging output

Aug 7 03:19:07 rpd[201]: task monitor slip: 4s scheduler slip

Special code adjustments need to be taken to avoid CPU-HOGS and scheduler slips. The
routing code constantly needs to sanity check itself to make sure it is not using too many
resources and so harming other sub-processes in the system that may be more critical,
like sending OSPF or IS-IS Hellos. In the carrier-class routing code expected by large
ISPs, a lot of the code base just deals with timing and avoiding all sorts of what are called
race conditions, which adds a lot of complexity to the code.

Today the majority of operating systems like Windows NT/2000/XP, Linux, or
FreeBSD do their scheduling in the kernel and not in the application. Writing application
scheduler cooperative code turned out to be a daunting task which was not sustainable
over time. Contrary to the application scheduler of the routing protocol subsystem, the
kernel scheduler works as illustrated in Figure 2.9. Here the application (the routing
protocol) does not need to be written in a cooperative way. The kernel scheduler inter-
rupts (or pre-empts) running processes and makes sure that every process is receiving its
fair share of CPU cycles.

Unfortunately, the hard pre-emption of kernel schedulers also has some dangers: IP
routing protocols are very dependent on each other and need to share a large amount of
data. IS-IS, for instance, needs to share its routing information with BGP so BGP can
make optimal route decisions, RSVP path computation is dependent on the Traffic
Engineering Database (TED), which is filled with IS-IS topology data, and so on. The
most efficient way of sharing large amounts of data is with a shared memory design to
share these data structures. The combination of shared data structures with pre-emptive
kernel scheduling may result in transient data corruption. Figure 2.10 illustrates this. IS-IS
changes a prefix in the routing table, during the write operation IS-IS gets pre-empted by
the BGP process, which needs to package and send a BGP update. The BGP process

Process A - Process B

FIGURE 2.9. Kernel schedulers do not require the application to cooperate for scheduling
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FiGURE 2.10. If a process gets pre-empted during a write operation data may get corrupted

reads the incomplete prefix and, given how the memory was initialized at that time,
advertises bad information to other BGP routers. The scary thing for troubleshooting is
that the data corruption only lasts for a couple of milliseconds. As soon as the scheduler
passes control back to IS-IS, the full prefix will be written to the routing table. It would
take complicated measures to ensure that the data gets locked during write operations to
overcome these sort of issues, which are quite common.

Most routing software deployed on the Internet still runs based on cooperative sched-
ulers. Why is such seeming anachronism still present? The clean-sheet design, of course,
would be where a big “all protocols” routing process is partitioned into individual sub-
processes. Each routing protocol instance would run in a dedicated process. Scheduling
between the routing modules would be purely pre-emptive and there would also need to
be a means of efficient data sharing, while still avoiding all sorts of data corruption
through use of sophisticated locking schemes or the use of clever APIs.

To be fair to router vendors, at the time when the first implementations of routers were
built there were almost no solid implementations of real-time kernels available on the
open market. So the engineers simply had to be pragmatic and code a scheduler for them-
selves. But this history lesson has shown that pragmatism can easily turn into legacy if
care is not taken, and legacy systems can be hard or almost impossible to change or fix.
So most routing software still suffer from custom schedulers that run inside of the rout-
ing protocols. The code base keeps growing, and because customers always ask for new
features, there is no time to consolidate the code base and revise the software architec-
ture. Not revising the code base frequently will ultimately bring a product to the point of
no return where the complexity of the legacy code makes it impossible to further extend
functionality.

2.3.2.2 OS Design, the Kernel and Inter-process Communication

In the last decade of networking, a lot of effort has been made to improve the overall sta-
bility of the operating systems. The first router OSs seen on the market started out with
CPUs that did not support virtual memory. Virtual memory is a technique that assigns
each process a private chunk of the system’s memory. With this approach, if Process #1
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tries to access Process #2’s memory, then Process #1 is immediately terminated. Why
then is virtual memory today imperative? Virtual memory greatly enhances the overall
system stability by limiting local damage.

No matter how much time and resources put into testing efforts, there will be always
some bugs that are only unveiled in a production environment. So there is some residual
risk that certain processes will crash. What virtual memory helps is to mitigate the
impact that a crashed piece of software has to the overall system. In early router OSs, for
example, a tiny bug in relatively unimportant parts of the system, like the CLI, could
overwrite another process’s BGP neighbor tables. The result would be incorrect adver-
tisements and incorrect processing of incoming data that might cause not only the entire
router to crash, but also affect other routers as incorrect information is propagated in turn
and ripples through the network to crash other routers.

Modern control plane software typically consists of 1-2 millions line of code, which
leaves plenty of room for lots of bugs. A software design technique called graceful degra-
dation is becoming more important for distributed systems like router networks. The basic
idea is that a big piece of software is broken down in small atomic modules. — To provide
isolation each module gets its own process and virtual-memory. However, sometimes
processes need to share data being held by another process. For example, listing a neigh-
boring router’s route advertisements requires the CLI to ask the BGP process what routes
it received from neighbors. All the processes need to use a common exchange mechanism
like a message-passing API in order to interact with each other. The message-passing API
is one of the things that each modern kernel offers to its processes. The kernel itself is the
root of the operating system. It starts and stops processes and passes messages along
between processes.

Figure 2.11 shows an example of a message-passing atomic-module system. The ker-
nel offers a generalized, uniform messaging system for interaction and thereby provides
unmatched stability. Do not be misled: the kernel does not stop individual processes from
crashing. But it does help limit the impact of the crashed piece of software on other
processes in the same system. After a process dies, the kernels watchdog waits a couple
of seconds and restarts the broken software again. It is common practice to write a log
entry into the system’s log that a process has been crashed and restarted, ultimately alert-
ing the Network Operation Center (NOC) to the problem.

The advantage is clear: a single network incident like, for example, a bug in IGP
Adjacency Managements crashes only one Adjacency and does not take out the entire
router for 2-3 minutes to complete a reboot.

No of the two Vendors implementation discussed in this book encompasses the idea of
atomic modules communicating through the kernel. The main argument of the propo-
nents of monolithic software is that the amount of data sharing that is required for exam-
ple in the routing subsystem will overload the inter-process communication system of
the kernel. The traditional vehicle is to share memory between modules inside a process.
The disadvantage here is full fate-sharing: If there is a single software problem in the
process the entire process will crash and render the router control-plane unusable for
minutes.

However it remains to be seen if the atomic modules and massive inter-process commu-
nication model can perform at a similar performance level than today’s shared-memory
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FIGURE 2.11. Modern OSs offer a message-passing API for processes to communicate to each other

model. If atomic-modules get close to par they are the next logical step to evolve router
control plane software.

In summary, proper partitioning of the control plane software helps prevent local bugs
from spreading to a system-wide crisis. Virtual memory shields the processes and their
associated memory from each other. In order to exchange information between
processes, the kernel offers a message-passing API. Once again, scaling by partitioning
has helped to solve the problem of OS instability.

2.4 Router Technology Examples

Building routers is a complicated and daunting task. There are probably only a few dozen
people in the industry that really know how to architect and design a modern router,
because of the inherent complexity. A lot of the insight on how to build routers that scale
was gathered by actually deploying premature implementations of software and using
the feedback that the deployment experience provided into the design of next-generation
routers. In the next few sections, popular router models and their design concepts will be
outlined.
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FIGURE 2.12. The first generation Interface Processor (IP) Cards did not embed route-lookup func-
tionality. All the traffic has been passed via the Route Switch Processor (RSP).

2.4.1 Cisco 7500 Series

The Cisco 7500 series of router was the most successful router ever built for Internet core
applications. Figure 2.12 shows the overall structure of the box. Basically, it is a redun-
dant shared bus system with one element dual-homed to both buses. The shared buses
have different speeds, depending on the revision level. Bus speeds range from the CxBus
(533 Mbit/s half-duplex) to the CyBus (1.2 Gbit/s half-duplex) and finally the CzBus
(2.5 Gbit/s half-duplex).

The Route Switch Processor (RSP) has to run both the routing software and also needs
to switch packets. The first-generation interface cards are called Interface Processors and
are from Network-Layer viewpoint purely passive devices. The IPs perform Layer-1
(Physical Layer) and Layer-2 (MAC Layer) related tasks like verifying CRC checksums,
SONET messaging or ATM SAR functions. If a packet enters the box, an interrupt is sig-
nalled to the RSP. The RSP fetches the packet and does a route-lookup to find the corre-
sponding outbound interface. All relevant modifications to the IP header, such as TTL
decrementing and recalculating the IP header’s checksum, are done by the RSP. Then the
packet is copied to the outgoing interface where it ultimately leaves the chassis.

The RSP forwarding module needs to have efficient route-lookup structures in order
to spend minimum lookup times before making forwarding decisions. The forwarding
information base (FIB) is known to Cisco Systems as the Cisco Express Forwarding
(CEF) Table. In Figure 2.13 there are two examples of how the lookup for IP address
4.6.2.1 traverses the CEF Table. The basic structure is a 256-way 4-level structure called
an M-tree. The four levels are located at the /8, /16, /24 and /32 prefix boundaries. Each
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node contains 256 pointers to other nodes farther down the hierarchy. Each node also
contains a flag that tells the lookup process to terminate. In the illustration, this flag is
shown as a black dot. For example, for the IP address 192.158.253.244, the lookup stops
after the third memory reference because there are no further specific routes available.
Finally, the lookup process ends by doing one more lookup to determine the outgoing next-
hop information, which typically consists of an interface plus Layer-2 encapsulation data
such as MAC addresses. To Cisco Systems, this last table is known as the Adjacency Table.

The Cisco 7500 router is a classic example of a mid-1990s router that has a monolithic
architecture where the RSP has to do two things: routing (sending and receiving routing
updates) and switching (moving the packets through the chassis). In busy boxes, the
switching load severely impacted routing convergence time and stability. Cisco Systems
addressed the problem by introducing new flavours of the RSP, which had more CPU
horsepower. Today the RSP, RSP-2, RSP-4 and RSP-8 are deployed in the field. However,
just putting in more CPU horsepower did not fundamentally address the architectural
problems — they were masked for the next 12—18 months in the product lifecycle.

The problem of high CPU load on the RSPs became increasingly severe as ISPs
wanted to sell premium services like Class of Service (CoS)-enabled or security-tightened

next-hop (Adjacency) Table

Ethernet0, MAC 00:d0:b7:b2:79:0e
Ethernet0, MAC 00:a0:¢c5:25:fb:30
Ethernet1, MAC ?7?

POS4/1, encaps PPP

| POS 6/0, encaps HDLC

FIGURE 2.13. The Cisco Express Forwarding (CEF) Table ensures minimum route-lookup times by
only four memory references
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networks. Doing additional classification and firewalling work besides the plain-vanilla
destination IP address route lookups resulted in decreased forwarding performance, in
some cases down to several 10K pps. The 7500 architecture had to be extended to offload
much of the switching decisions down to the interface level. With the next generation of
Interface Ports, the Versatile Interface Processor (VIP) was born.

2.4.2 Cisco 7500 Series + VIP Processors

The VIP concept is an improvement to the passive line card architecture of the plain 7500
series. The slots of the routers are populated with VIP cards, which are essentially carrier
cards that hold Port Adapters (PAs). The PAs perform similar low-level functions to the
older IP line cards. The VIP adapter itself runs a custom, stripped down version of I0S
that harbours mostly switching and classification functions in order to offload the RSP
from switching the packets. The VIP architecture was a real step forward in improving
switching performance and bus utilization. Using the old-style IP line cards, the bus was
used twice, as shown in Figure 2.12: once for the IP to RSP transfer, and then for the RSP
to IP transfer. Figure 2.14 shows that if the packet is transferred direct from one VIP to
another, the bus is traversed only a single time.

The distributed VIP architecture revealed an interesting issue: how to replicate the FIB
table to several line cards? As the route lookup was done in a distributed fashion, a piece
of software needed to make sure that the local FIB gets replicated to all the VIP adapters
in the system. Distributed CEF (dCEF) was developed to provide the proper care and
feeding of VIP line cards. But deployment of dCEF in the field revealed a weakness in
the way that FIB tables are built: the VIP card is a pure switching entity, and as such it

Active (VIP)
line card —

Active (VIP)
line card

Active (VIP) |———
line card

Route
switch
processor

———1 |

FIGURE 2.14. The Versatile Interface Processor transfers VIP to VIP traffic without Route Switch
Processor intervention
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also needs a piece of software that calculates the FIB based on the RIB. During transient
conditions when, for example, a large part of Internet traffic is rerouted, FIB computation
turns out to be a fairly expensive task. The VIP card does local switching and the RSP
performs control plane functionality, plus building the FIBs on behalf of the VIP
adapters. And that is exactly the weak point of the architecture, because the RSP still
needs to do too much work that would be done better at the VIP card level. There is no
true decoupling of forwarding and control functions here. For better stability, it probably
would have been a better design choice to replicate the local RIB to the VIP cards and let
them do the FIB generation.

Around the same time, it became apparent that the enormous growth of the Internet
was outpacing advances in bus speeds. So the 7500s, which had once been the core
routers, moved to the edge and began performing customer traffic and route aggregation
functions. The concept of the shared bus had to be replaced by a true fabric enabling line
card speeds beyond OC-12/STM-4 speeds of 622 Mbps, which is still the architectural
limit of the 7500 + VIP series. It was clear that changing the heart of the router, which
is the fabric, leads to a change of the line-cards, the VIPs and the PAs. Essentially a
whole new router needed to be designed.

2.4.3 Cisco GSR Series

The Cisco 12000 Series, sometimes referred to as the Gigabit Switch Router (GSR), is basi-
cally a meshof high-speed VIPs that perform independent, local route and classification
lookups. Figure 2.15 illustrates the concept in brief. The glue that holds these line cards
together is a single-stage crossbar that provides up to 80 Gbit/s I/O bandwidth. The succes-
sor of the 12000 Series is the 12400, which offers an increased crossbar bandwidth of
320 Gbit/s. The route processor and the crossbar fabric are designed redundant. If one com-
ponent breaks the other will take over. There are four different types of line cards for the
GSR Series, starting with Engine-0 line cards, which offer only software processing like the
VIP processors on the 7500 series. There are also Engine-2 line cards using custom ASIC
hardware and Engine-3 cards are the second generation of ASIC hardware. Finally, Engine-
4 line cards are targeted for the new high-speed fabric of the Cisco 12400 Series intended to

Active _— = Active
line card _— L line card
Active — Crogsbar Active
line card e fabric — line card
Route — Route
Processor e ==  processor
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FIGURE 2.15. The GSR 12000 Series concept is a crossbar fabric surrounded by active line cards
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accommodate ASIC-supported high-speed lookups on four port OC-48/STM-16 (about
2.4 Gbps) and single port OC-192/STM-64 (about 10 Gbps) line cards.

Although Cisco Systems has to support a variety of hardware platforms, they offer an
easy-to-use uniform CLI across all platforms that enhance their popularity. The original
plan was to have a single code-base across all platforms, known as the Internetworking
Operating System (I0S).

2.4.4 Cisco I0S Routing Software

Unlike many other router operating systems, IOS is not based on any commercial real-
time OS. IOS is a complete new development written by Greg Satz and Kirk Lougheed,
early Cisco software engineers. There were some ideas inspired from TOPS-20, an
ancient DEC operating system, but that was about it. The biggest issue with IOS today is
its monolithic structure. IOS is not even a complete operating system in the sense of
UNIX or Windows. IOS is more like a single program that runs on a dedicated piece of
hardware. IOS does not include virtual memory protection, nor can new processes be
added at runtime. The lack of virtual memory protection is the main reason why I0S
crashes typically affect the entire machine and not just individual subsystems: there is
just a single program running and no partitioning at all. There are no demarcation points,
things like kernels, user processes and schedulers. IOS is just a single big program that
is executed from startup to shutdown.

IOS is based on a 20-year-old concept, and its main weakness is this monolithic code
structure. Until the runtime environment is changed, it will be hard if not impossible to
re-engineer the system for future requirements, such as the carrier-class availability
(known as “5 nines”) that the public infrastructure needs and deserves. Because of the
huge amount of code that needs to be carried from one product variation to the next, the
best thing to do with I0S is probably to start from scratch.

This desire to change the monolithic router OS infrastructure and to develop a second-
generation routing operating system was the genesis for newer companies like Juniper
Networks. It will come as no surprise to learn that the initial engineers writing the
JUNOS operating system were experienced engineers drafted from Cisco having the
insight (gathered from direct experience) into which design pitfalls to avoid in order to
build a stable, scalable router.

2.4.5 Juniper Networks M-Series Routers

Juniper Networks M-series routers were the first in the industry to offer a true decoupling
of the forwarding plane and control plane. Figure 2.16 shows the Juniper Networks sep-
aration between Routing Engines (RE) and a Packet Forwarding Engine (PFE). The
Routing Engine is an off-the-shelf Intel-based industry-standard PC platform with a very
small form factor. The link between the RE and the PFE is a standard Fast Ethernet link
that runs a proprietary protocol called the Trivial Network Protocol (TNP). TNP takes
care of the proper care and feeding of the lookup and queuing ASICs, and also retrieves
(for example) interface statistics from the chassis. TNP also provides a funnelled mode
where it carries packets sourced by the RE targeted for an interface (such as routing
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FIGURE 2.16. The M-Series encompasses a truly separated forwarding and control plane

protocol packets). The tunnel mode is necessary so that the RE can communicate with
the outside world. It is worth noting that no matter what JUNOS feature is turned on, no
transit traffic ever gets processed by the RE. The RE only needs to take care of control
traffic. Additionally, all traffic from the PFE to the RE is rate-limited in order to protect
the RE under all circumstances, even during denial-of-service attacks.

The PFE is a collection of custom ASICs interconnected by a distributed, shared mem-
ory fabric. The line cards follow a similar physical approach to the VIP adapters of Cisco.
There are Flexible PIC Concentrators (FPCs), which are carrier cards for the Physical
Interface Cards (PICs). The PIC itself can be compared to a PA in the VIP architecture.
Essentially, these are simple devices that just take care of proper physical framing, CRC
checksumming and alarm generation (SONET/SDH PICs). But in contrast to the VIP
architecture, the FPCs do not perform any route-lookup. The FPCs’ ASICs only process
a packet at Layer-2, strip all Layer-2 framing and then pass the packet to a central route
lookup chip, the Internet Processor 2 (IP2). The IP2 can only do route lookups and
packet filter lookups. Once a next-hop matching any field in the IP header (typically, but
not always, only the destination IP address) is found, the outbound FPC fetches, queues
and finally transmits the packet to the PIC. The PIC again performs only Layer-1 related
functions like checksumming and so on. The IP2 FIB table structure has been optimized
for update friendliness. In fact, a change in next-hop under full load does not cause a sin-
gle packet to drop! The FIB table size is 16 MB, providing room for about 1100K routes,
many times more than the Internet could need for years to come.

Feature-rich lookup, classification hardware, and a clear architectural avoidance of
transit traffic on the RE is the foundation for the elusive goal of true separation of the for-
warding plane and the control plane.
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FIGURE 2.17. JUNOS software is partitioned across many user level processes

2.4.6 JUNOS Routing Software

The JUNOS operating system is built around a FreeBSD 4.2-STABLE UNIX operating
system. The kernel is different to the usual FreeBSD kernel. Special care has been taken
to ensure scalability and the kernel is modified to support multiple routing tables, mil-
lions of routes and thousands of interfaces. Because UNIX offers full virtual memory
protection, the system is split up in many different user processes, as illustrated in Figure
2.17. The routing code is still bundled in a single process for all the routing protocols
across all routing instances, so the issue of scheduling is still present. If a large wave of
BGP updates hits the system, it is possible to miss sending IGP Hellos. But the UNIX-
based package also provides a way around this issue. There is a dedicated daemon
(server process) in JUNOS called the Periodic Packet Management Daemon (PPMD).
The IGPs register with PPMD, which sends out the IGP Hellos on their behalf. PPMD
completely offloads Hello processing from the RPD, and the RPD does not need to han-
dle periodic Hellos at all. The RPD is notified by PPMD if an important event like an
adjacency expiration occurs. PPMD runs with the highest scheduling priority in the system
and may pre-empt any process to make sure that every IGP Hello is delivered in time.

In summary, JUNOS is a true example of a second-generation router operating
System. Many lessons learned from deployment experience with Cisco IOS have been
incorporated into the software. The software is modular in order to overcome the fate-
sharing problems in monolithic designs. At the time of writing, the number of active
processes in a functioning router was 37, an extraordinary number. Partitioning the code
carefully ensures that each single subsystem becomes maintainable and protects the
overall system from avalanche effects caused by local bugs.

2.5 Conclusion

The evolution of the Internet is so fast that it is difficult for core routers to keep up.
Both forwarding user traffic and processing control traffic in a network that doubles in
speed and size every nine months is a daunting task. To tackle the problem of scaling,
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one common technique is repeatedly used: partitioning. The first occurrence of parti-
tioning is the Internet routing paradigm itself. Hosts need to perform more dissimilar
functions than routers have to do. Partitioning is the tool of choice to scale router scala-
bility problems. In modern routers, the control plane has been separated from the
forwarding plane. This separation does not rely on shared resources like CPU cycles and
memory. Next, clever ways of manipulating forwarding table structures while forward-
ing traffic at full speed have been developed. Partitioning the route lookup and table
maintenance functions addressed the challenges of an ever-and-yet-never-quite converg-
ing Internet. Finally, control plane software has been partitioned twice. First, the interac-
tion and memory protection of routing software inside the system is secured via a kernel
that each process relies upon, greatly minimizing the impact of broken software. Second,
the routing protocols are split up into a real-time component and a non-real-time com-
ponent, further improving convergence time granularity as well as removing a lot of
complexity from the routing code.

All in all, partitioning is the prevailing scaling method that helps to scale the Internet
and its building block, the router.



3

Introduction to the IOS and JUNOS
Command Line Interface

In the router world, ISPs and carriers got used to the fact that routers are configured and
managed using an ASCII-based command line interface. Even if this seems scary the first
time, especially when used to fancy graphical user interfaces (GUI), command line inter-
faces give unmatched control over the router and provide a powerful troubleshooting
tool.

The Internet is a network that is constantly under flux — somebody somewhere is always
changing something. Moreover, new protocol standards evolve, new releases of routing
software are deployed, peering policy may change as a result of business constraints or
acquisitions, and so on. All this makes for a challenging environment that, at least not up
to now, could be modelled in the form of a GUI In this chapter we will give a basic
overview of how to interact with this kind of interface. You will learn in this chapter
how to upload a new configuration, how to query IS-IS related status and finally how to
troubleshoot and debug adjacency formation and link-state databases.

3.1 Common Properties of Command Line Interfaces (CLI)

When Cisco Systems shipped it first product called “ISH” back in 1986, no one imagined
that the company would be redefining how operators interacted with routers for the next
two decades. At first sight a command line interface might look primitive; however, there
are important aspects and elements that helped the company achieve its breathtaking
success. There are many theories about why Cisco Systems got to where they are in the
industry today. From a technical viewpoint, two key properties helped people feel com-
fortable with the Cisco router’s interface. The first is that after changing the router’s con-
figuration, everything was written into a single file that is kept in the Non-Volatile RAM
(NVRAM) of the router. Virtually everything that the router does, for example running
routing protocols, performing access control, or using static routes, is controlled by this
single file. The second important aspect is that the router’s configuration file was an
ASCII file and is therefore human-readable. Unlike other router companies who stored
their configuration file in binary form, the IOS configuration files could be read out on
the fly and everybody understood exactly what the router was supposed to do.

There are two other main advantages of single ASCII configuration files. First, support
gets easier. It is a matter of fact that a large fraction of support calls are configuration
related. An ASCII configuration file enabled operators to simply copy and paste their
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router configuration into an email when requesting support. The Technical Assistance
Centre (TAC) could then very quickly see if this was a configuration issue or if the soft-
ware had a bug and further analysis of the problem was required. There are even those in
the industry who argue that ASCII-based configuration files make the support organiza-
tion scale more effectively and work most efficiently.

The second main advantage is that customers did not need to have a live router to gen-
erate configuration files. If the router’s configuration was stored in binary form, there is
no opportunity for a third-party application or a “quick-hack” script to generate a valid
configuration file. Router configurations that could be generated by standard UNIX tools
like SED, AWK and PERL were a first-generation way of eventually making a provi-
sioning API available for configuration robot tools.

Perhaps Proteon (an ancient router vendor from the 1980s) had an interface that pro-
vides the best example of how not to do router configuration:

e Configuration was purely done using menus that never showed you where you were
in the configuration statement hierarchy.

e Configuration and show commands had a totally different look and feel (for those who
are familiar with this, just recall the jumping between TS and T6 command shells).

e Everything was stored in a binary file.

e There was no possibility to employ external provisioning tools.

Cisco overtook Proteon in the market at the end of 1980s for various reasons. But one
reason was definitely the odd command line interface of Proteon routers. Not that a sound
CLI automatically paves the way for success in the router industry, but it clearly does help.

The two ASCII-based command line interfaces of IOS and JUNOS are similar to each
other in some respects, and different in others. The following sections highlight these
common elements. Then the differences between IOS and JUNOS (and also the intended
improvements JUNOS made to I0S) will be discussed as well.

Routers are typically accessed in three ways:

e RS232 serial console
e In-band access via telnet or Secure Shell (SSH)
e Qut-of-band access via telnet or SSH.

Once you have logged on the router, there are two general modes of talking to the router.
The first one is called the operational mode. This mode is mainly used to explore what the
router and its environment are doing, what routes are being installed in the system and if
interfaces are carrying traffic. The other mode is the configuration mode. In the configura-
tion mode the router’s behaviour is controlled, for example, what IP address does it have,
what routing protocols parameters are used, who can access the router or network, and so on.

3.1.1 Operational Mode

Once you log into a router you usually find yourself in operational mode. The trailing
“>” sign indicates that you are working in operational mode. In JUNOS the prompt
looks like this:

hannes@New-York>
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And for I0S, the prompt would look like this:

London>

What you will always see is the hostname (the name of the router) followed by the
“>” sign. In JUNOS you also see the username followed by the “@” sign before the
hostname. Now you can issue commands to the router. The commands are organized in
a hierarchical fashion as shown in Figure 3.1. The more arguments a command has, the
more specific the command gets. For instance, a show isis database London
just shows a single link-state database (LSDB) entry, while show isis database
shows all LSDB entries.

hannes@Frankfurt> show isis database London
IS-IS level 2 link-state database:

LSP ID Sequence Checksum Lifetime Attributes
London.00-00 Oxlaf 0xa977 25314 L1 L2
1 LSPs

hannes@Frankfurt> show isis database
IS-IS level 1 link-state database:

IS-IS level 2 link-state database:

LSP ID Sequence Checksum Lifetime Attributes
London.00-00 Oxlaf 0xa977 25314 L1 L2
Amsterdam.00-00 0xla7 0x3ddo 31088 L1 L2
New-York.00-00 Oxla2 0x16£f5 46510 L1 L2
Penssauken.00-00 0x19a 0x3ec 5184 L1 L2

408 LSPs

The arguments for a command are separated by a simple blank. Sometimes the router
has too few arguments and this forms an unambiguous command. Typically, routers
complain about an ambiguous command with a prompt:

hannes@Frankfurt> show isis

syntax error, expecting <commands.

show

e

/

route
detail

FIGURE 3.1. The command line space is organized in a hierarchical fashion
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This is from a router running JUNOS and

Munich>show isis

o

% Incomplete command.

is from an IOS-based router. However, there is an easy way to discover what kinds of
commands the router gives you: context-sensitive help.

3.1.1.1 Context-sensitive Help

At any time, you can enter a question mark (?) at the user prompt, which makes the CLI
display all the options that are available at this point in the command-line hierarchy:

hannes@Frankfurt> show isis ?
Possible completions:

adjacency Show the IS-IS adjacency database

database Show the IS-IS link-state database

hostname Show IS-IS hostname database

interface Show IS-IS interface information

route Show the IS-IS routing table

spf Show information about IS-IS SPF calculations
statistics Show IS-IS performance statistics

You will see the keywords that are available, plus a brief descriptive text about what
kind of information is displayed by the respective option.

If the question mark is keyed in the middle of an argument, the CLI shows you what
valid completions are still left. Note above that there are two keywords after show isis
starting with the letter “S”. The keywords “spf” and “statistics” both start with the same
letter. What you can do is issue a show isis s command and then type the question mark:

hannes@Frankfurt> show isis s?

Possible completions:
spf Show information about IS-IS SPF calculations
statistics Show IS-IS performance statistics

The router shows you the two possible completions. If there are no valid completions
then the router simply responds with:

hannes@Frankfurt > show isis j?
No valid completions

Sometimes the keywords available in the CLI can be very long and the command line
interfaces often offer shortcuts to the keywords. That is, it is not really a shortcut, it is
more that the command line parser looks to see if your input is unambiguous and then
accepts the keyword. So the commands do not have to be specified to the full extent:

London> sh is d

produces the same output as:

London> show isis database
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3.1.1.2 Auto-complete

Sometimes these shortcuts are also known as auto-complete functionality. It is not quite
the same thing, however. What auto-complete means is that you can press the <TAB> key
every time you want to check if you have supplied enough characters for a keyword so
the command is unambiguous. For example, if you enter:

London> show i<TAB>

then you get:

London> show i

In other words, nothing happens if the letters supplied are ambiguous. However, if you
supply enough letters like:

London> show is<TAB>

then you get:

London> show isis

Auto-complete proved to be a powerful tool for experienced users quickly needing
output, for instance, when troubleshooting a network problem.

The second major mode of router CLI operation is the configuration mode that con-
trols the router’s behaviour.

3.1.2 Configuration Mode

You can switch from the operational mode to the configuration mode by issuing commands
like configure or configure terminal. On JUNOS routers you see that you are
now in configuration mode because the prompt has been changed from “>" to “#”

hannes@New-York> configure
Entering configuration mode
[edit]

hannes@New-York#

You also can see that you are in the configuration mode because each time you press
the <ENTER> key your prompt is prepended by [EDIT], which always indicates that
you are in the configuration mode.

On IOS platforms you cannot get directly to configuration mode. You first get into
what is called the privileged enable mode.

Londons>enable

Password: ****kx*

London#fconf terminal

Enter configuration commands, one per line. End with CNTL/Z.
London (config) #

Just as in JUNOS there is the # indication in the prompt that tells you that you are in
configuration mode. You also see the config keyword in parentheses after the router’s
hostname and the prompt.
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The configuration mode CLI also has a hierarchy, as described in the operational
mode, for show commands. The prompt again indicates what part of the hierarchy the
operator is configuring. For example, if you want to configure parameters that are related
to the IS-IS subsystem, you specify simply router isis and then the system puts you
in the router isis context.

London#conf t

Enter configuration commands, one per line. End with CNTL/Z.
London (config) #router isis

London (config-router) #

You see that you are working in a different context because the prompt changes. A simi-
lar thing happens to the prompt in JUNOS command line interfaces:

hannes@New-York> configure

Entering configuration mode

ledit]

hannes@New-York# edit protocols isis

[edit protocols isis]

hannes@New-York#

The information in the square brackets is called the editing context. A simple [edit]
means that you are on the top-level of the configuration hierarchy. When you move
around in the hierarchy using the edit command, the prompt changes accordingly.

3.1.3 Emacs Style Keyboard Sequences

There are people in the industry who believe that the UNIX Emacs editor is a problem
itself; there are others who believe it is a solution to all kind of problems. While the authors
generally like the highly customizable nature of what is probably the most powerful editor
around, there are others who complain that it is hard to configure and make it do what you
want . One thing about Emacs that is distinctive is the way that you move the cursor around
on the screen. Emacs has certain key-combinations that can put the cursor at the beginning
of a line or at the end of a line, and so on. Moving quickly around and editing a command
really speeds up the way of talking to the router. Figure 3.2 shows the most commonly-used
Emacs sequences. CTRL-A and CTRL-E for moving to the beginning or end of a line
are the ones used most often. IOS and JUNOS both implement the Emacs keystroke
sequences, and once you are used to it, it greatly speeds up administering the router.

3.1.4 Debugging

Modern routers give you a vast amount of debugging options where you can trace virtu-
ally everything that the router is doing. Both JUNOS and IOS have a rich tracing facility
to show what the routing software is doing. Each protocol has its very own knobs that
you can turn on. Similar to operational mode and configuration mode, there is also a hier-
archy as to what kind of feature or protocols can be debugged. The purpose of turning on
the debugging facility is to help you during the troubleshooting process. Unfortunately, the
way that the debuggers are managed in each is very different and will be discussed in the
I0S and JUNOS specific sections. The important point is that both platforms give you a
powerful debugging facility for troubleshooting complex networking problems.
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hannes @ New-York> show isis database

.

hannes@New-York> show isis database
o g

hannes @New-York> show isis database
b

hannes @New-York> show isis database
Ao

hannes@New-York> show isis database
4

hannes @New-York> show isis

A

FIGURE 3.2. IOS encompasses Emacs style keystrokes for faster navigation of the cursor

3.1.5 IP Troubleshooting Tools

Router operation systems like IOS and JUNOS also have standard IP troubleshooting tools
(like ping and traceroute) on board. The ping and traceroute utilities often have been
enhanced for core-routing applications. One example of such enhancements is the ability
to specify the routing table which the system should use to determine the outgoing interface.
Other examples are the ability to manually specify the source IP address or to bypass a rout-
ing table. So both the ping and traceroute utilities are available, but have some enhancements
far beyond the off-the-shelf ping and traceroute commands that are included with host
operating systems. So when you first use them, make sure to use the online help function
by keying the question mark to see what kind of additional options the system offers.

3.1.6 Routing Policy

Even if this is a book about IS-IS, there are many times when the IS-IS protocol needs to
interact with other routing protocols, or even transfer prefix reachability information
from one protocol to the other. Both JUNOS and IOS have a rich set of software features
that control the flow of routing information between protocols. The software is very ver-
satile and in the JUNOS case it even has a “language” all of its own that controls the met-
rics and properties of a routing advertisement depending on the administrative policy in
the network. In the IOS and JUNOS specific sections you will see specifics of IOS and
JUNOS routing policy implementations.

3.1.7 Logging

Sometimes during troubleshooting you are more interested in past events than current status.
So it may be important to know when a BGP session last flapped or when a SONET/SDH
link went down. Both IOS and JUNOS allow you to log events to three places:

o Console (if there is an emergency/urgent action) that every user should know
e Local log file
e Central Logging Hosts (Syslog)
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The logging facility is highly configurable and allows you to classify all internal events
and log to one of the three possible logging targets.

As has been shown, many elements of the command line interface are common to both
the Cisco IOS and JUNOS CLI. Even if you are used to one system’s CLI, our experience
has been that you can figure out how to configure the other vendor’s routers within a few
days, given access to lab equipment or decent training. However, there are some import-
ant differences between the two command line interfaces, and these are highlighted in
the next two sections.

3.2 Cisco Systems 10S CLI

Cisco IOS is the most popular CLI look and feel for talking to networking devices. Its
enormous success has made it the de facto standard in the networking industry. Many
vendors simply cloned it to avoid training new operational methods during the product
introduction cycle. In the next section, IS-IS-related examples of how to use the Cisco
CLI are presented. Then the differences in the JUNOS implementation are described.

3.2.1 Logging into the System, Authentication, Privilege Level

You can log into the Cisco system using a serial RS232 connection on the router’s con-
sole or dial-in via telnet or the Secure Shell (SSH) Protocol. Cisco Systems routers do
not have a designated Out-of-Band Management Port, so only the two options for access-
ing the router, direct and dial-in, are available. Once you have the physical or logical con-
nections working properly (and Cisco serial cables for console connections use odd pin
arrangements), you should see a message that prompts you for a password:

(11:29 hannes@unixbox:~) telnet Pennsauken
Trying 192.168.48.146 ...

Connected to Pennsauken.

Escape character is ‘*]’.

User Access Verification

Password: ****kx*

Pennsauken>

On a system that has per-user authentication (not the default) you have to enter a
username/password pair:

(11:31 hannes@unixbox:~) telnet London
Trying 192.168.17.1 ...

Connected to London.

Escape character is ‘*]’.

User Access Verification

Username: hannes
Password: ***xx*kx

London>
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IOS assigns every terminal session a privilege level between 1 and 15. You can display
the privilege level anytime using the command show privilege:

London>show privilege
Current privilege level is 1

You cannot really cause any harm to the system or modify its configuration and dis-
rupt traffic using a privilege level of 1. It is a privilege level dedicated to monitoring pur-
poses only. If you want to modify the system’s configuration or turn on debugging for
in-depth troubleshooting then you have to change this low privilege level. You can ask
your network administrator to change the privilege level either for your user-id or for the
specific terminal line used to configure the router.

If you know the enable password you can jump immediately to privilege level 15, which
lets you do everything within the router, for example, changing the configuration, reboot-
ing the box, resetting line cards, and so on:

London>enable
Password:

Then this will verify the enable privilege level:

London#tshow privilege
Current privilege level is 15
London#

Now you are in enable mode, which means that you have the full set of show and con-
figuration commands available, as discussed in the next section.

3.2.2 IS-1S-related Show Commands

At the end of the 1980s, IS-IS was being used as the routing protocol in a purely CLNP
protocol environment. This was also the time when Cisco because successful in the enter-
prise marketplace with its multiprotocol router products. No one initially had in mind to
use the IS-IS routing protocol for routing IP, not even the engineers at Cisco. Because of
that, there is still some non-IP legacy in the user interface left. Moreover, Cisco always
wanted to keep the router configurations portable from IOS release to IOS release, and
this desire had by that time caused configuration statements to become scattered over sev-
eral different places in the user interface. In IOS, IS-IS support for CLNP came first, and
support for IP, and the necessary troubleshooting tools, came later. So a lot of IS-IS-
related commands are found under the show clns command and not at the show
isis branch which would be more obvious from today’s perspective.

Do not be confused about the CLNP/CLNS abbreviations. CLNP is the Network
Layer Protocol of the OSI suite. CLNS is the name of the entire suite of protocols. If one
wants to compare this with the IP protocols then CLNP would be equivalent to IP and
CLNS to TCP/IP which is also the name of the entire family of protocols and not limited
to only the IP and TCP protocol.
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show |
clns | | ip | | interfaces | | isis

interface | | database F

neighbors | | hostname F

traffic | | e -

| topology F

| spf-log F

| mpls H

FIGURE 3.3. The IOS CLI tree for IS-IS-related operational commands

Figure 3.3 lists the most important IS-IS-related show commands in a tree-style rep-
resentation. Almost everything that is important is thankfully under the show isis
branch of the tree. The only major exceptions are the show clns neighbor command
that shows IS-IS adjacencies and show clns traffic which gives a good overview
as to what kind of IS-IS packets the router is sending and receiving. The use of the com-
mands will be documented and detailed in the subsequent chapters. But first, a look at the
different ways to alter the Cisco router’s configuration is in order.

3.2.3 Interface Name-space

In the configuration file you need to configure properties of the router. In an 10S envir-
onment, in many cases the routing-related parameters are properties of the physical
interface. The interfaces can be referenced using configuration mode or operational
mode. In this section, the naming conventions used for the interfaces inside a Cisco
router will be highlighted.

In IOS, there are physical and virtual interfaces. The list of physical interfaces covers
all modern network interface technologies, such as:

o Asynchronous Transfer Mode (ATM)
e Ethernet

e Fast Ethernet

o Gigabit Ethernet

e Packet over SONET/SDH (POS)

o Serial

There are also two types of virtual interfaces:

o Loopback
o Null
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Virtual interfaces, in contrast to physical interfaces, have the nice feature that they
never go down. Because of this property, the loopback interface especially is used for ter-
minating TCP-oriented routing and signalling protocols like BGP or MSDP. Because the
loopback interface never goes down (as long as the router is functional), the routing pro-
tocol packets are able to enter the router over any physical interface. After all, the func-
tion of the IGP (OSPF, IS-IS) is to route around those interfaces that have gone down.
This approach is much better than to terminate router 2 router sessions on interface
addresses.

The second virtual interface is the null interface. It also never goes down, but is used
for different purposes. There are two applications for the null interface:

e Trashing traffic
e Announcing aggregate routes

Generally, a router should forward packet traffic. However, there are times when a
router should route traffic to the “bit bucket”. A good example for this is traffic targeted
to the RFC1918 private address spaces, which should never appear in packet headers on
the global public Internet. These addresses are intended for local use, and packets with
this source or destination address must not be forwarded to the Internet. It is common
practice to install static routes for the private network addresses that point to a NULL
interface on each border router inside your Autonomous System (AS):

London# show running-configuration

[ .1

ip route 10.0.0.0 255.0.0.0 Nullo

ip route 172.16.0.0 255.240.0.0 Nullo
ip route 192.168.0.0 255.255.0.0 Nullo

In an IP environment, it is one of the duties of the routing protocols to report that a
certain sub-net is unreachable. The routing protocols propagate this change and all routers
along the path recompute their IP routing tables. From an Internet perspective, this behav-
iour is a real issue. In Chapter 10, there will be more details regarding why a re-computation
of routes can be an expensive (in technical, not commercial terms) process. Typically, the
Internet is not interested in an update that a /24 prefix from the other side of the planet is
unavailable, because it keeps so many routers busy updating their new forwarding state.
So the more common practice is to announce aggregate routes and to suppress all the spe-
cific routes that may be internal to a network, as shown in Figure 3.4. But in order to exist
at all, routes, aggregate or not, need to refer to a next-hop interface, which leads to the next
router to forward traffic to. The null interface serves this next-hop purpose for aggre-
gates: it is always up. And you get another feature for free — the null interface trashes all
traffic to destinations that do not have more specific routes. If sub-net (for example)
192.168.33/24 is not known internally (that is, no more specific routes are known), and
there is a port-scanning source from the Internet, then the null interface trashes all that
traffic. However, the main purpose of this feature is to suppress announcements of specific
routes as shown in Figure 3.4, which shows the flapping of 192.168.44/24 towards the
Internet.



46 3. Introduction to the IOS and JUNOS Command Line Interface

Aggregate
192.168/16

Internet

portscan to 192.168.33/24

FIGURE 3.4. Aggregate routes are typically advertised by AS border routers

Returning to physical interfaces, all of the high-end Cisco router models (7500 and
12000 Series) have several slots that can hold up to 16 line cards depending on the exact
router model. On the line card there may be one or more ports. The number of ports varies
with the line speed of the ports. The lower the line speed, the higher the port density.

The physical ports are referred to in a slot-number/port-number fashion. The follow-
ing are examples of complete interface names in the IOS name-space:

¢ GigabitEthernet3/0
¢ POS5/1

o ATMO/0

e Serial 1/0

The numbering of the slots and ports starts at 0. So the first slot position in the router
chassis is referred to as 0. In the digital world counting typically starts at zero.

The simplest way to access the properties and current state of an interface is to use the
show interface <interface-name> command:

London# show Interface P0OS3/0
POS3/0 is up, line protocol is up
Hardware is Packet over SONET
Description: “Interface to Amsterdam POS4/1”
Internet address is 172.16.25.1/30
MTU 4470 bytes, BW 155000 Kbit, DLY 100 usec, rely 255/255, load 1/255
Encapsulation HDLC, crc 16, loopback not set
Keepalive set (10sec)
Scramble enabled
Last input 00:00:00, output 00:00:07, output hang never
Last clearing of “show interface” counters never
Queueing strategy: fifo
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
5 minute input rate 120457000 bits/sec, 28800 packets/sec
5 minute output rate 130429920 bits/sec, 26107 packets/sec
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412058846 packets input, 4066852672395 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 parity
1 input errors, 1 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
627685025 packets output, 4025356699702 bytes, 0 underruns
0 output errors, 0 applique, 4 interface resets
0 output buffer failures, 0 output buffers swapped out
3 carrier transitions

The output contains information about the Layer-2 encapsulation, maximum trans-
mission unit (MTU), the current forwarding rate (expressed in packets and bytes), plus
counters for the aggregate number of bytes and packets that have been processed through
this interface.

For IS-IS-related purposes, you will often see the interface names, for example, in
commands like show clns neighbor:

London# show clns neighbor

System Id Interface SNPA State Holdtime Type Protocol
Frankfurt PO3/0 *PPpP* Up 22 L2 IS-IS
Munich PO4/1 *PPP* Up 20 L2 IS-IS

3.2.4 Changing Router Configuration

In IOS you tell the router to take configuration input and to transfer it to the central con-
figuration file using the configure command. The standalone configure command
will prompt you to enter the way that you want to input the configuration file:

London#configure

Configuring from terminal, memory, or network [terminal]?
Enter configuration commands, one per line. End with CNTL/Z.
London (config) #

The memory option lets you source the configuration file from a memory storage
device inside the router, such as flash-disks or the NVRAM. But a more typical way is
from the network or from the terminal. From the network means that you have to specify
atrivial FTP (TFTP) server and a filename, and the router will then attempt to pull down
the file using the TFTP protocol.

London#fconf network

Address or name of remote host [255.255.255.255]? 192.168.1.1
Source filename [London-confg]?

Configure using tftp://192.168.1.1/London-confg? [confirm]

The most common way is to put the router into configuration mode and then enter the
configuration statements manually from the terminal. This is the most likely way of
interacting with the router in day-to-day operation:

London#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
London (config) #
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Now you are in configuration mode at the top (global) level of the configuration. Notice
the (config) phrase between the # sign and the hostname. This shows that you are now
in configuration mode at the top level. In IOS, the configuration file is structured into a
few hierarchy levels. You can configure the top level, but this is further divided into inter-
face configuration modes and router configuration mode. IOS provides only this two-
level configuration scheme. You either configure something at the top level (for example,
user and access information) or configure something under the interface or router hierar-
chy. You can jump between the levels by just typing in the new context. For example, if
you are in global configuration mode and you want to configure an IS-IS property for an
interface, then you can change the context by just typing in the interface name:

London (config) #
London (config) #interface pos5/3
London (config-if)

You are now in interface configuration mode, and this is verified by the prompt, which
has changed from (config) to (config-if).

You can jump back to the top-level hierarchy by simply typing exit. Note that you
are just exiting the context and not the configuration mode itself. If you want to exit the
configuration mode then you type exit at the top level:

London (config) #router isis
London (config-router) #exit

(
(
London (config) #interface pos5/3
London (config-if) #exit

(

London (config) #exit

Alternatively you can enter CTRL-Z in any context to immediately terminate the
configuration mode and get back into operation mode:

London (config) #interface pos5/3
London (config-if) # *Z
London#

This flat hierarchy approach has the advantage that the location of certain parameters
is usually intuitive. However, the big disadvantage is that as the configuration file gets
bigger and bigger, and the router must perform many different functions (as, for example,
an edge router would), the configuration file may look unstructured, messy and confusing.

In any case, once in the correct context, just type in the configuration command, which
is typically structured in a keyword N * [optional-parameter] parameter format. For
instance, the following command would set the IS-IS hello timer on a given interface to
20 seconds. The function of this timer is not important for now, Chapter 5 details all of
the specifics and consequences of the IS-IS hello timer parameter.

London (config) #interface pos5/3
London (config-if) #isis hello-interval 20<ENTER>

Once you press the <ENTER> key the command is parsed and then executed immedi-
ately. So whatever you do, think beforehand and make sure that whatever you change
does not cut you off from router access (this happens more often than you might expect).
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There are configuration changes that require an entire set of commands to be entered on
a router. And if you enter them in the wrong order, then your in-band terminal (telnet)
session might be cut off. A good example of this is authentication of routing updates.
Typically, you have to specify a shared secret password that is stored locally on the router.
The second configuration step is a reference to the password, which makes the router send
authenticated information, but also makes the router expect authenticated routing informa-
tion with the shared secret. Imagine what happens if you mix up the order: first you tell the
router that everything has to be authenticated, and so is also expected to arrive authenti-
cated. What happens is that you will receive a few Hello messages and then your router
drops the adjacency because nothing has been actually authenticated because there is no
password yet! If you are relying on the network for configuration access, hope that there
is someone local you can reach to correct the problem through a direct console connection.

The authentication example is basically a two-step configuration transaction. The
term transaction was borrowed from SQL database environments, which faced the prob-
lem everyday that structured, multi-field data are not entered and stored all at once.
Because of transient conditions like two users modifying the same database records at
the same time, corrupted data was often the result. All modern databases offer transac-
tional integrity, which locks the database until the entire transaction is finished. In the
router world, this would mean that you can finish all the commands that belong together
for a desired functionality and the session would never be disrupted. Unfortunately, the
IOS user interface does not give you transactional integrity, which means that you can-
not configure a set of commands in any order without risk of disrupting your in-band tel-
net session. For a configuration transaction that involves more than one configuration
step, finding out the proper order of the commands is a daunting task and sometimes not
even possible! This is especially true if machines like provisioning systems or config-
uration robots are doing the configuration of the router more or less unsupervised, then
the provisioning software gets infinitely complex.

What can be done about this IOS immediate-change feature? The best current practice
is that the provisioning systems overwrite not the active configuration, but the Cisco
startup-configuration file and reboot the router at 3:00 am in the morning. Modifying the
startup-configuration file has the advantage that the configuration does not get effective
immediately. As the name implies, it only becomes active the next time the router is
rebooted. The following command loads a file named “London-startup-config” and over-
writes the startup configuration file of the router:

London#fcopy tftp://192.168.1.1/London-startup-config startup-config

‘What you have to do for this new configuration to become active is to reboot the router
(either automated or manually). This of course implies that you have designed enough
redundancy into the network so that you do not cause any major outages by the router
going out of service for the approximately 3 to 4 minutes it takes for the reboot, which is
a common time for large core routers like the GSR 12000 series:

London#reload
Proceed with reload? [confirm]
Connection closed by foreign host.
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The router asks for confirmation and finally reboots with the new startup configuration
file. It should be noted here that sometimes it is not that easy to reboot the router right
away. Network redundancy is relatively easy to implement just by doubling the number
of routers in the core. However, when it comes down to the edge, especially for customer
access routers, what you need is a system redundancy, where you can do a full-chassis
reboot of a box without causing disruption. Unfortunately, routers are not as advanced in
terms of redundancy and resiliency as (for instance) public voice network switches, so
there is always some risk. So the missing transactional configuration feature for provi-
sioning IOS is still a major concern for large ISPs and carriers.

3.2.5 IS-IS-related Configuration Commands

As in the operational modes, IOS also has a structure for the configuration tree.
All IS-IS-related configuration is stored under the router isis and under the
interface <N> branch. Figure 3.5 gives a tree representation of commands and
options that can be configured in IOS platforms. This tree is based on IOS 12.0(23)ST,
a very common software release that many ISPs and carriers use.

3.2.6 Troubleshooting Tools

Cisco routers include a number of tools for use in troubleshooting router problems. The
two most helpful tools are the Cisco Discovery Protocol (CDP) and the debug command.

3.2.6.1 Cisco Discovery Protocol (CDP)

When you configure routers, first make sure that the packet-carrying circuits are up and
have a properly configured IP address on both sides of the link. You need an IP address to
properly test two-way connectivity using the ping command. However, there are several
cases, especially in troubleshooting, when you just want to verify that the data link (OSIRM
Layer-2) is up and is capable of transporting packets. Unfortunately, there is no standard
“ping-like” tool available that operates on OSI RM Layer-2 without an IP (Layer-3)
address. But Cisco has developed a clever tool called the Cisco Discovery Protocol (CDP)
to address that problem. CDP is encapsulated in a sub-network access protocol (SNAP)
frame. Encapsulating CDP in a SNAP frame has the advantage that it can be run on virtu-
ally all media, including Ethernet, Frame-Relay, ATM, PPP and Cisco-HDLC. It is enabled
by default on all Cisco routers. You can verify if you have Layer-2 connectivity, even on
interfaces without assigned IP addresses, using the show cdp neighbors command.

London#tshow cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater

Device ID Local Intrfce Holdtme Capability Platform Port ID
Munich POS1/0 171 R 12416 POS6/0
Pennsauken POS5/3 132 R 12416 POS12/0
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The output shows you the hostname of the neighbouring device, the local interface to the
remote device, the “platform name” of the router, and the port that the remote device is
using for your connection. The port is particularly interesting if you are doing low-level
troubleshooting with field personnel at the remote end. You can direct them to the port
configuration or even submit a configuration snippet that the remote personnel should
load on the router. Often field personnel are not used to configuring routers, and if asked to
configure an IP address or a certain line card setting, they sometimes decline. This is not
intended as an insult to field teams, who can’t be experts in everything, but it is a fact of life.
However, knowing the interface name, you can say to the field team “This is the config-
uration. Just plug in your laptop, login, do a configure terminal and then copy and
paste the configuration in.” This is a simple procedure that every field technician feels
comfortable with. CDP also conveys additional parameters like software versions and IP
addresses. The show cdp neighbor detail command reveals those details:

London#tshow cdp neighbor detail

Device ID: Munich
Entry address(es) :

IP address: 192.168.48.151
Platform: cisco 12416, Capabilities: Router
Interface: POS1/0, Port ID (outgoing port): POS6/0
Holdtime : 161 sec

Version :

Cisco Internetwork Operating System Software

I0S (tm) GS Software (GSR-P-M), Version 12.0(17)STé6
Copyright (c) 1986-2002 by cisco Systems, Inc.
Compiled Tue 07-May-02 00:49 by dchih

In the show cdp neighbor command there is also a column giving some infor-
mation about the router’s capabilities. Cisco of course has a whole variety of products
available that process packets at many layers of the OSI Reference Model. The show
cdp neighbor detail command shows you in a capabilities line at which layers
the device operates. For Internet routers, which are according to the OSI Reference
Model Layer-3 devices, the word “Router” should be listed here.

3.2.6.2 Debugging

Cisco IOS was the first commercial router operating system that had very powerful
debugging messages available. The debugging sub-system of the router works very
simply. You enter a structured command like debug <keywords. This sets an inter-
nal flag in the software to log every event that matches that keyword. The output is then
written to a local logging buffer. The administrator can read out the logging buffer in
real-time on his vty (virtual terminal, just another term for telnet) session or on the con-
sole. Additionally, all logs can be stored on an external syslog server and logged by the
router to this particular server with the syslog protocol. The debugging flags are struc-
tured in a tree-like fashion, just like the operational and configuration commands. The
structure of debug-tree is shown in Figure 3.6.
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adj-packets

—| authentication |—| information |

checksum-errors

local-updates

access-list
interface

tcp

|
Lms |~ rafic-eng

nsf cisco

—| spf-events |—| terse |

FIGURE 3.6. 10S CLI for IS-IS-related debug commands

For example, if you do not know if your router is sending and receiving Hello packets,
you could set a debug flag to record all output in a logging buffer. Make sure that you are
in privileged (enable) mode before setting any debug flag, otherwise the system would
refuse to do so. This is a kind of safety check to avoid abuse and service degradation by
excessive logging, which places an additional load on the router. The assumption is if
you are given the enable password then you should know what you are doing. The set-
ting of certain debug flags can even make the router freeze because it is so busy writing
log messages to the logging buffer. Here is an IS-IS example of debug use:

London#debug isis adj-packets
IS-IS Adjacency related packets debugging is on
London#

Initially, nothing seems to be happening because you do not see any output on the
screen. However, the system is logging sent or received Hello packets, which are the
packets that bring up IS-IS adjacencies. You can examine the contents of the logging
buffer by issuing a show logging command:

London#tshow logging
Syslog logging: enabled (2 messages dropped, 0 messages rate-limited,
0 flushes, 0 overruns)
Console logging: level debugging, 1894 messages logged
Monitor logging: level debugging, 143 messages logged
Buffer logging: level debugging, 1894 messages logged
Logging Exception size (4096 bytes)
Trap logging: level informational, 1810 message lines logged
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Log Buffer (16384 bytes):

*Jul 12 21:38:27.216 UIC: ISIS-Adj: Sending serial ITH on Serial3/0, length 4469
*Jul 12 21:38:29.056 UIC: ISIS-Adj: Rec serial IIH from *HDLC* (Serial3/0),
cir type L2, cir id 01, length 58

*Jul 12 21:38:29.056 UTC: ISIS-Adj: rcvd state UP, old state UP, new state UP
*Jul 12 21:38:29.056 UTC: ISIS-Adj: Action = ACCEPT

The bottom of the output displays the most recent events and which parts of the soft-
ware (here it is the ISIS-Adj sub-system) logged the message. If you do not want to
always monitor the logging buffer, another technique is to open up a second telnet
session to the router. You use the first for troubleshooting the router and changing the
configuration, and the second to read the output of the debugger. Additionally, because
repeatedly typing in the command show logging is a bit tedious, you can make the
router log all the messages to the second telnet session. You can make the router do this
by issuing the command terminal monitor:

London#terminal monitor

London#

*Jul 12 21:51:20.072 UTC: ISIS-Adj: Sending serial IIH on Serial3/0, length 4469
*Jul 12 21:51:21.228 UTC: ISIS-Adj: Rec serial IIH from *HDLC* (Serial3/0),
cir type L2, cir id 01, length 58

*Jul 12 21:51:21.228 UTC: ISIS-Adj: rcvd state UP, old state UP, new state UP
*Jul 12 21:51:21.228 UTC: ISIS-Adj: Action = ACCEPT

If you now issue a show logging command, you see your most recent logs as well
as an indication that the system is writing the logging buffer to a virtual terminal (telnet
session):

London#tshow logging
Syslog logging: enabled (2 messages dropped, 0 messages rate-limited,
0 flushes, 0 overruns)
Console logging: level debugging, 1856 messages logged
Monitor logging: level debugging, 109 messages logged Logging to: vty2(91)
Buffer logging: level debugging, 1856 messages logged
Logging Exception size (4096 bytes)
Trap logging: level informational, 1808 message lines logged

Additionally, it may sometimes be interesting to see what kind of debug flags the
router has set. The show debugging command displays you all debug flags currently
catching events, which are logged to the logging buffer:

London#tshow debugging
CLNS:

IS-IS Adjacency related packets debugging is on
London#
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Once you have finished your troubleshooting session, make sure that you turn off
debugging! Excessive debugging may degrade performance of the control plane and
hence seriously harm the system. The quickest command to turn off all debug flags is the
undebug all command.

London#fundebug all
All possible debugging has been turned off
London#

3.2.7 Routing Policy and Filtering of Routes

A router running all different kinds of routing protocols is still not enough for today’s
marketplace. Modern routing OSs have a strong support for controlling what kinds of
routes are accepted and advertised in turn to neighbours. What sounds so easy to do at
first is actually one of the most complex parts of a vendor’s routing code. Handling rout-
ing policy often requires a dedicated language to specify every detail of what type of
routing policy you need in your routing domain.

Looking at the IOS command line style and hierarchy, you can see that there is no sin-
gle place where routing policies are configured. That’s no big surprise — with IOS, because
of its multiprotocol nature, each routing protocol implements its own routing policy pro-
cessing as part of the protocol’s specific routing code. So one policy module is there for
RIP, one for IS-IS, and another one for BGP. This design choice is actually very conven-
ient as long as your routing policy stays simple. However, for more complex policies,
this approach quickly becomes difficult to maintain, given the different styles sometimes
used in the protocol’s redistribution policy. With the rise of BGP as an interdomain pro-
tocol and the protocol for policy processing, it was clear that a new, common way of con-
figuring routing policies had to be implemented in IOS. That common routing paradigm
in IOS is called route-maps. We will discuss only IS-IS-specific routing policies and
route-maps, and only briefly. But this is fine. Due to the way IS-IS is used by service
provider’s routing policies, which is as a pure topology discovery protocol, there are not
many IP routes in the IS-IS routing protocol to worry about distributing, because BGP
does that job much better. We do not need policy processing in IS-IS as much as we
would need it in a book about BGP. Typically, in an ISP’s IS-IS network, there is only
one place where policy processing takes place: when passing down routes from IS-IS
Level 2 to Level 1. But let’s keep that aside for a while — there is more about IS-IS hier-
archical routing levels in Chapters 4 and 12.

A good example of an IS-IS protocol-specific policy is the redistribute isis ip
level-2 into level-1 distribute-list 101 metric-style wide
command. This seems like a very complex statement, but it is really quite simple. It just
tells the router to send (redistribute) any IS-IS Level-2 IP routing information to the
Level-1 routers (isis ip level-2 into level-1) and use a larger metric field
than originally specified (metric-style wide). The details of the redistribute
command are covered in Chapter 12. For now, the important part of the command is the
distribute-1list 101 statement. The distribute-list refers to an extended-access-list,
which is a list of IP prefixes. In IOS, many sometimes complex policy operations can be
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done with a single command plus an extended-access-list. In the following example, the
extended-access-list referred to by the distribute-1list 101 command is shown:

London# show running-config

[ ]

access-1list 101 permit ip 192.168.1.0 0.0.0.255 any
access-1list 101 permit ip 192.168.3.0 0.0.0.255 any
[ .1

Confusingly, IOS can also use route-maps, which are the more flexible IOS routing
policy language. The route-map command introduces a multi-line sequence of match/
action pairs ordered by a sequence number. The most important clauses are the match
and set statements. These allow you to match on arbitrary prefix properties, such as
the interface it was learned (received) from, associated BGP community lists, or even
reference other access lists. The permit and deny keyword control the action if and when
a prefix is matched. The permit keyword means that the prefix generally is accepted by
the router and can only be modified by means of the set command. The deny keyword
means that a prefix is dropped upon match. An example route-map looks like this:

London# show running-config
[ .1
route-map hannes permit 10
match community 2

set metric 20
route-map hannes deny 20
match community 13

[..]

3.2.8 Further Documentation

There is a huge set of IOS-related material around. Probably the best starting site is
Cisco’s online manuals, which can be accessed at http://www.cisco.com/univercd/
cc/td/doc/product/software/index.htm.

3.3 Juniper Networks JUNOS CLI

The IOS-style CLI is the standard in the industry and many vendors copied it for their own
products. When Juniper Networks released the first version of its routing software named
JUNOS Internet software, many industry observers believed that it would be a clone of
the IOS CLI as well. However, the engineers at Juniper Networks who were in charge of
the user interface did not want to create just another clone of the IOS CLI. Being mostly
ex-Cisco employees, they had developed a good understanding of the limitations (espe-
cially the provisioning aspect) of the IOS software. For them it was crystal clear that they
wanted to create something new. So they replaced parts of the user interface that did not
work well and kept the properties that made IOS so successful.
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3.3.1 Logging into the System and Authentication

When you first log into a router running JUNOS, the first difference you see from IOS is
that the system prompts you in a UNIX fashion for a username and a password:

(20:45 hannes@unixbox:~) telnet frankfurt
Trying 192.168.77.12...
Connected to frankfurt.

A

Escape character is ‘7]’.
Frankfurt (ttyp0)

login: hannes

Password: *xkkxxkkxx
--- JUNOS 5.3R2.4 built 2002-06-03 18:59:57 UTC

hannes@Frankfurt>

This is because the underlying base OS for JUNOS is a heavily modified FreeBSD.
FreeBSD is a free UNIX clone just like the more popular Linux UNIX. Your can get fur-
ther information about FreeBSD at http://www.freebsd.org/.

But make no mistake: JUNOS and the original FreeBSD are different OSs, and large
parts of the networking-related kernel routines have been changed. FreeBSD is targeted
for a host operating system environment, much like a networked PC. Typically, host
operating systems have:

e A single routing table
e 1-3 network interfaces
e Tens of routes to handle

An operating system targeted for both edge and core routing functions has to handle
many more of each. Specifically, these needs are:

e Hundreds of routing tables
e Thousands of interfaces
e 100,000s of routes

However, there are still lots of things that remained in JUNOS, such as all the net-
working tools (telnet, SSH, ping and traceroute utilities) or, as in the previous example,
the login procedure.

Once you are logged in with your username, you have a set of privileges that are asso-
ciated with your username, similar to IOS. You can display those privileges by issuing a
show cli authorization command.

hannes@Frankfurt> show cli authorization
Current user: ‘hannes’ class ‘super-user’

Permissions:
admin -- Can view user accounts
admin-control -- Can modify user accounts

clear -- Can clear learned network information
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configure -- Can enter configuration mode

control -- Can modify any configuration

edit -- Can edit full files

field -- Special for field (debug) support

floppy -- Can read and write from the floppy

interface -- Can view interface configuration

interface-control -- Can modify interface configuration
[ ]

security —-- Can view security configuration

security-control —- Can modify security configuration

This is one of the improvements that JUNOS offers. Instead of having a privilege level
of 1-15 assigned to the user-profile with each IOS command mapped to a minimum
privilege-level, each user profile in JUNOS is now associated with a set of flags that
control which parts of the system the user can access or even modify. The system is so
flexible that you can even break down which user can control what configuration lines
of the router’s configuration file. Using this, you could implement authorization schemes,
such as Operator A can only modify BGP, and Operator B can only configure IS-IS.
However, explaining the full extent of the authorization sub-system is beyond the scope
of this book. The only time you need to check that the network administrator has
assigned the necessary privileges is when a certain IS-IS-related keyword does not
show up where it should. In JUNOS there is the concept of user interface views. If you
do not have sufficient privileges then you do not even see the commands and keyword
in the user interface — they simply do not exist for that user — and neither auto-
complete nor entering a question mark reveals those missing commands because they
are not part of this user’s access profile. Consider the following example. User hannes
has been given superuser privileges. As a superuser, he can access the request
system reboot command, which will shut down all server processes and then
reboot the router. If the user frank logs in and is associated with the read-only profile and
wants to issue the same request, the command does not exist:

frank@Frankfurt> request ?
Possible completions:
message Send a text message to other users

For the user frank only the request message command exists, which would send a mes-
sage to all the connected users terminal session. Auto complete (pressing the TAB key)
does not produce any other completions beside the message keyword. Even if you try
to manually enter the request system reboot command the system acts as if it
does not know the command.

frank@Frankfurt> request system reboot

A
syntax error, expecting <commands.

frank@Frankfurt>

Please keep this concept in mind when exploring the IS-IS commands shown in the
rest of this book on a functioning router. If a certain command does not show up as
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expected, it could be that the network administrator has not granted you the access level
required to reveal one of the commands you might be looking for.

3.3.2 IS-1S-related Show Commands

Once you are logged into the JUNOS system, you are first placed into operational
mode, as in IOS. You know that you are in operational mode by looking at the prompt.
If the prompt is terminated using a “>” character then you are in operational mode,
just as in 10S:

hannes@Frankfurt>

Figure 3.7 shows the commands that are available in operational mode.

Unlike the Cisco implementation of the IS-IS Protocol, the JUNOS version was written
only to transport IP and not CLNP reachability information. Therefore all operational
commands are accommodated under the show isis branch of the CLI tree. Almost

[ show ]
—] isis | route | [ interfaces | [ chassis | | cli |
adjacency brief
database brief detail
— hostname |—— logical-router | detail extensive
extensive instance
instance L{logical-router |
level .
logical-router oflei
detail
—{interface extensive
instance
[ route topology unicast | logi