

The Complete IS-IS Routing Protocol

Hannes Gredler and Walter Goralski

The Complete IS-IS
Routing Protocol

123

Hannes Gredler, MA, Schwaz, Austria
Walter Goralski, Professor, Phoenix, AZ, USA

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
Gredler, Hannes.

The complete IS-IS routing protocol / Hannes Gredler, Walter Goralski.
p. cm.

Includes bibliographical references and index.
ISBN 1-85233-822-9 (pbk. : alk. paper)
1. IS-IS (Computer network protocol) 2. Routers (Computer networks) I. Goralski, Walter. II. Title

TK5105.5675.G74 2004
004.6′2--dc22 2004049147

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or trans-
mitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of
reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency.
Enquiries concerning reproduction outside those terms should be sent to the publishers.

ISBN 1-85233-822-9 Springer-Verlag London Berlin Heidelberg
Springer Science+Business Media
springeronline.com

© Hannes Gredler 2005

The use of registered names, trademarks etc. in this publication does not imply, even in the absence of a specific
statement, that such names are exempt from the relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information con-
tained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may
be made.

Typesetting: Gray Publishing, Tunbridge Wells, Kent, UK
Printed and bound in the United States of America
34/3830-543210 Printed on acid-free paper SPIN 10962268

To Caroline, for making sense of it all.

Walter J. Goralski is a Senior Member of Technical Staff with Juniper Networks Inc.
and an Adjunct Professor of Computer Science at Pace University Graduate School in
New York. He has spent more than 30 years in the data communications field, including 14
years with AT&T, and is the author of several books on DSL, the Internet, TCP/IP and
SONET, as well as of articles on data communications and other technology issues.

Hannes Gredler is a Professional Services Consultant at Juniper Networks Inc., where
he is deploying/advising for numerous carriers and ISPs running the IS-IS, BGP and
MPLS suite of protocols in their core backbones. He has been in the telecom industry for
7 years and holds a Master’s degree for Manufacturing and Automation from the Technical
University of Graz (Austria). Hannes holds a CCIE certification (#2866) since 1997 as
well as JNCIE (#22) certification since 2001. Besides his engagement at Juniper Networks,
Inc., Hannes is actively involved in Open-Source Developments of networking decoders,
where he contributed large parts of the Routing and Signaling Protocol Engines for
tcpdump/libpcap http://www.tcpdump.org/ and Etherreal http://www.ethereal.com.

Hannes currently lives near Innsbruck, Austria. He is married and has three daughters.

Foreword

IS-IS has always been my favourite Interior Gateway Protocol. Its elegant simplicity, its
well-structured data formats, its flexibility and easy extensibility are all appealing – IS-IS
epitomizes link-state routing. Whether for this reason or others, IS-IS is the IGP of choice
in some of the world’s largest networks. Thus, if one is at all interested in routing, it is well
worth the time and effort to learn IS-IS.

However, it is hazardous to call any routing protocol “simple”. Every design decision,
be it in architecture, implementation or deployment, has consequences, some unantici-
pated, some unknowable, some dire. Interactions between different implementations, the
dynamic nature of routing, and new protocol features all contribute to making routing
protocols complex to design, write and deploy effectively in networks. For example, IS-IS
started as a link-state routing protocol for ISO networks. It has since evolved signifi-
cantly: IS-IS has IPv4 and IPv6 (and IPX) addressing; IS-IS can carry information about
multiple topologies; link attributes have expanded to include traffic engineering parame-
ters; a new methodology for restarting IS-IS gracefully has been developed. IS-IS even
has extensions for use in “non-packet networks”, such as SONET and optical networks,
as part of the Generalized Multi-Protocol Label Switching (G-MPLS) protocol suite.

Understanding all of what IS-IS offers and keeping abreast of the newer protocol fea-
tures is a weighty endeavour, but one that is absolutely essential for all serious network-
ing engineers, whether they are developing code or running networks. For a long time,
there were excellent books on OSPF, but very little on IS-IS. This encyclopaedic work
changes that. Now, at last, there is a book that does IS-IS justice, explaining the theoret-
ical aspects of IS-IS, practical real-life situations, and quirks in existing implementa-
tions, and gives glimpses into some troubleshooting tools.

You couldn’t ask for a better-matched pair of guides, either. Hannes: intense, passionate,
expert; and Walter: calm, clear, expert. Between the two, they have produced a compre-
hensive, up-to-date text that can be used for in-depth protocol study, as a reference, or to catch
up with the latest developments in IS-IS.

Happy reading!

Kireeti Kompella
Distinguished Engineer, Juniper Networks Inc.

Common Control and Measurement Plane (ccamp) IETF Working Group Chair

vii

Credits and Thanks

The authors would specifically thank the following individuals for their direct or indirect
support for this book:

Walter

First of all, thanks to Hannes for giving me the opportunity to be involved in this project.
What I know about IS-IS, I have learned from the Master. Patrick Ames made this book a
reality, and Aviva Garrett provided inspired leadership. My wife Camille provided support,
comfort, and the caring that all writers need.

Hannes

My biggest personal thank-you goes to my beloved wife Caroline. While she did so many
good things for me, most importantly she created the environment for me that allowed
me to write. Without her ongoing, loving support this book would never have been written
up and finally published.

Patrick Ames has left a profound footprint on that book. While he had possibly the
hardest job on earth (chasing part-time authors for manuscripts beyond due dates) he
always kept calm, professional and provided care and input on all stages of this book.
Without him this book would not have made its way.

Next I want to thank probably the best review team on IS-IS in the industry: first, the
Juniper Engineering Team, most notably Dave Katz, Ina Minei, Nischal Sheth, Kireeti
Kompella and Pedro Marquez who always took time and answered my questions in great
detail. Tony Przygienda kept an eye from the IETF perspective on content accuracy and
gave numerous suggestions to improve the text. The Service Provider Reviewing Team
(Dirk Steinberg, Markus Schumburg, Ruediger Volk/Deutsche Telekom) and Nicolas
Dubois (France Telekom) gave a lot of design inputs from the operational perspective.

Finally, I want to thank my Home Base, the Juniper Customer Service Europe Team:
Jan Vos who initially helped in advocating writing a book and generously donated
Company Lab and Team Resources; Anton Bernal for teaching me a lot about ATM; Josef
Buchsteiner supported my work everyday by several useful discussions and help with lab
setups. Finally, my team mate, Peter Lundqvist, for sharing a lot of his vast knowledge
with me and being always good for a good laugh.

ix

Contents

Foreword vii
Credits and Thanks ix

1 Introduction, Motivation and Historical Background 1
1.1 Motivation 1
1.2 Routing Protocols History in the 1990s 2

1.2.1 DECNET Phase V 2
1.2.2 NSFNet Phase I 3
1.2.3 OSPF 4
1.2.4 NLSP 5
1.2.5 Large-scale Deployments 6
1.2.6 IETF ISIS-WG 6

1.3 Sample Topology, Figures and Style 7

2 Router Architecture 11
2.1 Architecture and the Global Routing Paradigm 12
2.2 General Router Model 15
2.3 Routing and Forwarding Tables 17
2.3.1 Forwarding Plane Architectures 18
2.3.2 Control Plane Architectures 21

2.4 Router Technology Examples 26
2.4.1 Cisco 7500 Series 27
2.4.2 Cisco 7500 Series � VIP Processors 29
2.4.3 Cisco GSR Series 30
2.4.4 Cisco IOS Routing Software 31
2.4.5 Juniper Networks M-Series Routers 31
2.4.6 JUNOS Routing Software 33

2.5 Conclusion 33

3 Introduction to the IOS and JUNOS Command Line Interface 35
3.1 Common Properties of Command Line Interfaces (CLI) 35

3.1.1 Operational Mode 36
3.1.2 Configuration Mode 39
3.1.3 Emacs Style Keyboard Sequences 40
3.1.4 Debugging 40

xi

3.1.5 IP Troubleshooting Tools 41
3.1.6 Routing Policy 41
3.1.7 Logging 41

3.2 Cisco Systems IOS CLI 42
3.2.1 Logging into the System, Authentication, Privilege Level 42
3.2.2 IS-IS-related Show Commands 43
3.2.3 Interface Name-space 44
3.2.4 Changing Router Configuration 47
3.2.5 IS-IS-related Configuration Commands 50
3.2.6 Troubleshooting Tools 50
3.2.7 Routing Policy and Filtering of Routes 55
3.2.8 Further Documentation 56

3.3 Juniper Networks JUNOS CLI 56
3.3.1 Logging into the System and Authentication 57
3.3.2 IS-IS-related Show Commands 59
3.3.3 Interface Name-space 60
3.3.4 IS-IS-related Configuration Commands 63
3.3.5 Changing the Configuration 65
3.3.6 Activating a Configuration 68
3.3.7 Troubleshooting Tools 69
3.3.8 Routing Policy 73
3.3.9 Further Documentation 77

3.4 Conclusion 77

4 IS-IS Basics 79
4.1 IS-IS and the OSI Reference Model 79
4.2 Areas 83
4.3 Levels 85

4.3.1 IS-IS Routing Hierarchy Rule 86
4.3.2 Route Leaking Between Levels 87

4.4 Area Migration Scenarios 90
4.4.1 Merging Areas 92
4.4.2 Splitting Areas 92
4.4.3 Renumbering Areas 92

4.5 Local SPF Computation 94
4.6 IS-IS Addressing 96

4.6.1 IP Addressing 96
4.6.2 IP Addressing Model 98
4.6.3 OSI Addressing 100
4.6.4 Examples of OSI Addressing 104
4.6.5 Configuring NETs 104

4.7 Names, System-, LAN- and LSP-IDs 105
4.8 Summary 107

xii Contents

5 Neighbour Discovery and Handshaking 109
5.1 Hello Message Encoding 109

5.1.1 LAN Hello Messages 111
5.1.2 Point-to-point Hello Messages 114

5.2 MTU Check 116
5.3 Handshaking 119

5.3.1 The 3-way Handshake on LAN Circuits 120
5.3.2 The 2-way Handshake on Point-to-point Circuits 123
5.3.3 The 3-way Handshake on Point-to-point Circuits 128

5.4 Sub-net Checking 131
5.5 Finite State Machine 133
5.6 Neighbour Liveliness Detection 135

5.6.1 IGP Hellos 135
5.6.2 Interface Tracking 137
5.6.3 Bi-directional Fault Detection (BFD) 137

5.7 Summary 140

6 Generating, Flooding and Ageing LSPs 141
6.1 Distributed Databases 141
6.2 Local Computation 144
6.3 LSPs and Revision Control 146

6.3.1 Sequence Numbers 147
6.3.2 LSP Lifetimes 149
6.3.3 Periodic Refreshes 149
6.3.4 Link-state PDUs 152

6.4 Flooding 164
6.4.1 Is Flooding Harmful? 165
6.4.2 Mesh-Groups 168

6.5 Network-wide Purging of LSPs 172
6.5.1 DIS Election 173
6.5.2 Expiration of LSPs 174
6.5.3 Duplicate System-IDs 175

6.6 Flow Control and Throttling of LSPs 175
6.6.1 LSP-transmit-interval 176
6.6.2 LSP-generation-interval 178
6.6.3 Retransmission Interval 181

6.7 Conclusion 182

7 Pseudonodes and Designated Routers 183
7.1 Scaling Adjacencies on Large LANs 183

7.1.1 The Self-synchronization Problem 183
7.1.2 Scheduling Hellos 185
7.1.3 Applying Jitter to Timers 185

Contents xiii

7.2 Pseudonodes 186
7.2.1 The N2 Problem 186
7.2.2 Pseudonode Representation 188
7.2.3 Pseudonode ID Selection 191
7.2.4 Link-state Database Modelling 193
7.2.5 Pseudonode Suppression on p2p LANs 196

7.3 DIS and DIS Election Procedure 199
7.3.1 Pre-emption 200
7.3.2 Purging 201
7.3.3 DIS Redundancy 202

7.4 Summary 203

8 Synchronizing Databases 205
8.1 Why Synchronize Link-state Databases? 205
8.2 Synchronizing Databases on Broadcast LAN Circuits 208
8.3 Synchronizing Databases on p2p Links 216
8.4 Periodic Synchronization on p2p Circuits 218
8.5 Conclusion 222

9 Fragmentation 223
9.1 Fragmentation and the OSI Reference Model 223
9.2 The Too-small MTU Problem for IP 227
9.3 The Too-small MTU Problem for IS-IS 230
9.4 IS-IS Application Level Fragmentation 234

9.4.1 Hellos (IIHs) 234
9.4.2 Sequence Number Packets (SNPs) 236
9.4.3 Link-state Packets (LSPs) 240

9.5 Summary 245

10 SPF and Route Calculation 247
10.1 Route Calculation 247
10.2 The SPF Algorithm 248

10.2.1 Working Principle 248
10.2.2 Example 249
10.2.3 Pseudonode Processing 254

10.3 SPF Calculation Diversity 257
10.3.1 Full SPF Run 258
10.3.2 Partial SPF Run 267
10.3.3 Incremental SPF Run 270

10.4 Route Resolution 273
10.4.1 BGP Recursion and Route Dependency 273
10.4.2 BGP Route Selection 274

10.5 Prefix Insertion 276
10.5.1 Flat Forwarding Table 276
10.5.2 Hierarchical Forwarding Table 278

10.6 Conclusion 279

xiv Contents

11 TLVs and Sub-TLVs 281
11.1 Taxonomy for Extensibility 281

11.1.1 Current Software Maturation Models 281
11.1.2 Ramifications of Non-extensible Routing Protocols 283
11.1.3 What Does it Mean When a Routing Protocol Is

Called Extensible? 284
11.2 Analysis of OSPF Extensibility 285
11.3 Analysis of IS-IS Extensibility 289

11.3.1 TLV Format 289
11.3.2 TLV Encoding 291
11.3.3 Sub-TLVs 293
11.3.4 TLV Sanity Checking 295

11.4 Conclusion 299

12 IP Reachability Information 301
12.1 Old-style Topology (IS-Reach) Information 301
12.2 Old-style IP Reach (RFC 1195) Information 304

12.2.1 Internal IP Reachability TLV #128 304
12.2.2 Protocols Supported TLV #129 307
12.2.3 External IP Reachability TLV #130 309
12.2.4 Inter-Domain Information Type TLV #131 313
12.2.5 Interface Address TLV #132 314
12.2.6 IP Authentication TLV #133 317

12.3 New-style Topology (IS-Reach) Information 318
12.3.1 Automatic Metric Calculation 319
12.3.2 Static Metric Setting 320

12.4 New-style Topology (IP-Reach) Information 324
12.5 Old-, New-style Interworking Issues 327
12.6 Domain-wide Prefix Distribution 329

12.6.1 Leaking Level-2 Prefixes into Level 1 331
12.6.2 Leaking Level-1 External Prefixes into Level 2 337
12.6.3 Use of Admin Tags for Leaking Prefixes 339

12.7 Conclusion 344

13 IS-IS Extensions 345
13.1 Dynamic Hostnames 345
13.2 Authenticating Routing Information 351

13.2.1 Simple Text Authentication 351
13.2.2 HMAC-MD5 Authentication 353
13.2.3 Weaknesses 353
13.2.4 Point-to-Point Interfaces 355
13.2.5 Migration Strategy 356
13.2.6 Running Authentication Using IOS 358
13.2.7 Running Authentication Using JUNOS 361
13.2.8 Interoperability 364

Contents xv

13.3 Checksums for Non-LSP PDUs 367
13.3.1 PDUs Missing Checksum? 368

13.4 Ipv6 Extensions 370
13.4.1 IOS Configuration 373
13.4.2 JUNOS Configuration 374
13.4.3 Deployment Scenarios 376

13.5 Multi Topology Extensions 379
13.5.1 JUNOS Configuration 383
13.5.2 IOS Configuration 386
13.5.3 Summary and Conclusion 387

13.6 Graceful Restart 388
13.7 Summary 391

14 Traffic Engineering and MPLS 393
14.1 Traffic Engineering by IGP Metric Tweaking 393
14.2 Traffic Engineering by Layer-2 Overlay Networks 395
14.3 Traffic Engineering by MPLS 402

14.3.1 Introduction to MPLS 402
14.4 MPLS Signalling Protocols 408

14.4.1 RSVP-TE 408
14.4.2 Simple Traffic Engineering with RSVP-TE 409
14.4.3 LDP 417
14.4.4 Conclusion 422

14.5 Complex Traffic Engineering by CSPF Computations 422
14.6 LDP over RSVP-TE Tunnelling 428
14.7 Forwarding Adjacencies 433
14.8 Diffserv Aware Traffic Engineering 435
14.9 Changed IS-IS Flooding Dynamics 436
14.10 Conclusion 437

15 Troubleshooting 439
15.1 Methodology 439
15.2 Tools 441

15.2.1 Show Commands 442
15.2.2 Debug Logs 449
15.2.3 Configuration File 452
15.2.4 Network Analyzers 455

15.3 Case Studies 460
15.3.1 Broken IS-IS Adjacency 460
15.3.2 Injecting Full Internet Routes into IS-IS 469

15.4 Summary 474

16 Network Design 475
16.1 Topology and Reachability Information 475
16.2 Router Stress 479

xvi Contents

16.2.1 Flooding 479
16.2.2 SPF Stress 480
16.2.3 Forwarding State Change Stress 481
16.2.4 CPU and Memory Usage 483

16.3 Design Recommendations 484
16.3.1 Separate Topology and IP Reachability Data 484
16.3.2 Keep the Number of Active BGP Routes per Node Low 485
16.3.3 Avoid LSP Fragmentation 485
16.3.4 Reduce Background Noise 488
16.3.5 Rely on the Link-layer for Fault Detection 489
16.3.6 Simple Loopback IP Address to System-ID Conversion

Schemes 490
16.3.7 Align Throttling Timers Based on Global Network Delay 492
16.3.8 Single Level Where You Can – Multi-level Where You Must 493
16.3.9 Do Not Rely on Default Routes 497
16.3.10 Use Wide-metrics Only 498
16.3.11 Make Use of the Overload Bit 499
16.3.12 Turn on HMAC-MD5 Authentication 499
16.3.13 Turn on Graceful Restart/Non-stop Forwarding 501

16.4 Conclusion 501

17 Future of IS-IS 503
17.1 Who Should Evolve IS-IS? 503
17.2 G-MPLS 504

17.2.1 Problems in the Optical Network Today 505
17.2.2 Cost of Transport 506
17.2.3 Overlay (UNI) G-MPLS Model 506
17.2.4 Peer G-MPLS Model 509
17.2.5 IS-IS G-MPLS Extensions 513
17.2.6 G-MPLS Summary 514

17.3 Multi-level (8-level) IS-IS 515
17.4 Extended Fragments 518
17.5 iBGP Peer Auto-discovery 520
17.6 Capability Announcement 523
17.7 Conclusion 524

Index 527

Contents xvii

The Intermediate System to Intermediate System (IS-IS) routing protocol is the de facto
standard for large service provider network backbones. IS-IS is one of the few remnants
of the Open System Interconnect (OSI) Reference Model that have made their way into
mainstream routing. How IS-IS got there makes a colourful story, a story that was deter-
mined by a handful of routing protocol engineers. So in this very first chapter, it makes
sense to explore the need for a book about IS-IS, cover some recent routing protocol history
and give an overview about various IS-IS development stages. Finally, the chapter intro-
duces a sample network and explains the style used in the figures throughout the book.

1.1 Motivation

One of the oddities of IS-IS is that there are hardly any materials available covering the
entire protocol and how IS-IS is used for routing Internet Protocol (IP) packets. The base
specification of the protocol was first published as ISO 10589 in 1987 and did not apply
to IP packets at all. From then on, however, most of the work on the protocol has been
done in the IS-IS working group of the Internet Engineering Task Force (IETF). The
IETF was responsible for two major changes to the OSI vision of IS-IS. First, they
extended the protocol by defining additional Type-Length-Values (TLVs) carrying new
functionality. But then the IETF went much further and clarified many operational
aspects of IS-IS. For example, adjacency management had not been exactly defined in
RFC 1195, the first request for comment (RFC) to relate IS-IS to an IP environment. The
lack of details caused implementers to code behaviours differently from what the basic
specification required the protocol to do. As a result, there is a lot of good IS-IS literature
available that covers the base IS-IS protocol and its extensions, but not the implementa-
tion details. However, discussing IS-IS purely on a theoretical basis is not enough.
Throughout this chapter, you will find that a lot of the reasons why things are the way they
are in IS-IS is dependent on implementation choices (often caused by router operating
system (OS) constraints), not the fundamentals of the IS-IS specification. And that is the
whole reason for this book.

Real-world IS-IS implementations are the main focus of this book. The two vendors
shipping all but a tiny fraction of the IS-IS code used for IP routing on the Internet are
Cisco Systems, Inc. and Juniper Networks, Inc. The routing OS suite of Juniper Networks

1

Introduction, Motivation and
Historical Background

1

Inc. (JUNOS Internet software) and Cisco Systems (IOS) are subjected to close examination
throughout this book. We will compare implementation details, and compare the overall
implementation against the specification. Furthermore, both IOS and JUNOS carry scal-
ability improvements for IS-IS, which will be highlighted as well.

The purpose of this book is to provide a good start for the self-education of both the
novice and the seasoned network engineer in the IS-IS routing protocol. The consistent
approach is to explain the theory and then show how things are implemented in major
vendor routing OSs. That way, we hope to close the gap between barely specified speci-
fication and undocumented vendor-specific behaviour.

1.2 Routing Protocols History in the 1990s

IS-IS started off as a research project of Digital Equipment Corporation (DEC) in 1986.
Radia Perlman, Mike Shand and Dave Oran had worked on a successor network archi-
tecture for Digital’s proprietary minicomputer system family. The suite of protocols was
named DECNET. By the time the product became DECNET phase IV, it was obvious
that the architecture lacked support for large address spaces and displayed slow conver-
gence times after re-routing events like link failures. Clearly, a new approach to these
problems, which occurred in all networks and with all routing protocols at the time, was
desperately needed.

1.2.1 DECNET Phase V
The new architecture called DECNET Phase V was based on an entirely new routing tech-
nology called link-state routing. All previous packet-based network technology at that
time was based on variations of distance-vector routing (sometimes also referred to as
Bellman-Ford routing) or the Spanning Tree Algorithm. The idea of routers disseminat-
ing and maintaining a topological database on which they all performed a Dijkstra (Shortest
Path First, or SPF) calculation was a revolutionary approach to networking. This database
processing demanded a certain amount of sophistication in router CPUs (central process-
ing units) and not all routers had what it took. However, all of the urban legends revolv-
ing around the “CPU-intensive” and cycle-wasting properties of link-state algorithms
mostly had their origin in subjective opinions about router power at that time. Certainly
no modern router needs to worry about the CPU cycles needed for link-state algorithms.

The most interesting property about DECNET Phase V was that it was – and is –
a very extensible protocol. It runs directly on top of the OSI Data Link Layer protocol.
That makes the protocol inherently independent of any higher Network Layer Reach-
ability Protocol. In 1987, the International Organization for Standardization (usually abbre-
viated as ISO) adopted the protocols used in DECNET Phase V as the basis for the OSI
protocol suite. A whole array of networking protocols was standardized at the time. A brief
list of the adopted protocols would include:

• Transport Layer (TP2, TP4)
• Network Layer Reachability (CLNP)
• Router to Host (ES-IS)

2 1. Introduction, Motivation and Historical Background

• Router to Router, Interdomain (IDRP)
• Router to Router, Intradomain (IS-IS)

Finally, the Intermediate to Intermediate System Intradomain Routing Exchange
Protocol (to give IS-IS its official name) was published as ISO specification ISO 10589.
First-time readers tend to get confused by the sometimes arcane “ISO-speak” used in the
document. IS-IS itself, in contrast to its specification, is actually a fine, lean protocol. After
learning which sections of ISO 10589 to avoid, readers find that IS-IS is a simple protocol
with almost none of the complicated state transitions that make other interior gateway
protocols (IGPs) so difficult to operate properly under heavy traffic loads today. Besides the
ISO jargon in the specification, readers often get caught up in and confused by the distinc-
tions between the routing protocol definitions (IS-IS itself) and the higher-level network
reachability definitions (known as the connectionless network protocol, or CLNP) and this
makes differentiating IS-IS and CLNP more difficult. Henk Smit, a well-respected imple-
menter of the IS-IS protocol, once with Cisco Systems, noted on the NANOG Mailing List:

IS-IS is defined in ISO document 10589. It defines the base structures of the protocol (adjacencies,
flooding, etc). Unfortunately it also defines lots of CLNP specific TLVs. So it looks like IS-IS is a
routing protocol for CLNP, and the IP thing is an add-on. That is partly true, but the ability to carry
routing info for any layer 3 protocol is a well designed feature. I suspect IS-IS might be easier to
understand if the CLNP specific part was separated from the base protocol.

So IS-IS can be used for routing IP packets just as well as the other major link-state
protocol, the Open Shortest Path First (OSPF) protocol. But why bother having another
link-state IGP for routing TCP/IP, especially if it is so similar to OSPF? At first sight,
supporting both OSPF and IS-IS seems to be a double effort. Only by looking back can
it be easily understood why IS-IS has its place in today’s Internet.

1.2.2 NSFNet Phase I
In 1988, the NSFNet backbone of the Internet was commissioned and deployed. The
NSFNet was the first nationwide network that routed TCP/IP traffic. The IGP of choice for
the NSFNet was a lightweight knockoff version of IS-IS, which was later documented in
RFC 1074 as “The NSFNET Backbone SPF based Interior Gateway Protocol”. The
implementer and author of the document is now a famous name in the history of inter-
networking: Dr Yakov Rekhter, at this time working at IBM on networking protocols at
the Thomas Watson Research Center. The main differences between the IS-IS as defined
in ISO 10589 and that used on the NSFNet were encapsulation, addressing, media sup-
port and the number of IS-IS levels. The NSFNET backbone IGP ran on top of IP rather
than directly on top of the OSI Link Layer, and IP Protocol Type 85 was used as a trans-
porting envelope. ISO 10589 only specified a CLNP-related address space called the
Network Service Access Point (NSAP). Rather than defining an extra TLV that carried
IPv4 addresses and administrative domain information, both types of information are
folded into a 9-byte NSAP string which is illustrated in Figure 1.1.

The next NSFNet compromise in total IS-IS functionality involved the support for
only point-to-point (p2p) interfaces. This greatly simplified the program coding as the
adjacency management code did not have to worry about things like Designated Routers

Routing Protocols History in the 1990s 3

(DRs) and what IS-IS called “pseudonode” origination. Pseudonode origination and LAN
“circuits” will be covered in greater detail in Chapter 7, “Pseudonodes and Designated
Routers”. At that time, this change was perceived as no big deal as the NSFNet was a
pure WAN network consisting of a bunch of T1 (1.544 Mbps) lines.

The NSFNet link-state routing protocol gave NSFNet its first experience with the
sometimes catastrophic dynamics of link-state protocols and resulted in network-wide
meltdowns. We will cover the robustness issues and the lessons learned from the infancy
of link-state routing protocols in Chapter 6, “Generating Flooding and Ageing LSPs”.
But early bad experiences ultimately provided a good education for the early imple-
menters, and their knowledge of “how not to do things” helped to create better imple-
mentations the second time around.

1.2.3 OSPF
In 1988, the IETF began work on a replacement for the Routing Information Protocol
(RIP), which was proving insufficient for large networks due to its “hop count” metric
limitations. Also, the limited nature of the Bellman-Ford algorithm with regard to con-
vergence time provided serious headaches in the larger networks at that time. It was clear
that any replacement for RIP had to be based on link-state routing, just like IS-IS. The
Open Shortest Path First Working Group was born. The OSPF-WG group closely
watched the IS-IS developments and both standardization bodies, the IETF and ISO,
effectively copied ideas from each other. This was no major surprise, as mostly the same
individuals were working on both protocols.

The first implementation of OSPF Version 1 was shipped by router vendor Proteon.
A short while later, both DECNET Phase V (which was effectively IS-IS) and OSPF were
being deployed. Controversy and dispute raged within the IETF concerning whether to
adopt IS-IS or OSPF as the officially endorsed IGP of the Internet. At that time, there was
much fear expressed by some influential individuals about the perceived “OSI-fication” of
the Internet. Those fears were fed by the belief on the part of the OSI camp that IPv4 was
just a temporary, “non-standard” phenomenon that ultimately would go away, replaced by
firm international standards like CLNP, CMIP and TP2, TP4. Most discussions about
what was the best protocol were based on emotions rather than facts. At one IETF meeting
there was bickering and shouting, and even a T-shirt distributed displaying the equation:

IS-IS � 0

4 1. Introduction, Motivation and Historical Background

Administrative Domain

Bytes

2

2

4

Reserved

IPv4 Address

Reserved 4

FIGURE 1.1. The early NSFNet protocol maps an IPv4 address in the NSAP field for IP routing

It is hard to believe today that there were ever any serious doubts about the future of IP.
But things did not change until 1992. With the rise of the World Wide Web as the “killer
application” for the new, global, public Internet, it was evident that the Network Layer
protocol of choice was to be the Internet Protocol (IP) and not CNLP. The projected demise
of CNLP nurtured the belief that the entire OSI suite of protocols would disappear soon.

The IETF reckoned that there should be native IP support for IS-IS and formed the
IS-IS for IP Internets working group. In 1990, IS-IS had become “IP-aware” with the pub-
lication of RFC 1195, authored by Ross Callon, a distinguished protocol engineer now
with Juniper Networks. RFC 1195 describes a set of IP TLVs for Integrated IS-IS which
can transport both CLNP and IP routes. These early IP TLVs and their current successors
are discussed in greater detail in Chapter 12, “IP Reachability Information” and Chapter
13, “IS-IS Extensions”.

The IETF continued both IGP working groups (OSPF-WG, ISIS-WG) and wisely left
the decision which protocol to adapt to the marketplace. The IETF declared both proto-
cols as equal, which proved in fact not to be really true, since there was some soft, but per-
sistent, pressure to give OSPF preference for Internet applications. Hence people often
say, “IS-IS and OSPF are equal, but OSPF is more equal.” Ultimately, Cisco Systems
started to ship routers with support for both OSPF and CLNP-only IS-IS (useless for IP),
but commenced work on Integrated IS-IS, which could be used with IP.

1.2.4 NLSP
In the 1980s, LAN software vendor Novell gained popularity and finally emerged as the pri-
mary vendor of PC-based server software. The Novell Packet Architecture was composed of
both a Network Layer protocol they called the Internet Packet Exchange (IPX) protocol and
a routing protocol to properly route packets between sub-nets. Novell’s first generation rout-
ing protocol was based on RIP and used distance vector technology. Novell then decided to
augment their network architecture with link-state routing. At that time, DEC was widely
known for their link-state routing experience, and so Novell recruited Neil Castagnoli, who
was one of the key scientists at DEC responsible for DECNET Phase V.

One of the prime goals of IS-IS from the very start was independence from Network
Layer routing protocols. In other words, IS-IS just distributed route information, and did
not particularly care which protocol was actually used to transport traffic. Novell came
up with NLSP, which was effectively an IS-IS clone. Many of the original IS-IS mechan-
isms and protocol data unit (PDU) types were retained. For IPX-specific routing infor-
mation and Novell-specific service location protocols (used to find which stations on the
LANs were servers) the TLVs from 190 to 196 have been allocated for Novell-specific
routing needs. Although NLSP looks largely the same as IS-IS, some of the mechanisms,
particularly the “stickiness” of the DR election process, make NLSP incompatible with
regular IS-IS routers.

Both the IP and the NSLP extensions demonstrate the flexibility built into IS-IS from the
very start. Adding another protocol family, for example IPv6, is just a matter of adding a few
hundred lines of code, rather than having to rewrite the entire code base. OSPF, on the other
hand, needed to be re-engineered twice until it got to be both extensible and IPv6-ready. And
OSPF is still not completely neutral towards Network Layer protocols other than IP.

Routing Protocols History in the 1990s 5

Responding to increasing demand from customers, Cisco Systems began shipping
NLSP in 1994. Because NLSP and IS-IS are so similar, Cisco’s engineering department
decided to do some internal code housekeeping and merged the base functions of the two
protocols in one “tree”. This rewriting work was the springboard for one of the most
respected IGP routing protocol engineers in the world. Cisco Systems hired a software
engineer named Dave Katz from Merit, the management company of the NSFNet backbone.
Merit was, in the early 1990s, the place where many of the huge talents in Internet history
got their routing expertise.

1.2.5 Large-scale Deployments
Cisco gained a lot of momentum in the early 1990. The company attracted all the key
talent in routing protocol and IP expertise and finally got more than a 98 per cent market
share in the service provider equipment space. When the first big router orders were
placed and the routers deployed for the Web explosion, Internet service provider (ISP)
customers started to ask their first questions about scalability. Service providers were
interested in a solid, quickly converging protocol that could scale to a large topology
containing hundreds or even thousands of routers. Cisco’s proprietary, distance-vector
EIGRP was not really a choice because the convergence times and stability problems of
distance-vector-based protocols were well known from word-to-mouth in the service
provider community. Ironically, it was Cisco’s recent code rewrite that made IS-IS more
stable than the implementations of OSPF available at the time. For a while, IS-IS was
believed to be as dead as the OSI protocols. However, the 1980s mandate of the US gov-
ernment for supporting OSI protocols under the Government OSI Profile (GOSIP) speci-
fication (which was still in effect), plus recently gained stability, made IS-IS the logical
choice for any service provider that needed an IGP for a large number of nodes.

From about 1995 to 1998 the popularity of IS-IS within the ISP niche continued to
grow, and some service providers switched from OSPF. Even in large link-state areas,
IS-IS proved to be a stable protocol. At the beginning of 1998, the European service
providers switched from their trying EIGRP and OSPF experiences to IS-IS, most
notably because of the better experiences that the US providers had with IS-IS. That
trend continues today. All major European networks are running routing protocols based
on IS-IS.

1.2.6 IETF ISIS-WG
From 1999, most of the IS-IS extensions for IP are done within the IETF and not within
ITU-T or ISO committees. Most of the basic IS-IS protocol is maintained in ITU-T, but
little of it has changed in the past decade. The IS-IS working group inside the IETF
(http://www.ietf.org/html.charters/isis-charter.html) maintains the further development
of IS-IS. Most IETF work is typically carried out in the form of mailing lists. There are
further details about this split of responsibilities and the resulting issues in Chapter 17,
“Future of IS-IS”.

There is a small group of individuals from vendors and ISPs interested in the further
development of IS-IS. Because the community is so small, consensus is reached very fast

6 1. Introduction, Motivation and Historical Background

and the standardization process itself is often just a matter of documenting the existing
behaviour that has already been deployed in the field.

All the most recent enhancements to IS-IS have initially been published as Internet
drafts. At the end of the year, all the major extensions are either republished as an RFC
or are placed in the RFC editors’queue for release. Activity on the IETF mailing list is nowa-
days moderate to low, as all of the most pressing problems and extension behaviours have
already been solved. Chapter 17 deals with the future of the protocol and highlights some
of the not-yet deployed extensions, which concern service discovery and aids to network
operations.

1.3 Sample Topology, Figures and Style

In an effort to make the individual chapters more concise and to be consistent, we have
applied a common style and topology to illustrations. In order to put the different scen-
arios that are explained throughout into perspective, we refer to a small service provider
network as illustrated in Figure 1.2. We believe that a realistic reference topology is of

Sample Topology, Figures and Style 7

Area 49.0001
Level 2-only

Area
49.0200

Area
49.0100

Pennsauken

Frankfurt

London

Washington

NewYork

Paris

Milan

Rome

Madrid

Barcelona

AtlantaSan Fran

MiamiSan Jose

Chicago

Montreal

Quebec

Boston

Amsterdam Stockholm

ViennaMunich

IOS

JUNOS
JUNOS

IOS

IOS

IOSJUNOS

JUNOS JUNOS

JUNOS

JUNOS

JUNOS

JUNOS

JUNOS

JUNOSIOS

IOS

IOS

IOS

IOS

IOS

IOS

Area
49.0400

Area
49.0300

FIGURE 1.2. Throughout the book a consistent Multivendor Sample Network is used for better
illustration

much more use than symbolic names like Router A or Router B, particularly when it
comes to explaining complex procedures like flooding in a distributed environment.

The reader will also find a vast amount of debug, show command and tcpdump output
containing IPv4 addresses. Figure 1.3 illustrates the IPv4 sub-net address allocation for
the sample topology. Although the majority of display output has been taken from live
routers on the Internet, we have changed the addressing to a common scheme. Although
in a real network one would never deploy addressing based on non-routable RFC 1918
addresses, this is done throughout the book in order to protect the integrity of public,
routable address spaces. The 172.16.33/24 address range has been allocated to link
addressing and the 192.168.0/27 pool is allocated for router loopback addresses.

8 1. Introduction, Motivation and Historical Background

172.16.33.16/30

17
2.

16
.3

3.
0/

30

172.16.33.12/30

172.16.33.4/30

172.16.33.20/30

172.16.33.28/30

17
2.

16
.3

3.
24

/3
0

172.16.33.8/30

New York London

Pennsauken

Wash D.C.

Pennsauken

Frankfurt

London

Washington

New York

Paris

192.168.0.17

192.168.0.19 192.168.0.12

192.168.0.21 192.168.0.8

192.168.0.22

FIGURE 1.3. IP sub-net addressing in the sample network

This book should also serve as a reference for people learning about the encoding style
of the IS-IS protocol. Too often the authors found the entire TLV and sub-TLV structure
difficult to understand. Figure 1.4 illustrates the shading style used to colour all protocol-
related illustrations. The darker the background colour, the lower the field is located in
the OSI protocol stack. So the dark gray shading indicates link-layer encapsulation such
as Ethernet or PPP or C-HDLC. Then gray tones are used for the IS-IS common header,
IS-IS PDU specific headers, the TLVs and its sub-TLVs.

Sample Topology, Figures and Style 9

Layer-2 Header

IS-IS common header

TLV

PDU

subTLV

FIGURE 1.4. The shading of the fields in the illustrations indicates the layering in the OSI
Reference Model

2

Router Architecture

11

Every networking professional knows the situation. You’re at a party with relatives where
people always seem to know somehow that you deal with the Internet (probably those
relatives). If you have bad luck, at some stage the conversation at the table is about the
Internet and how it might work. The trickiest task is then to explain to Grandma in five
minutes how the Internet works. Not that Grandma bothers to try and understand. In fact,
she still thinks that all those cables that disappear into the wall go all the way under the
Atlantic and that’s the way that it works.

But the truth is, explaining how the Internet works is surprisingly easy: the Internet
consists of a vast collection of hosts and routers. Routers are the “glue” that holds these
hosts together. The routers form a meshed network, very much like the road system
where the routers can be compared to interchanges or junctions and the fibre optic cables
in between the routers are the highways. The host computers are like houses placed on
smaller roads (these side roads are smaller networks or sub-nets), each having a unique
address.

Surprisingly, Internet hosts and routers are almost completely isolated from each
other. Hosts do not generally exchange any signalling information with routers. All that
hosts need to know (normally by static configuration) is the address of the router on their
local sub-net. Hosts can forward any non-local traffic for hosts on other networks to this
default router or default gateway. Almost everyone reading this book has probably con-
figured this default on their local PC or workstation. In contrast to the hosts, which
almost have no routing information at all besides the default route, the routers have all
the routing information they need. However, the routers do not have any idea about the
applications (such as a Web browser) or the transport protocols (such as TCP) that
applications rely upon. It is the hosts that do indeed have to know about the state of the
transport protocol and how applications access the network. This is the first instance
where, for the sake of simplicity, a clever partitioning of the problem has occurred. This
chapter presents more examples where you realize that there is more than one place in
the overall Internet and router architecture where partitioning the original problem has
helped to resolve the issue. Partitioning is the architectural tool that helps scale the IP
universe further than at first appears possible.

In the last 20 years the Internet has scaled from just a bunch of hosts to a global mesh
of hundreds of millions of computers. This chapter discusses the architecture of the
global public Internet and the global routing paradigm. Next, it takes a close look at the
building block of the Internet, which is the router. Common router architectures, and
terms like control plane and forwarding plane and why partitioning a router into a
control plane and forwarding plane makes sense, will all be explained. For further

illustration, common routing platforms from both Cisco Systems and Juniper Networks
will be discussed at the end of the chapter.

2.1 Architecture and the Global Routing Paradigm

The current routing and forwarding architecture follows a datagram-based, End-System
(host) controlled, unidirectional, destination-oriented, hop-by-hop routing paradigm.
Don’t worry, all of these technical terms are explained piece-by-piece below.

1. Datagram-based: Routers only think in terms of datagrams, which are packets that
flow independently from host to host without regard for sequence or content integrity.
In this respect routers are unlike End Systems which have to track the state of con-
nections, perform all kind of transport protocol (TCP) functions like making sure
arriving packets are in sequence, asking for resends of missing packets, and so on.
A router is completely oblivious to the sessions that it has to transport between hosts.
Early routers had knobs (small, on/off configuration tags like “disable/enable”) for
packet lookup, filtering and accounting on a per-flow (session) basis. However, the
impact of introducing a session or flow orientation to core routers and the resulting
load of the system was just too big. Today, flow orientation, which demands session
awareness in every router, and high-speed circuits are mutually exclusive. Flow orien-
tation is only enabled on low-bandwidth circuits (2 Mbps or less), due to its high CPU
impact. Core routers today are completely unaware of any sessions or flows. This
stateless behaviour means that a route lookup for a packet at time N � 1 is totally
independent of the packet lookup at time N. The router just tries to deliver the packet
as fast as it can. If a packet cannot be delivered because the outbound interface is con-
gested, then the packet will be queued. If the queues (some call them buffers) are satu-
rated then the packet will be silently discarded. Silent discard is a technique that does
not send explicit congestion messages to the sender. Suppressing explicit congestion
messages does not further harm the networks’ resources if the network is already satu-
rated. Although core routers should not worry about individual flows they must not
change reorder packets within a given flow. Typically, it is expected that the end
systems receive packets in sequence. There might be situations, as in re-routing
scenarios or badly implemented load-sharing mechanisms, where packets in a single
flow are re-sequenced by the transit routers. The IP routing architecture completely
offloads key functions like flow control, reliable transmission, and re-sequencing to
the End Systems. This allows simpler router functions.

2. End System controlled: Sometimes the term end-to-end principle is used when dis-
cussing transport protocols like TCP. In the TCP architecture, all of the complexity of
providing a reliable streaming service is on the shoulders of the end systems.
Functions like flow control, reliable transmission and re-sequencing of messages
(packet content) in a stream are the duties of the transport protocol. An End System
opens a session, transmits data and eventually closes the session. For the transmission
of data all it relies upon is the unreliable datagram relaying service that the routers
offer to the End Systems. Figure 2.1 shows how an application like the Simple Mail

12 2. Router Architecture

Transfer Protocol (SMTP) augments the stream with transport protocol level infor-
mation like sequence numbers. The augmented transport stream next is passed down
the network protocol stack to the IP layer where each message segment is prepended
with an IP header. The packet then leaves the End System and is either sent directly
to the receiving end system (if it is on the same network) or passed to the default
router. Then the transport protocol just hopes that the message segment eventually
arrives at the receiving end system. All the transport protocols can do on both sides
is detect a missing segment. By looking at the sequence numbers, the transport proto-
col detects a missing segment and requests retransmission if desired (some forms
of real-time traffic, like voice and video, do not have the luxury of this option). Even
more sophisticated actions are performed by the transport protocols. For example, if
the pace of the receiving segments is varying, typically an indication of congestion,
the receiver can signal back to the sender to back off and reduce the transmit rate. The
only way of communicating congestion from the routers to the End Systems is
increased delay or packet loss, which is just a case of infinite delay.

3. Unidirectional: Some communication architectures like ATM or Frame Relay have
the implicit assumption that the circuit going from End System A to End System B is
utilized for the opposite direction. This means that traffic from End System B to End
System A follows exactly the same path (a connection) through the network. In the IP
routing world, this is not necessarily the case. Routing information, which are point-
ers to traffic sources, are always unidirectional. For working communication a router
needs to have two routes: one route pointing to the sender’s network and one route
pointing to the receiver’s network. Popular networking troubleshooting tools like the
ping program always check to see if there is bidirectional connectivity between a pair
of hosts.

Architecture and the Global Routing Paradigm 13

TCP stream TCP stream

End systems

Unreliable datagram
relaying service

Application (SMTP)

Sequence
numbers

IP datagram IP header

Routers

Application (SMTP)

Sequence
numbers

IP header

Sender Receiver

IP datagram

FIGURE 2.1. A basic networking stack, showing the different responsibilities for hosts and routers

4. Destination-oriented: Each router along the transmission path between a pair of End
Systems has to make a decision where to forward the packets. This decision could,
hypothetically speaking, be based upon any field in the IP header, such as marked in
Figure 2.2. All of the bright-gray fields like destination IP address, source IP address
and precedence bits (also called the Type of Service (TOS) byte) could form the basis
for a routing decision. But today on the Internet, only the destination IP address is
used by routers for making forwarding decisions. Since the early 1990s there have
been efforts to use the TOS byte for routing lookups as well; however, this routing
paradigm has had no great success. Today the TOS (or Diffserv byte, as it is often
called today) only helps to control the queuing schedule of packets inside a router, but
cannot influence the forwarding decision. Both Cisco Systems and Juniper Networks
offer features called policy routing or filter based forwarding, where the network
operator can override the default destination-based routing scheme by specifying
arbitrary fields in the IP header to influence the routing decision. But these features
are typically deployed at the edge or access portions of the network. It is safe to say
that the core of the Internet is purely destination-oriented.

5. Hop-by-hop routing: Communication architectures like ATM rely on a connection
setup where the sender predetermines the route to the destination. Once a message is
put on a previously established Switched Virtual Connection (SVC) the message will
be relayed straight from the source to the destination without complex routing deci-
sions in the intermediate systems (usually called switches in such connection-oriented
architectures). The whole transmission path is pre-computed by the source. The ATM
forwarding paradigm thereby follows a source routing model. The IP routing archi-
tecture is very different. Clearly there are common ideas, such as that the packet
should use the shortest path from the source to the destination. But contrary to ATM
switches, IP routers each compute independently what the best route is from A to B.
Obviously, this must follow a common scheme that each router follows, otherwise
forwarding loops could result from conflicting path selection algorithms. The com-
mon path selection algorithms are various forms of least-cost routing. Each routing
protocol defines a set of metrics, and if there is more than one next hop with equal
metrics, a tie-breaking scheme allows each router to determine the “best” route to a

14 2. Router Architecture

Version Header
length

TOS Total length

Identification Flags Fragment offset

Time to live Protocol Header checksum

Source address

Destination address

Bytes

4

4

4

4

4

FIGURE 2.2. In the IP routing paradigm forwarding decisions are based on the destination IP inside
the IP header

given destination, but only from the viewpoint of the local router. This concerted, but still
independent, computing of forwarding tables in routers is called hop-by-hop routing.

Four of the above five points specify how routers should “think” in terms of forward-
ing traffic. In 1985, when the first commercial routers shipped, peak processing of packets
at 1000 packets per second (pps) were feasible. With the explosion of Internet traffic,
routers today must offer sustained packet processing rates of hundreds of millions pps.
What has changed? While the original forwarding paradigms are still in place, router
hardware and architectures have constantly improved a router built in 2004 can forward
at a factor of 10,000 more traffic than a router made in 1992.

2.2 General Router Model

In the Internet model, smaller networks are connected to bigger networks through
routers. Originally routers were implemented on general purpose workstations (typically
UNIX-based platforms; PCs running DOS or Windows were much too slow). These
early routers had a single CPU, which had to do two things:

• Routing
• Forwarding

Routing means discovering the network topology and disseminating information
about directly connected sub-nets to other neighbour routers. Forwarding refers to the
look-up and transfer of packets to the matching outbound next-hop for a given packet.
Routing, as defined here, mainly concerns signalling information and forwarding mainly
concerns user information.

As long as the general purpose processor has infinite processing power and memory,
the union of both routing and forwarding functions in the same device does no harm.
Practically speaking, processing power and memory are always finite resources and
experience has shown that the two functions mutually influence each other in their
competition for processing and storage resources. Unifying routing and forwarding may
cause stability problems during transient conditions, for instance, when a large traffic
trunk needs to be rerouted. Typically, during these transient situations, both the routing
subsystem of the box as well as the forwarding subsystems are extraordinarily stressed.

The stress occurs because the routing subsystem has to calculate alternative paths for
the broken traffic trunk and, at the same time, the forwarding process may be hit by a
large wave of traffic being rerouted through this router by another router. And that is
exactly the problem with the unified design combining routing and forwarding. It only
works as long as just one subsystem is stressed, but not both.

For example, what happens when the central CPU is 100 per cent utilized? Not all traf-
fic can be routed and packets have to be dropped. If the signalling or control traffic gen-
erated by the routing protocols is part of the dropped traffic, this may result in further
topology changes and result in endless stress (churn) that propagates through the whole
network.

Such meltdowns have occurred in every major ISP network throughout the last decade,
and the result was a radical design change in how routers are built. The forwarding

General Router Model 15

subsystem was separated from the general purpose platform, and migrated to custom
hardware that can forward hundreds of millions of packets per second. Customized hard-
ware development was necessary as the Internet growth outperformed any PC-based
architecture based on, for example, PCI buses.

Figure 2.3 shows essentially how modern routers are structured. The router is parti-
tioned into a dedicated control plane and a forwarding plane. The control plane holds the
software that the router needs to interact with other routers and human operators. Routers
typically employ a powerful command line interface (CLI), which is used for provision-
ing services, configuration management, router troubleshooting and debugging pur-
poses. Operator actions are written down in a central configuration file. Changes of the
configuration file are propagated to the routing processes that “speak” router-to-router
protocols like OSPF or IS-IS or Border Gateway Protocol (BGP). If the same routing
protocol is provisioned on both ends of a direct router-to-router link, then the routers
start to discover each other in their network. Next, IP routing information is exchanged.
The remote network information is entered in the local routing table of the route processor.
Next, the forwarding table entries in the control plane and the packet forwarding plane
have to be synchronized. Based on this routing table, the forwarding plane starts
to program the router hardware, which consists of Application Specific Integrated
Circuits (ASICs) or Field Programmable Gate Arrays (FPGAs), with a subset of the rout-
ing table, which is now called the forwarding table. The forwarding table is usually a
concise version of the full routing table containing all IP networks. The forwarding table
only needs to know routes useful for packet forwarding.

The fowarding plane consists of a number of “input interfaces” (IIF) and a number of
“output interfaces” (OIF). The router itself thinks in terms of logical interfaces. The
physical interface is the actual wire (or fibre) over which the packets flow. In order to
actually use a physical interface for forwarding traffic, there needs to be at least one IP
address assigned to the interface. The IP address combined with a physical interface is
called a logical interface. There can be more than one logical interface per physical inter-
face if the underlying physical media supports channel multiplexing like 801.1Q, Frame

16 2. Router Architecture

Control plane

Forwarding plane

Routing
process(es) CLI

SNMP
process

OS kernel

Transit traffic Transit traffic
Lookup Fabric QueuingIIF OIF

FIGURE 2.3. A blueprint of a modern router showing a clear separation of control plane and
forwarding plane

Relay DLCIs or ATM VCs, since each can have an IP address associated with it. If there
is no IP address assigned to a logical interface, then any traffic arriving on that interface
will be discarded.

Once traffic arrives on the input interface there is typically a lookup engine that tries
to determine the next-hop for a given IP address prefix (the prefix is the network portion
of the IP address). The next-hop information consists of an outgoing interface plus Layer
2 data link framing information. Since the outgoing interface is not enough for multi-
access networks like Ethernet LANs, the router needs to prepend the destination Media
Access Control (MAC) address of the receiver as well.

Next, the packet is transported inside the router chassis by any form of switch fabric.
Common switch fabric designs are crossbars, shared memory, shared bus and multistage
networks. The last stage before final sending of a packet to the next-hop router is the
queuing stage. This buffers packets if the interface is congested, schedules and deliver
packets to an outgoing interface.

2.3 Routing and Forwarding Tables

Just what is the difference between a routing and a forwarding table? The short answer is
size and amount of origin information. The routing table of a well-connected Internet
core router today uses dozens of megabytes (MB) of memory to store complete infor-
mation about all known Internet routes. Figure 2.4 shows why such a massive amount of
memory is needed. A router needs to store all the routes that it receives from each neigh-
bour. So for each neighbour an Input Routing Information Base (RIB-in) is kept. Due to
path redundancy in network cores, a prefix will most likely be known by more than one

Routing and Forwarding Tables 17

RIB-in (1)

Control
plane

Forwarding
plane

Transit traffic

Route decision
process

Lookup Fabric QueuingIIF OIF

RIB-in (2)

RIB-in (3)

RIB-in (N)

RIB-local

RIB-in (1)

RIB-in (2)

RIB-in (3)

RIB-in (N)
CP-FIB

FP-FIB

FIGURE 2.4. Internet core routers need to store what routes have been learned and advertised on a
per neighbour basis

path. What the routing software does is to determine the “best” path for a given prefix,
sometimes through a complicated tie-breaking process when metrics are the same. After
this route selection process the routing software knows the outgoing interface for all of
the prefixes it has learned from all of its neighbours. This processed table is called the
Local Routing Information Base (RIB-local). The RIB-local table also stores a large
amount of data associated with the prefix, information such as through which protocol
was the route learned, which ISP originated the route information, if the route is subject
to frequent failures (flapping), and so on. Modern routers store about 50–300 bytes of
additional administrative information for each route, useful for troubleshooting routing
problems, but adding to the resource requirements of the router.

A full-blown Internet routing table from a single upstream contains about 140,000
routes consumes about 20–30 MB of memory. This is still a massive amount of memory
if it has to be implemented in an expensive semiconductor technology. For example, the
ultra fast SRAMs typically used for CPU caches provide faster lookup speeds than
DRAM memory chips, but at great cost, so DRAM is often used for this purpose. The
benefit of DRAMs is smaller cost per bit of storage compared to SRAM chips. The router
designer has to make a call between speed and size to keep the cost competitive and is
always looking for tradeoffs like this.

Luckily, the forwarding plane does not need all of the administrative information in the
routing table. All it needs to know is the IP address prefix and a list of next-hop interfaces.
The route processor typically extracts the forwarding table out of the routing table. The
route processor generates the Route Processor Forwarding Information Base (RP-FIB)
and downloads a copy to the forwarding plane. The forwarding plane uses the matching
Forwarding Information Base (FP-FIB) for traffic lookups and sends packets to the corres-
ponding interface.

2.3.1 Forwarding Plane Architectures
The forwarding plane is the workhorse of the router. It has to match prefixes against the
forwarding table and try to find the best matching route at a rate of millions of lookups
per second both in the steady state of typical loads, and under transient, heavy load con-
ditions. From a forwarding plane perspective the Internet is an absolutely hostile envir-
onment. Why? Because the forwarding tables of the core routers are under constant flux.
The typical background noise of routing updates on the Internet is about 1 to 5 updates
per second. Many times this information results in a change to the forwarding table as
well. An ideal forwarding plane architecture implements a new forwarding state with
zero delay and has no traffic impact to other, unaffected prefixes. Therefore, a new next-
hop is effective immediately in the forwarding ASICs. In reality, however, there are some
pieces of software in between that delay these RIB to FIB updates.

The relationship between RIB and FIB is a key to understanding modern router oper-
ation. These tables must be coordinated for correct router functioning. The next section
presents a naïve implementation of how the RIB to FIB state inside a router is propa-
gated, but no real router implementation does it this way. Then some refinements are
added to the basic procedure, which results in what is considered as the state-of-the-art
forwarding plane implementation.

18 2. Router Architecture

2.3.1.1 Naïve Implementation of RIB to FIB Propagation

Figure 2.5 shows the timing of events that occur once a better route to a destination IP
prefix is found. First of all, the routing protocols perform a tie-break to find the new
“best” route, then the reduction of the RIB-local table information has to be performed.
The RIB-local table, which is about 20–30 MB, needs to get reduced to the 1–2 MB FIB
table size. Next, the FIB needs to be downloaded to the forwarding plane, which then
reprograms the forwarding tables of the ASICs. Because of this time lag, the overall con-
vergence time on the network is impacted. Much worse, if the old FIB is being overwrit-
ten with the new FIB, the traffic typically does not stop flowing. So it might happen that
the traffic is forwarded based on an outdated FIB. Now, the old FIB was consistent and
the new FIB is also consistent – however, for the transient period when the old FIB is
being overwritten, an incorrect bogus forwarding state may occur.

2.3.1.2 Improved Implementation of RIB to FIB Propagation

There are three ways to fix the incorrect transient FIB stages that may occur during
rewrites of the FIB.

1. Stopping (and buffering) the inbound interfaces. If the router has dedicated lookup
engines at the input side it may simply turn off the respective inbound interface or
buffer inbound traffic for a short period of time. If there is no traffic to look up, there
is also no incorrect transient stage that may harm forwarded traffic. The downside of
this method is that other interfaces may be affected. In most router architectures sev-
eral input interfaces share a route-lookup processor. Therefore all input interfaces that
share a common route-lookup processor need to be turned off. If the update rate is
high enough, for instance, from rerouting large trunks, which results in many prefixes
pointing to new next-hop interfaces, this approach could easily paralyze the box.

2. Paging between FIBs. Paging is a quite effective way of avoiding any kind of transient
stage. The idea is simple: double the amount of lookup memory and divide it into two
halves, one called Page #1 and the other Page #2. Figure 2.6 shows the basic paging
principle. The lookup processor uses Page #1 and Page #2 is used to hold the new FIB
table. Once the FIB update is complete the lookup processor swaps pages, which is

Routing and Forwarding Tables 19

Old

Forwarding state broken

New
CP-FIB

New FP-FIB
begin rewrite

New forwarding
state effective

Control plane

Forwarding plane

t0

FIGURE 2.5. There are transient stages during the update of an entire FIB, which would cause a
bogus forwarding table state

typically a single write operation, into a register on the lookup ASIC. While this fix
completely avoids the transient problem it can be very expensive since it requires doub-
ling the size of memory. And most implementations that use paging still suffer from
the problem of FIB regeneration. Reducing approximately 30 MB of control informa-
tion down to 1–2 MB of forwarding table up to 5 times per second has still a large
impact on the CPU. The next approach completely avoids this huge processing load.

3. Update-friendly FIB table structures: One of the classic problems of computer science
is the speed vs. size problem. For Internet routing tables there are known algorithms
to compress the overall table size down to 150–200 KB of memory and thus optimiz-
ing the lookup operation. However, applying slight changes to those forwarding struc-
tures is an elaborate operation because in most cases the entire forwarding table needs
to be rebuilt. Table space-reducing algorithms have long run-times and do not con-
sider the time it takes to compute a newer generation of the table. It is nice that the full
Internet routing table can be compressed down to 150 KB, however, if the actual cal-
culation takes several seconds (a long time for the Internet) on Pentium 3 class micro-
processors, another problem is introduced. The router might have to process every
BGP update 200 milliseconds (ms), or 5 times per second. So if an algorithm (for
example) has a run-time of 200 ms it is 100 per cent busy all the time. The atomic FIB
table structure, introduced to address this situation, has an important property: it is
neither designed for minimal size nor is it designed for optimal lookup speed. Atomic
FIB table structures are optimized for a completely different property, which is called
update-friendliness. Atomic is a term borrowed from the SQL database language and
addresses the same issue in database structures. For example, in an SQL database, if
a user is updating a price list, they are facing exactly the same problem: there could
be several other processes accessing portions of the same database record that is try-
ing to be updated. You can either put a lock on the database record (the counterpart of
stopping the interfaces) or arrange your database structure in a way that a single write
operation cannot corrupt your database. Each write process now leaves the database
in a consistent state, and such behaviour is called an atomic update. The same tech-
nique can be applied to forwarding tables as well. If a FIB has to be updated, it can be
done on-the-fly without disrupting or harming any transit traffic. Figure 2.7 shows

20 2. Router Architecture

Old
FP-FIB

Lookup
processor

New
FP-FIB

Lookup
SRAM

memory

#1

#2

FIGURE 2.6. Page swapping is an old but still effective way of presenting always-consistent FIB
structures to the lookup system

how an entire branch of new routing information is first stored in the lookup SRAM,
and then a new sub-tree is built up. This operation does not harm any transit traffic
lookups at all, because the new sub-tree is not yet linked to the old tree. A final write
operation switches a single pointer between the old sub-tree and the new sub-tree.

Not all of these three approaches are mutually exclusive. In later examples of real
routers, it will be shown that sometimes more than one of these techniques is used in
order to speed up RIB to FIB convergence.

It is clear from this forwarding plane discussion that updating even simple data struc-
tures like forwarding tables on-the-fly, particularly on routers that have to carry full
Internet routes, is not an easy task and requires careful system design. Similar diligence
is necessary when writing software for the control plane, or routing engine, and the next
section considers these architectures.

2.3.2 Control Plane Architectures
Control plane software suffers from similar problems first encountered on first-generation
routers implemented on general purpose routing platforms. There are several sub-systems
that compete for CPU and memory resources. In first-generation routers the forwarding
sub-system always hogged CPU cycles. Partitioning the system into a forwarding plane
and control plane avoided the packet processing stress placed on the routing protocols.
However, a modern control plane has to do more than just run a single instance of a routing
protocol. It usually also has to run a variety of software modules like:

• Several instances of the command line interface (CLI)
• Several instances of multiple routing protocols including OSPF, IS-IS and BGP
• Several instances of MPLS-related signalling protocols like RSVP and LDP

Routing and Forwarding Tables 21

Lookup
SRAM

memory

Forwarding plane

(Binary tree data structure)

Old pointer New pointer

Deleted sub-tree New sub-tree

Lookup
processor

FIGURE 2.7. An atomic update of a routing table sub-tree does not harm any transit traffic

• Several instances of accounting processes, such as the Simple Network Management
Protocol (SNMP) stack

2.3.2.1 Routing Sub-system Design

Each process that runs on a router operating system (OS) has time-critical events that
need to be executed in real-time, otherwise the neighbour routers might miss one “Hello”
message and declare the router down, causing a ripple effect that destabilizes the entire
router network. Therefore, all OSs have a scheduler which dispatches CPU cycles
depending on how timely the process needs to get revisited in order to meet time-critical
events like sending out IGP Hellos.

Historically the scheduler has been implemented inside the routing protocol module.
That design decision has important consequences. First, the routing protocols need to be
implemented in a way that is cooperative to the scheduler. Figure 2.8 shows that routing
software and their schedulers work almost like the old Windows 3.11, offering a form of
cooperative multitasking. An application can run as long as it passes control back to the
scheduler. In order for the scheduling to work it has to cooperate with the scheduler and
try not to run too long. Often the routing protocols processes need to be sliced and run a
piece at a time in order to meet timing constraints.

On busy boxes sometimes the individual sub-processes do not return control in time
back to the scheduler, which causes the following well-known message logs. In the case
of a sub-process not returning control in a timely manner to the scheduler, Cisco Systems
routers would log a CPU-HOG message like the following:

IOS logging output
Aug 7 01:24:07.651: %SYS-3-CPUHOG: Task ran for 7688msec (126/40),

process = ISIS Router, PC = 32804A8.

22 2. Router Architecture

Process A Process BApplication
scheduler

Application
scheduler

FIGURE 2.8. Per-application scheduling requires that the routing software is written in a cooperative way

A similar message type exists for Juniper Networks routers where the sub-processes
cannot be revisited in time. The Routing Protocol Daemon (RPD) logs an RPD-
SCHEDULER-SLIP message to its local logging facility:

JUNOS logging output
Aug 7 03:19:07 rpd[201]: task_monitor_slip: 4s scheduler slip

Special code adjustments need to be taken to avoid CPU-HOGS and scheduler slips. The
routing code constantly needs to sanity check itself to make sure it is not using too many
resources and so harming other sub-processes in the system that may be more critical,
like sending OSPF or IS-IS Hellos. In the carrier-class routing code expected by large
ISPs, a lot of the code base just deals with timing and avoiding all sorts of what are called
race conditions, which adds a lot of complexity to the code.

Today the majority of operating systems like Windows NT/2000/XP, Linux, or
FreeBSD do their scheduling in the kernel and not in the application. Writing application
scheduler cooperative code turned out to be a daunting task which was not sustainable
over time. Contrary to the application scheduler of the routing protocol subsystem, the
kernel scheduler works as illustrated in Figure 2.9. Here the application (the routing
protocol) does not need to be written in a cooperative way. The kernel scheduler inter-
rupts (or pre-empts) running processes and makes sure that every process is receiving its
fair share of CPU cycles.

Unfortunately, the hard pre-emption of kernel schedulers also has some dangers: IP
routing protocols are very dependent on each other and need to share a large amount of
data. IS-IS, for instance, needs to share its routing information with BGP so BGP can
make optimal route decisions, RSVP path computation is dependent on the Traffic
Engineering Database (TED), which is filled with IS-IS topology data, and so on. The
most efficient way of sharing large amounts of data is with a shared memory design to
share these data structures. The combination of shared data structures with pre-emptive
kernel scheduling may result in transient data corruption. Figure 2.10 illustrates this. IS-IS
changes a prefix in the routing table, during the write operation IS-IS gets pre-empted by
the BGP process, which needs to package and send a BGP update. The BGP process

Routing and Forwarding Tables 23

B
Process A Process B

KernelKernel

FIGURE 2.9. Kernel schedulers do not require the application to cooperate for scheduling

reads the incomplete prefix and, given how the memory was initialized at that time,
advertises bad information to other BGP routers. The scary thing for troubleshooting is
that the data corruption only lasts for a couple of milliseconds. As soon as the scheduler
passes control back to IS-IS, the full prefix will be written to the routing table. It would
take complicated measures to ensure that the data gets locked during write operations to
overcome these sort of issues, which are quite common.

Most routing software deployed on the Internet still runs based on cooperative sched-
ulers. Why is such seeming anachronism still present? The clean-sheet design, of course,
would be where a big “all protocols” routing process is partitioned into individual sub-
processes. Each routing protocol instance would run in a dedicated process. Scheduling
between the routing modules would be purely pre-emptive and there would also need to
be a means of efficient data sharing, while still avoiding all sorts of data corruption
through use of sophisticated locking schemes or the use of clever APIs.

To be fair to router vendors, at the time when the first implementations of routers were
built there were almost no solid implementations of real-time kernels available on the
open market. So the engineers simply had to be pragmatic and code a scheduler for them-
selves. But this history lesson has shown that pragmatism can easily turn into legacy if
care is not taken, and legacy systems can be hard or almost impossible to change or fix.
So most routing software still suffer from custom schedulers that run inside of the rout-
ing protocols. The code base keeps growing, and because customers always ask for new
features, there is no time to consolidate the code base and revise the software architec-
ture. Not revising the code base frequently will ultimately bring a product to the point of
no return where the complexity of the legacy code makes it impossible to further extend
functionality.

2.3.2.2 OS Design, the Kernel and Inter-process Communication

In the last decade of networking, a lot of effort has been made to improve the overall sta-
bility of the operating systems. The first router OSs seen on the market started out with
CPUs that did not support virtual memory. Virtual memory is a technique that assigns
each process a private chunk of the system’s memory. With this approach, if Process #1

24 2. Router Architecture

Shared memory

Routing table

192.168.1.1
via Ethernet0

192

IS-IS

BGP
62/8 via

192.168.XX.XX

ETH0

1

2

168 XX XX

62/8

FIGURE 2.10. If a process gets pre-empted during a write operation data may get corrupted

tries to access Process #2’s memory, then Process #1 is immediately terminated. Why
then is virtual memory today imperative? Virtual memory greatly enhances the overall
system stability by limiting local damage.

No matter how much time and resources put into testing efforts, there will be always
some bugs that are only unveiled in a production environment. So there is some residual
risk that certain processes will crash. What virtual memory helps is to mitigate the
impact that a crashed piece of software has to the overall system. In early router OSs, for
example, a tiny bug in relatively unimportant parts of the system, like the CLI, could
overwrite another process’s BGP neighbor tables. The result would be incorrect adver-
tisements and incorrect processing of incoming data that might cause not only the entire
router to crash, but also affect other routers as incorrect information is propagated in turn
and ripples through the network to crash other routers.

Modern control plane software typically consists of 1–2 millions line of code, which
leaves plenty of room for lots of bugs. A software design technique called graceful degra-
dation is becoming more important for distributed systems like router networks. The basic
idea is that a big piece of software is broken down in small atomic modules. – To provide
isolation each module gets its own process and virtual-memory. However, sometimes
processes need to share data being held by another process. For example, listing a neigh-
boring router’s route advertisements requires the CLI to ask the BGP process what routes
it received from neighbors. All the processes need to use a common exchange mechanism
like a message-passing API in order to interact with each other. The message-passing API
is one of the things that each modern kernel offers to its processes. The kernel itself is the
root of the operating system. It starts and stops processes and passes messages along
between processes.

Figure 2.11 shows an example of a message-passing atomic-module system. The ker-
nel offers a generalized, uniform messaging system for interaction and thereby provides
unmatched stability. Do not be misled: the kernel does not stop individual processes from
crashing. But it does help limit the impact of the crashed piece of software on other
processes in the same system. After a process dies, the kernels watchdog waits a couple
of seconds and restarts the broken software again. It is common practice to write a log
entry into the system’s log that a process has been crashed and restarted, ultimately alert-
ing the Network Operation Center (NOC) to the problem.

The advantage is clear: a single network incident like, for example, a bug in IGP
Adjacency Managements crashes only one Adjacency and does not take out the entire
router for 2–3 minutes to complete a reboot.

No of the two Vendors implementation discussed in this book encompasses the idea of
atomic modules communicating through the kernel. The main argument of the propo-
nents of monolithic software is that the amount of data sharing that is required for exam-
ple in the routing subsystem will overload the inter-process communication system of
the kernel. The traditional vehicle is to share memory between modules inside a process.
The disadvantage here is full fate-sharing: If there is a single software problem in the
process the entire process will crash and render the router control-plane unusable for
minutes.

However it remains to be seen if the atomic modules and massive inter-process commu-
nication model can perform at a similar performance level than today’s shared-memory

Routing and Forwarding Tables 25

model. If atomic-modules get close to par they are the next logical step to evolve router
control plane software.

In summary, proper partitioning of the control plane software helps prevent local bugs
from spreading to a system-wide crisis. Virtual memory shields the processes and their
associated memory from each other. In order to exchange information between
processes, the kernel offers a message-passing API. Once again, scaling by partitioning
has helped to solve the problem of OS instability.

2.4 Router Technology Examples

Building routers is a complicated and daunting task. There are probably only a few dozen
people in the industry that really know how to architect and design a modern router,
because of the inherent complexity. A lot of the insight on how to build routers that scale
was gathered by actually deploying premature implementations of software and using
the feedback that the deployment experience provided into the design of next-generation
routers. In the next few sections, popular router models and their design concepts will be
outlined.

26 2. Router Architecture

IS-IS
Adj-Mnt

Instance 0

IS-IS
SPF-run

Instance 0

BGP
resolver

Instance 0

BGP
sess-mgr
Instance 0

Kernel (message-passing)

OSPF
Adj-Mnt
Instance
VRF-blue

OSPF
SPF-run
Instance
VRF-blue

Kernel

Shared Memory CLI SNMP

IS-IS

LDP BGP

OSPF

FIGURE 2.11. Modern OSs offer a message-passing API for processes to communicate to each other

2.4.1 Cisco 7500 Series
The Cisco 7500 series of router was the most successful router ever built for Internet core
applications. Figure 2.12 shows the overall structure of the box. Basically, it is a redun-
dant shared bus system with one element dual-homed to both buses. The shared buses
have different speeds, depending on the revision level. Bus speeds range from the CxBus
(533 Mbit/s half-duplex) to the CyBus (1.2 Gbit/s half-duplex) and finally the CzBus
(2.5 Gbit/s half-duplex).

The Route Switch Processor (RSP) has to run both the routing software and also needs
to switch packets. The first-generation interface cards are called Interface Processors and
are from Network-Layer viewpoint purely passive devices. The IPs perform Layer-1
(Physical Layer) and Layer-2 (MAC Layer) related tasks like verifying CRC checksums,
SONET messaging or ATM SAR functions. If a packet enters the box, an interrupt is sig-
nalled to the RSP. The RSP fetches the packet and does a route-lookup to find the corre-
sponding outbound interface. All relevant modifications to the IP header, such as TTL
decrementing and recalculating the IP header’s checksum, are done by the RSP. Then the
packet is copied to the outgoing interface where it ultimately leaves the chassis.

The RSP forwarding module needs to have efficient route-lookup structures in order
to spend minimum lookup times before making forwarding decisions. The forwarding
information base (FIB) is known to Cisco Systems as the Cisco Express Forwarding
(CEF) Table. In Figure 2.13 there are two examples of how the lookup for IP address
4.6.2.1 traverses the CEF Table. The basic structure is a 256-way 4-level structure called
an M-tree. The four levels are located at the /8, /16, /24 and /32 prefix boundaries. Each

Router Technology Examples 27

• • •

Route
switch

processor

Passive (IP)
line card

Passive (IP)
line card

Passive (IP)
line card

1

2

FIGURE 2.12. The first generation Interface Processor (IP) Cards did not embed route-lookup func-
tionality. All the traffic has been passed via the Route Switch Processor (RSP).

node contains 256 pointers to other nodes farther down the hierarchy. Each node also
contains a flag that tells the lookup process to terminate. In the illustration, this flag is
shown as a black dot. For example, for the IP address 192.158.253.244, the lookup stops
after the third memory reference because there are no further specific routes available.
Finally, the lookup process ends by doing one more lookup to determine the outgoing next-
hop information, which typically consists of an interface plus Layer-2 encapsulation data
such as MAC addresses. To Cisco Systems, this last table is known as the Adjacency Table.

The Cisco 7500 router is a classic example of a mid-1990s router that has a monolithic
architecture where the RSP has to do two things: routing (sending and receiving routing
updates) and switching (moving the packets through the chassis). In busy boxes, the
switching load severely impacted routing convergence time and stability. Cisco Systems
addressed the problem by introducing new flavours of the RSP, which had more CPU
horsepower. Today the RSP, RSP-2, RSP-4 and RSP-8 are deployed in the field. However,
just putting in more CPU horsepower did not fundamentally address the architectural
problems – they were masked for the next 12–18 months in the product lifecycle.

The problem of high CPU load on the RSPs became increasingly severe as ISPs
wanted to sell premium services like Class of Service (CoS)-enabled or security-tightened

28 2. Router Architecture

next-hop (Adjacency) Table

POS 6/0, encaps HDLC

/80 1 2 3 5 ... 253 254 255

/160 1 2 3 4 5 ... 255...

/240 1 4 5 6 254 255...

/320 2 3 4 5 6 254 255

2

... 253

4

3

6

Ethernet0, MAC 00:d0:b7:b2:79:0e

Ethernet0, MAC 00:a0:c5:25:fb:30

Ethernet1, MAC ???

POS4/1, encaps PPP

/0Root

1

192

168

253

FIGURE 2.13. The Cisco Express Forwarding (CEF) Table ensures minimum route-lookup times by
only four memory references

networks. Doing additional classification and firewalling work besides the plain-vanilla
destination IP address route lookups resulted in decreased forwarding performance, in
some cases down to several 10K pps. The 7500 architecture had to be extended to offload
much of the switching decisions down to the interface level. With the next generation of
Interface Ports, the Versatile Interface Processor (VIP) was born.

2.4.2 Cisco 7500 Series � VIP Processors
The VIP concept is an improvement to the passive line card architecture of the plain 7500
series. The slots of the routers are populated with VIP cards, which are essentially carrier
cards that hold Port Adapters (PAs). The PAs perform similar low-level functions to the
older IP line cards. The VIP adapter itself runs a custom, stripped down version of IOS
that harbours mostly switching and classification functions in order to offload the RSP
from switching the packets. The VIP architecture was a real step forward in improving
switching performance and bus utilization. Using the old-style IP line cards, the bus was
used twice, as shown in Figure 2.12: once for the IP to RSP transfer, and then for the RSP
to IP transfer. Figure 2.14 shows that if the packet is transferred direct from one VIP to
another, the bus is traversed only a single time.

The distributed VIP architecture revealed an interesting issue: how to replicate the FIB
table to several line cards? As the route lookup was done in a distributed fashion, a piece
of software needed to make sure that the local FIB gets replicated to all the VIP adapters
in the system. Distributed CEF (dCEF) was developed to provide the proper care and
feeding of VIP line cards. But deployment of dCEF in the field revealed a weakness in
the way that FIB tables are built: the VIP card is a pure switching entity, and as such it

Router Technology Examples 29

• • •

Route
Route
switch

processor

Active (VIP)
line card

Active (VIP)
line card

Active (VIP)
line card

1

FIGURE 2.14. The Versatile Interface Processor transfers VIP to VIP traffic without Route Switch
Processor intervention

also needs a piece of software that calculates the FIB based on the RIB. During transient
conditions when, for example, a large part of Internet traffic is rerouted, FIB computation
turns out to be a fairly expensive task. The VIP card does local switching and the RSP
performs control plane functionality, plus building the FIBs on behalf of the VIP
adapters. And that is exactly the weak point of the architecture, because the RSP still
needs to do too much work that would be done better at the VIP card level. There is no
true decoupling of forwarding and control functions here. For better stability, it probably
would have been a better design choice to replicate the local RIB to the VIP cards and let
them do the FIB generation.

Around the same time, it became apparent that the enormous growth of the Internet
was outpacing advances in bus speeds. So the 7500s, which had once been the core
routers, moved to the edge and began performing customer traffic and route aggregation
functions. The concept of the shared bus had to be replaced by a true fabric enabling line
card speeds beyond OC-12/STM-4 speeds of 622 Mbps, which is still the architectural
limit of the 7500 � VIP series. It was clear that changing the heart of the router, which
is the fabric, leads to a change of the line-cards, the VIPs and the PAs. Essentially a
whole new router needed to be designed.

2.4.3 Cisco GSR Series
The Cisco 12000 Series, sometimes referred to as the Gigabit Switch Router (GSR), is basi-
cally a meshof high-speed VIPs that perform independent, local route and classification
lookups. Figure 2.15 illustrates the concept in brief. The glue that holds these line cards
together is a single-stage crossbar that provides up to 80 Gbit/s I/O bandwidth. The succes-
sor of the 12000 Series is the 12400, which offers an increased crossbar bandwidth of
320 Gbit/s. The route processor and the crossbar fabric are designed redundant. If one com-
ponent breaks the other will take over. There are four different types of line cards for the
GSR Series, starting with Engine-0 line cards, which offer only software processing like the
VIP processors on the 7500 series. There are also Engine-2 line cards using custom ASIC
hardware and Engine-3 cards are the second generation of ASIC hardware. Finally, Engine-
4 line cards are targeted for the new high-speed fabric of the Cisco 12400 Series intended to

30 2. Router Architecture

• • •

Route
processor

Active
line card

Active
line card

• • •

Crossbar
fabric

Route
processor

Active
line card

Active
line card

FIGURE 2.15. The GSR 12000 Series concept is a crossbar fabric surrounded by active line cards

accommodate ASIC-supported high-speed lookups on four port OC-48/STM-16 (about
2.4 Gbps) and single port OC-192/STM-64 (about 10 Gbps) line cards.

Although Cisco Systems has to support a variety of hardware platforms, they offer an
easy-to-use uniform CLI across all platforms that enhance their popularity. The original
plan was to have a single code-base across all platforms, known as the Internetworking
Operating System (IOS).

2.4.4 Cisco IOS Routing Software
Unlike many other router operating systems, IOS is not based on any commercial real-
time OS. IOS is a complete new development written by Greg Satz and Kirk Lougheed,
early Cisco software engineers. There were some ideas inspired from TOPS-20, an
ancient DEC operating system, but that was about it. The biggest issue with IOS today is
its monolithic structure. IOS is not even a complete operating system in the sense of
UNIX or Windows. IOS is more like a single program that runs on a dedicated piece of
hardware. IOS does not include virtual memory protection, nor can new processes be
added at runtime. The lack of virtual memory protection is the main reason why IOS
crashes typically affect the entire machine and not just individual subsystems: there is
just a single program running and no partitioning at all. There are no demarcation points,
things like kernels, user processes and schedulers. IOS is just a single big program that
is executed from startup to shutdown.

IOS is based on a 20-year-old concept, and its main weakness is this monolithic code
structure. Until the runtime environment is changed, it will be hard if not impossible to
re-engineer the system for future requirements, such as the carrier-class availability
(known as “5 nines”) that the public infrastructure needs and deserves. Because of the
huge amount of code that needs to be carried from one product variation to the next, the
best thing to do with IOS is probably to start from scratch.

This desire to change the monolithic router OS infrastructure and to develop a second-
generation routing operating system was the genesis for newer companies like Juniper
Networks. It will come as no surprise to learn that the initial engineers writing the
JUNOS operating system were experienced engineers drafted from Cisco having the
insight (gathered from direct experience) into which design pitfalls to avoid in order to
build a stable, scalable router.

2.4.5 Juniper Networks M-Series Routers
Juniper Networks M-series routers were the first in the industry to offer a true decoupling
of the forwarding plane and control plane. Figure 2.16 shows the Juniper Networks sep-
aration between Routing Engines (RE) and a Packet Forwarding Engine (PFE). The
Routing Engine is an off-the-shelf Intel-based industry-standard PC platform with a very
small form factor. The link between the RE and the PFE is a standard Fast Ethernet link
that runs a proprietary protocol called the Trivial Network Protocol (TNP). TNP takes
care of the proper care and feeding of the lookup and queuing ASICs, and also retrieves
(for example) interface statistics from the chassis. TNP also provides a tunnelled mode
where it carries packets sourced by the RE targeted for an interface (such as routing

Router Technology Examples 31

protocol packets). The tunnel mode is necessary so that the RE can communicate with
the outside world. It is worth noting that no matter what JUNOS feature is turned on, no
transit traffic ever gets processed by the RE. The RE only needs to take care of control
traffic. Additionally, all traffic from the PFE to the RE is rate-limited in order to protect
the RE under all circumstances, even during denial-of-service attacks.

The PFE is a collection of custom ASICs interconnected by a distributed, shared mem-
ory fabric. The line cards follow a similar physical approach to the VIP adapters of Cisco.
There are Flexible PIC Concentrators (FPCs), which are carrier cards for the Physical
Interface Cards (PICs). The PIC itself can be compared to a PA in the VIP architecture.
Essentially, these are simple devices that just take care of proper physical framing, CRC
checksumming and alarm generation (SONET/SDH PICs). But in contrast to the VIP
architecture, the FPCs do not perform any route-lookup. The FPCs’ASICs only process
a packet at Layer-2, strip all Layer-2 framing and then pass the packet to a central route
lookup chip, the Internet Processor 2 (IP2). The IP2 can only do route lookups and
packet filter lookups. Once a next-hop matching any field in the IP header (typically, but
not always, only the destination IP address) is found, the outbound FPC fetches, queues
and finally transmits the packet to the PIC. The PIC again performs only Layer-1 related
functions like checksumming and so on. The IP2 FIB table structure has been optimized
for update friendliness. In fact, a change in next-hop under full load does not cause a sin-
gle packet to drop! The FIB table size is 16 MB, providing room for about 1100K routes,
many times more than the Internet could need for years to come.

Feature-rich lookup, classification hardware, and a clear architectural avoidance of
transit traffic on the RE is the foundation for the elusive goal of true separation of the for-
warding plane and the control plane.

32 2. Router Architecture

Routing
engine

FPC
0

FPC
n

IP II
Input Output

Packet
Forwarding

Engine

PIC 0

PIC 1

PIC 2

PIC 3

PIC 0

PIC 1

PIC 2

PIC 3

FIGURE 2.16. The M-Series encompasses a truly separated forwarding and control plane

2.4.6 JUNOS Routing Software
The JUNOS operating system is built around a FreeBSD 4.2-STABLE UNIX operating
system. The kernel is different to the usual FreeBSD kernel. Special care has been taken
to ensure scalability and the kernel is modified to support multiple routing tables, mil-
lions of routes and thousands of interfaces. Because UNIX offers full virtual memory
protection, the system is split up in many different user processes, as illustrated in Figure
2.17. The routing code is still bundled in a single process for all the routing protocols
across all routing instances, so the issue of scheduling is still present. If a large wave of
BGP updates hits the system, it is possible to miss sending IGP Hellos. But the UNIX-
based package also provides a way around this issue. There is a dedicated daemon
(server process) in JUNOS called the Periodic Packet Management Daemon (PPMD).
The IGPs register with PPMD, which sends out the IGP Hellos on their behalf. PPMD
completely offloads Hello processing from the RPD, and the RPD does not need to han-
dle periodic Hellos at all. The RPD is notified by PPMD if an important event like an
adjacency expiration occurs. PPMD runs with the highest scheduling priority in the system
and may pre-empt any process to make sure that every IGP Hello is delivered in time.

In summary, JUNOS is a true example of a second-generation router operating
System. Many lessons learned from deployment experience with Cisco IOS have been
incorporated into the software. The software is modular in order to overcome the fate-
sharing problems in monolithic designs. At the time of writing, the number of active
processes in a functioning router was 37, an extraordinary number. Partitioning the code
carefully ensures that each single subsystem becomes maintainable and protects the
overall system from avalanche effects caused by local bugs.

2.5 Conclusion

The evolution of the Internet is so fast that it is difficult for core routers to keep up.
Both forwarding user traffic and processing control traffic in a network that doubles in
speed and size every nine months is a daunting task. To tackle the problem of scaling,

Conclusion 33

KernelKernel

rpdrpd mgdmgd chassidchassid ….. ppmdppmd

Real-time
code pieces

FIGURE 2.17. JUNOS software is partitioned across many user level processes

one common technique is repeatedly used: partitioning. The first occurrence of parti-
tioning is the Internet routing paradigm itself. Hosts need to perform more dissimilar
functions than routers have to do. Partitioning is the tool of choice to scale router scala-
bility problems. In modern routers, the control plane has been separated from the
forwarding plane. This separation does not rely on shared resources like CPU cycles and
memory. Next, clever ways of manipulating forwarding table structures while forward-
ing traffic at full speed have been developed. Partitioning the route lookup and table
maintenance functions addressed the challenges of an ever-and-yet-never-quite converg-
ing Internet. Finally, control plane software has been partitioned twice. First, the interac-
tion and memory protection of routing software inside the system is secured via a kernel
that each process relies upon, greatly minimizing the impact of broken software. Second,
the routing protocols are split up into a real-time component and a non-real-time com-
ponent, further improving convergence time granularity as well as removing a lot of
complexity from the routing code.

All in all, partitioning is the prevailing scaling method that helps to scale the Internet
and its building block, the router.

34 2. Router Architecture

3

Introduction to the IOS and JUNOS
Command Line Interface

35

In the router world, ISPs and carriers got used to the fact that routers are configured and
managed using an ASCII-based command line interface. Even if this seems scary the first
time, especially when used to fancy graphical user interfaces (GUI), command line inter-
faces give unmatched control over the router and provide a powerful troubleshooting
tool.

The Internet is a network that is constantly under flux – somebody somewhere is always
changing something. Moreover, new protocol standards evolve, new releases of routing
software are deployed, peering policy may change as a result of business constraints or
acquisitions, and so on. All this makes for a challenging environment that, at least not up
to now, could be modelled in the form of a GUI. In this chapter we will give a basic
overview of how to interact with this kind of interface. You will learn in this chapter
how to upload a new configuration, how to query IS-IS related status and finally how to
troubleshoot and debug adjacency formation and link-state databases.

3.1 Common Properties of Command Line Interfaces (CLI)

When Cisco Systems shipped it first product called “ISH” back in 1986, no one imagined
that the company would be redefining how operators interacted with routers for the next
two decades. At first sight a command line interface might look primitive; however, there
are important aspects and elements that helped the company achieve its breathtaking
success. There are many theories about why Cisco Systems got to where they are in the
industry today. From a technical viewpoint, two key properties helped people feel com-
fortable with the Cisco router’s interface. The first is that after changing the router’s con-
figuration, everything was written into a single file that is kept in the Non-Volatile RAM
(NVRAM) of the router. Virtually everything that the router does, for example running
routing protocols, performing access control, or using static routes, is controlled by this
single file. The second important aspect is that the router’s configuration file was an
ASCII file and is therefore human-readable. Unlike other router companies who stored
their configuration file in binary form, the IOS configuration files could be read out on
the fly and everybody understood exactly what the router was supposed to do.

There are two other main advantages of single ASCII configuration files. First, support
gets easier. It is a matter of fact that a large fraction of support calls are configuration
related. An ASCII configuration file enabled operators to simply copy and paste their

router configuration into an email when requesting support. The Technical Assistance
Centre (TAC) could then very quickly see if this was a configuration issue or if the soft-
ware had a bug and further analysis of the problem was required. There are even those in
the industry who argue that ASCII-based configuration files make the support organiza-
tion scale more effectively and work most efficiently.

The second main advantage is that customers did not need to have a live router to gen-
erate configuration files. If the router’s configuration was stored in binary form, there is
no opportunity for a third-party application or a “quick-hack” script to generate a valid
configuration file. Router configurations that could be generated by standard UNIX tools
like SED, AWK and PERL were a first-generation way of eventually making a provi-
sioning API available for configuration robot tools.

Perhaps Proteon (an ancient router vendor from the 1980s) had an interface that pro-
vides the best example of how not to do router configuration:

• Configuration was purely done using menus that never showed you where you were
in the configuration statement hierarchy.

• Configuration and show commands had a totally different look and feel (for those who
are familiar with this, just recall the jumping between T5 and T6 command shells).

• Everything was stored in a binary file.
• There was no possibility to employ external provisioning tools.

Cisco overtook Proteon in the market at the end of 1980s for various reasons. But one
reason was definitely the odd command line interface of Proteon routers. Not that a sound
CLI automatically paves the way for success in the router industry, but it clearly does help.

The two ASCII-based command line interfaces of IOS and JUNOS are similar to each
other in some respects, and different in others. The following sections highlight these
common elements. Then the differences between IOS and JUNOS (and also the intended
improvements JUNOS made to IOS) will be discussed as well.

Routers are typically accessed in three ways:

• RS232 serial console
• In-band access via telnet or Secure Shell (SSH)
• Out-of-band access via telnet or SSH.

Once you have logged on the router, there are two general modes of talking to the router.
The first one is called the operational mode. This mode is mainly used to explore what the
router and its environment are doing, what routes are being installed in the system and if
interfaces are carrying traffic. The other mode is the configuration mode. In the configura-
tion mode the router’s behaviour is controlled, for example, what IP address does it have,
what routing protocols parameters are used, who can access the router or network, and so on.

3.1.1 Operational Mode
Once you log into a router you usually find yourself in operational mode. The trailing
“�” sign indicates that you are working in operational mode. In JUNOS the prompt
looks like this:

hannes@New-York>

36 3. Introduction to the IOS and JUNOS Command Line Interface

And for IOS, the prompt would look like this:

London>

What you will always see is the hostname (the name of the router) followed by the
“�” sign. In JUNOS you also see the username followed by the “@” sign before the
hostname. Now you can issue commands to the router. The commands are organized in
a hierarchical fashion as shown in Figure 3.1. The more arguments a command has, the
more specific the command gets. For instance, a show isis database London
just shows a single link-state database (LSDB) entry, while show isis database
shows all LSDB entries.

hannes@Frankfurt> show isis database London

IS-IS level 2 link-state database:

LSP ID Sequence Checksum Lifetime Attributes

London.00-00 0x1af 0xa977 25314 L1 L2

1 LSPs

hannes@Frankfurt> show isis database

IS-IS level 1 link-state database:

IS-IS level 2 link-state database:

LSP ID Sequence Checksum Lifetime Attributes

London.00-00 0x1af 0xa977 25314 L1 L2

Amsterdam.00-00 0x1a7 0x3dd0 31088 L1 L2

New-York.00-00 0x1a2 0x16f5 46510 L1 L2

Penssauken.00-00 0x19a 0x3ec 5184 L1 L2

408 LSPs

The arguments for a command are separated by a simple blank. Sometimes the router
has too few arguments and this forms an unambiguous command. Typically, routers
complain about an ambiguous command with a prompt:

hannes@Frankfurt> show isis

syntax error, expecting <command>.

Common Properties of Command Line Interfaces 37

show

bgp isis chassisinterface

community detailas-path

clear help

route

FIGURE 3.1. The command line space is organized in a hierarchical fashion

This is from a router running JUNOS and

Munich>show isis

% Incomplete command.

is from an IOS-based router. However, there is an easy way to discover what kinds of
commands the router gives you: context-sensitive help.

3.1.1.1 Context-sensitive Help

At any time, you can enter a question mark (?) at the user prompt, which makes the CLI
display all the options that are available at this point in the command-line hierarchy:

hannes@Frankfurt> show isis ?

Possible completions:

adjacency Show the IS-IS adjacency database

database Show the IS-IS link-state database

hostname Show IS-IS hostname database

interface Show IS-IS interface information

route Show the IS-IS routing table

spf Show information about IS-IS SPF calculations

statistics Show IS-IS performance statistics

You will see the keywords that are available, plus a brief descriptive text about what
kind of information is displayed by the respective option.

If the question mark is keyed in the middle of an argument, the CLI shows you what
valid completions are still left. Note above that there are two keywords after show isis
starting with the letter “S”. The keywords “spf” and “statistics” both start with the same
letter. What you can do is issue a show isis s command and then type the question mark:

hannes@Frankfurt> show isis s?

Possible completions:

spf Show information about IS-IS SPF calculations

statistics Show IS-IS performance statistics

The router shows you the two possible completions. If there are no valid completions
then the router simply responds with:

hannes@Frankfurt > show isis j?

No valid completions

Sometimes the keywords available in the CLI can be very long and the command line
interfaces often offer shortcuts to the keywords. That is, it is not really a shortcut, it is
more that the command line parser looks to see if your input is unambiguous and then
accepts the keyword. So the commands do not have to be specified to the full extent:

London> sh is d

produces the same output as:

London> show isis database

38 3. Introduction to the IOS and JUNOS Command Line Interface

3.1.1.2 Auto-complete

Sometimes these shortcuts are also known as auto-complete functionality. It is not quite
the same thing, however. What auto-complete means is that you can press the �TAB� key
every time you want to check if you have supplied enough characters for a keyword so
the command is unambiguous. For example, if you enter:

London> show i<TAB>

then you get:

London> show i

In other words, nothing happens if the letters supplied are ambiguous. However, if you
supply enough letters like:

London> show is<TAB>

then you get:

London> show isis

Auto-complete proved to be a powerful tool for experienced users quickly needing
output, for instance, when troubleshooting a network problem.

The second major mode of router CLI operation is the configuration mode that con-
trols the router’s behaviour.

3.1.2 Configuration Mode
You can switch from the operational mode to the configuration mode by issuing commands
like configure or configure terminal. On JUNOS routers you see that you are
now in configuration mode because the prompt has been changed from “�” to “#”

hannes@New-York> configure

Entering configuration mode

[edit]

hannes@New-York#

You also can see that you are in the configuration mode because each time you press
the �ENTER� key your prompt is prepended by [EDIT], which always indicates that
you are in the configuration mode.

On IOS platforms you cannot get directly to configuration mode. You first get into
what is called the privileged enable mode.

London>enable

Password: *******

London#conf terminal

Enter configuration commands, one per line. End with CNTL/Z.

London(config)#

Just as in JUNOS there is the # indication in the prompt that tells you that you are in
configuration mode. You also see the config keyword in parentheses after the router’s
hostname and the prompt.

Common Properties of Command Line Interfaces 39

The configuration mode CLI also has a hierarchy, as described in the operational
mode, for show commands. The prompt again indicates what part of the hierarchy the
operator is configuring. For example, if you want to configure parameters that are related
to the IS-IS subsystem, you specify simply router isis and then the system puts you
in the router isis context.

London#conf t

Enter configuration commands, one per line. End with CNTL/Z.

London(config)#router isis

London(config-router)#

You see that you are working in a different context because the prompt changes. A simi-
lar thing happens to the prompt in JUNOS command line interfaces:

hannes@New-York> configure

Entering configuration mode

[edit]

hannes@New-York# edit protocols isis

[edit protocols isis]

hannes@New-York#

The information in the square brackets is called the editing context. A simple [edit]
means that you are on the top-level of the configuration hierarchy. When you move
around in the hierarchy using the edit command, the prompt changes accordingly.

3.1.3 Emacs Style Keyboard Sequences
There are people in the industry who believe that the UNIX Emacs editor is a problem
itself; there are others who believe it is a solution to all kind of problems. While the authors
generally like the highly customizable nature of what is probably the most powerful editor
around, there are others who complain that it is hard to configure and make it do what you
want . One thing about Emacs that is distinctive is the way that you move the cursor around
on the screen. Emacs has certain key-combinations that can put the cursor at the beginning
of a line or at the end of a line, and so on. Moving quickly around and editing a command
really speeds up the way of talking to the router. Figure 3.2 shows the most commonly-used
Emacs sequences. CTRL-A and CTRL-E for moving to the beginning or end of a line
are the ones used most often. IOS and JUNOS both implement the Emacs keystroke
sequences, and once you are used to it, it greatly speeds up administering the router.

3.1.4 Debugging
Modern routers give you a vast amount of debugging options where you can trace virtu-
ally everything that the router is doing. Both JUNOS and IOS have a rich tracing facility
to show what the routing software is doing. Each protocol has its very own knobs that
you can turn on. Similar to operational mode and configuration mode, there is also a hier-
archy as to what kind of feature or protocols can be debugged. The purpose of turning on
the debugging facility is to help you during the troubleshooting process. Unfortunately, the
way that the debuggers are managed in each is very different and will be discussed in the
IOS and JUNOS specific sections. The important point is that both platforms give you a
powerful debugging facility for troubleshooting complex networking problems.

40 3. Introduction to the IOS and JUNOS Command Line Interface

3.1.5 IP Troubleshooting Tools
Router operation systems like IOS and JUNOS also have standard IP troubleshooting tools
(like ping and traceroute) on board. The ping and traceroute utilities often have been
enhanced for core-routing applications. One example of such enhancements is the ability
to specify the routing table which the system should use to determine the outgoing interface.
Other examples are the ability to manually specify the source IP address or to bypass a rout-
ing table. So both the ping and traceroute utilities are available, but have some enhancements
far beyond the off-the-shelf ping and traceroute commands that are included with host
operating systems. So when you first use them, make sure to use the online help function
by keying the question mark to see what kind of additional options the system offers.

3.1.6 Routing Policy
Even if this is a book about IS-IS, there are many times when the IS-IS protocol needs to
interact with other routing protocols, or even transfer prefix reachability information
from one protocol to the other. Both JUNOS and IOS have a rich set of software features
that control the flow of routing information between protocols. The software is very ver-
satile and in the JUNOS case it even has a “language” all of its own that controls the met-
rics and properties of a routing advertisement depending on the administrative policy in
the network. In the IOS and JUNOS specific sections you will see specifics of IOS and
JUNOS routing policy implementations.

3.1.7 Logging
Sometimes during troubleshooting you are more interested in past events than current status.
So it may be important to know when a BGP session last flapped or when a SONET/SDH
link went down. Both IOS and JUNOS allow you to log events to three places:

• Console (if there is an emergency/urgent action) that every user should know
• Local log file
• Central Logging Hosts (Syslog)

Common Properties of Command Line Interfaces 41

CTRL-B

CTRL-A

CTRL-F

CTRL-E

hannes@New-York> show isis database

CTRL-W

hannes@New-York> show isis database

hannes@New-York> show isis database

hannes@New-York> show isis database

hannes@New-York> show isis database

hannes@New-York> show isis

FIGURE 3.2. IOS encompasses Emacs style keystrokes for faster navigation of the cursor

The logging facility is highly configurable and allows you to classify all internal events
and log to one of the three possible logging targets.

As has been shown, many elements of the command line interface are common to both
the Cisco IOS and JUNOS CLI. Even if you are used to one system’s CLI, our experience
has been that you can figure out how to configure the other vendor’s routers within a few
days, given access to lab equipment or decent training. However, there are some import-
ant differences between the two command line interfaces, and these are highlighted in
the next two sections.

3.2 Cisco Systems IOS CLI

Cisco IOS is the most popular CLI look and feel for talking to networking devices. Its
enormous success has made it the de facto standard in the networking industry. Many
vendors simply cloned it to avoid training new operational methods during the product
introduction cycle. In the next section, IS-IS-related examples of how to use the Cisco
CLI are presented. Then the differences in the JUNOS implementation are described.

3.2.1 Logging into the System, Authentication, Privilege Level
You can log into the Cisco system using a serial RS232 connection on the router’s con-
sole or dial-in via telnet or the Secure Shell (SSH) Protocol. Cisco Systems routers do
not have a designated Out-of-Band Management Port, so only the two options for access-
ing the router, direct and dial-in, are available. Once you have the physical or logical con-
nections working properly (and Cisco serial cables for console connections use odd pin
arrangements), you should see a message that prompts you for a password:

(11:29 hannes@unixbox:�) telnet Pennsauken

Trying 192.168.48.146 ...

Connected to Pennsauken.

Escape character is ‘^]’.

User Access Verification

Password: *******

Pennsauken>

On a system that has per-user authentication (not the default) you have to enter a
username/password pair:

(11:31 hannes@unixbox:�) telnet London

Trying 192.168.17.1 ...

Connected to London.

Escape character is ‘^]’.

User Access Verification

Username: hannes

Password: *******

London>

42 3. Introduction to the IOS and JUNOS Command Line Interface

IOS assigns every terminal session a privilege level between 1 and 15. You can display
the privilege level anytime using the command show privilege:

London>show privilege

Current privilege level is 1

You cannot really cause any harm to the system or modify its configuration and dis-
rupt traffic using a privilege level of 1. It is a privilege level dedicated to monitoring pur-
poses only. If you want to modify the system’s configuration or turn on debugging for
in-depth troubleshooting then you have to change this low privilege level. You can ask
your network administrator to change the privilege level either for your user-id or for the
specific terminal line used to configure the router.

If you know the enable password you can jump immediately to privilege level 15, which
lets you do everything within the router, for example, changing the configuration, reboot-
ing the box, resetting line cards, and so on:

London>enable

Password:

Then this will verify the enable privilege level:

London#show privilege

Current privilege level is 15

London#

Now you are in enable mode, which means that you have the full set of show and con-
figuration commands available, as discussed in the next section.

3.2.2 IS-IS-related Show Commands
At the end of the 1980s, IS-IS was being used as the routing protocol in a purely CLNP
protocol environment. This was also the time when Cisco because successful in the enter-
prise marketplace with its multiprotocol router products. No one initially had in mind to
use the IS-IS routing protocol for routing IP, not even the engineers at Cisco. Because of
that, there is still some non-IP legacy in the user interface left. Moreover, Cisco always
wanted to keep the router configurations portable from IOS release to IOS release, and
this desire had by that time caused configuration statements to become scattered over sev-
eral different places in the user interface. In IOS, IS-IS support for CLNP came first, and
support for IP, and the necessary troubleshooting tools, came later. So a lot of IS-IS-
related commands are found under the show clns command and not at the show
isis branch which would be more obvious from today’s perspective.

Do not be confused about the CLNP/CLNS abbreviations. CLNP is the Network
Layer Protocol of the OSI suite. CLNS is the name of the entire suite of protocols. If one
wants to compare this with the IP protocols then CLNP would be equivalent to IP and
CLNS to TCP/IP which is also the name of the entire family of protocols and not limited
to only the IP and TCP protocol.

Cisco Systems IOS CLI 43

Figure 3.3 lists the most important IS-IS-related show commands in a tree-style rep-
resentation. Almost everything that is important is thankfully under the show isis
branch of the tree. The only major exceptions are the show clns neighbor command
that shows IS-IS adjacencies and show clns traffic which gives a good overview
as to what kind of IS-IS packets the router is sending and receiving. The use of the com-
mands will be documented and detailed in the subsequent chapters. But first, a look at the
different ways to alter the Cisco router’s configuration is in order.

3.2.3 Interface Name-space
In the configuration file you need to configure properties of the router. In an IOS envir-
onment, in many cases the routing-related parameters are properties of the physical
interface. The interfaces can be referenced using configuration mode or operational
mode. In this section, the naming conventions used for the interfaces inside a Cisco
router will be highlighted.

In IOS, there are physical and virtual interfaces. The list of physical interfaces covers
all modern network interface technologies, such as:

• Asynchronous Transfer Mode (ATM)
• Ethernet
• Fast Ethernet
• Gigabit Ethernet
• Packet over SONET/SDH (POS)
• Serial

There are also two types of virtual interfaces:

• Loopback
• Null

44 3. Introduction to the IOS and JUNOS Command Line Interface

ip

show

interfaces isisclns

interface

neighbors

traffic

database

hostname

route

topology

spf-log

mpls

FIGURE 3.3. The IOS CLI tree for IS-IS-related operational commands

Virtual interfaces, in contrast to physical interfaces, have the nice feature that they
never go down. Because of this property, the loopback interface especially is used for ter-
minating TCP-oriented routing and signalling protocols like BGP or MSDP. Because the
loopback interface never goes down (as long as the router is functional), the routing pro-
tocol packets are able to enter the router over any physical interface. After all, the func-
tion of the IGP (OSPF, IS-IS) is to route around those interfaces that have gone down.
This approach is much better than to terminate router 2 router sessions on interface
addresses.

The second virtual interface is the null interface. It also never goes down, but is used
for different purposes. There are two applications for the null interface:

• Trashing traffic
• Announcing aggregate routes

Generally, a router should forward packet traffic. However, there are times when a
router should route traffic to the “bit bucket”. A good example for this is traffic targeted
to the RFC1918 private address spaces, which should never appear in packet headers on
the global public Internet. These addresses are intended for local use, and packets with
this source or destination address must not be forwarded to the Internet. It is common
practice to install static routes for the private network addresses that point to a NULL
interface on each border router inside your Autonomous System (AS):

London# show running-configuration

[…]

ip route 10.0.0.0 255.0.0.0 Null0

ip route 172.16.0.0 255.240.0.0 Null0

ip route 192.168.0.0 255.255.0.0 Null0

In an IP environment, it is one of the duties of the routing protocols to report that a
certain sub-net is unreachable. The routing protocols propagate this change and all routers
along the path recompute their IP routing tables. From an Internet perspective, this behav-
iour is a real issue. In Chapter 10, there will be more details regarding why a re-computation
of routes can be an expensive (in technical, not commercial terms) process. Typically, the
Internet is not interested in an update that a /24 prefix from the other side of the planet is
unavailable, because it keeps so many routers busy updating their new forwarding state.
So the more common practice is to announce aggregate routes and to suppress all the spe-
cific routes that may be internal to a network, as shown in Figure 3.4. But in order to exist
at all, routes, aggregate or not, need to refer to a next-hop interface, which leads to the next
router to forward traffic to. The null interface serves this next-hop purpose for aggre-
gates: it is always up. And you get another feature for free – the null interface trashes all
traffic to destinations that do not have more specific routes. If sub-net (for example)
192.168.33/24 is not known internally (that is, no more specific routes are known), and
there is a port-scanning source from the Internet, then the null interface trashes all that
traffic. However, the main purpose of this feature is to suppress announcements of specific
routes as shown in Figure 3.4, which shows the flapping of 192.168.44/24 towards the
Internet.

Cisco Systems IOS CLI 45

Returning to physical interfaces, all of the high-end Cisco router models (7500 and
12000 Series) have several slots that can hold up to 16 line cards depending on the exact
router model. On the line card there may be one or more ports. The number of ports varies
with the line speed of the ports. The lower the line speed, the higher the port density.

The physical ports are referred to in a slot-number/port-number fashion. The follow-
ing are examples of complete interface names in the IOS name-space:

• GigabitEthernet3/0
• POS5/1
• ATM0/0
• Serial 1/0

The numbering of the slots and ports starts at 0. So the first slot position in the router
chassis is referred to as 0. In the digital world counting typically starts at zero.

The simplest way to access the properties and current state of an interface is to use the
show interface �interface-name� command:

London# show Interface POS3/0

POS3/0 is up, line protocol is up

Hardware is Packet over SONET

Description: “Interface to Amsterdam POS4/1”

Internet address is 172.16.25.1/30

MTU 4470 bytes, BW 155000 Kbit, DLY 100 usec, rely 255/255, load 1/255

Encapsulation HDLC, crc 16, loopback not set

Keepalive set (10sec)

Scramble enabled

Last input 00:00:00, output 00:00:07, output hang never

Last clearing of “show interface” counters never

Queueing strategy: fifo

Output queue 0/40, 0 drops; input queue 0/75, 0 drops

5 minute input rate 120457000 bits/sec, 28800 packets/sec

5 minute output rate 130429920 bits/sec, 26107 packets/sec

46 3. Introduction to the IOS and JUNOS Command Line Interface

Internet

Aggregate
192.168/16

portscan to 192.168.33/24

192.168.44/24 flaps

San Fran

Atlanta

Miami

San Jose

FIGURE 3.4. Aggregate routes are typically advertised by AS border routers

412058846 packets input, 4066852672395 bytes, 0 no buffer

Received 0 broadcasts, 0 runts, 0 giants, 0 throttles

0 parity

1 input errors, 1 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

627685025 packets output, 4025356699702 bytes, 0 underruns

0 output errors, 0 applique, 4 interface resets

0 output buffer failures, 0 output buffers swapped out

3 carrier transitions

The output contains information about the Layer-2 encapsulation, maximum trans-
mission unit (MTU), the current forwarding rate (expressed in packets and bytes), plus
counters for the aggregate number of bytes and packets that have been processed through
this interface.

For IS-IS-related purposes, you will often see the interface names, for example, in
commands like show clns neighbor:

London# show clns neighbor

System Id Interface SNPA State Holdtime Type Protocol

Frankfurt PO3/0 *PPP* Up 22 L2 IS-IS

Munich PO4/1 *PPP* Up 20 L2 IS-IS

3.2.4 Changing Router Configuration
In IOS you tell the router to take configuration input and to transfer it to the central con-
figuration file using the configure command. The standalone configure command
will prompt you to enter the way that you want to input the configuration file:

London#configure

Configuring from terminal, memory, or network [terminal]?

Enter configuration commands, one per line. End with CNTL/Z.

London(config)#

The memory option lets you source the configuration file from a memory storage
device inside the router, such as flash-disks or the NVRAM. But a more typical way is
from the network or from the terminal. From the network means that you have to specify
a trivial FTP (TFTP) server and a filename, and the router will then attempt to pull down
the file using the TFTP protocol.

London#conf network

Address or name of remote host [255.255.255.255]? 192.168.1.1

Source filename [London-confg]?

Configure using tftp://192.168.1.1/London-confg? [confirm]

The most common way is to put the router into configuration mode and then enter the
configuration statements manually from the terminal. This is the most likely way of
interacting with the router in day-to-day operation:

London#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

London(config)#

Cisco Systems IOS CLI 47

Now you are in configuration mode at the top (global) level of the configuration. Notice
the (config) phrase between the # sign and the hostname. This shows that you are now
in configuration mode at the top level. In IOS, the configuration file is structured into a
few hierarchy levels. You can configure the top level, but this is further divided into inter-
face configuration modes and router configuration mode. IOS provides only this two-
level configuration scheme. You either configure something at the top level (for example,
user and access information) or configure something under the interface or router hierar-
chy. You can jump between the levels by just typing in the new context. For example, if
you are in global configuration mode and you want to configure an IS-IS property for an
interface, then you can change the context by just typing in the interface name:

London(config)#

London(config)#interface pos5/3

London(config-if)

You are now in interface configuration mode, and this is verified by the prompt, which
has changed from (config) to (config-if).

You can jump back to the top-level hierarchy by simply typing exit. Note that you
are just exiting the context and not the configuration mode itself. If you want to exit the
configuration mode then you type exit at the top level:

London(config)#router isis

London(config-router)#exit

London(config)#interface pos5/3

London(config-if)#exit

London(config)#exit

Alternatively you can enter CTRL-Z in any context to immediately terminate the
configuration mode and get back into operation mode:

London(config)#interface pos5/3

London(config-if)# ^Z

London#

This flat hierarchy approach has the advantage that the location of certain parameters
is usually intuitive. However, the big disadvantage is that as the configuration file gets
bigger and bigger, and the router must perform many different functions (as, for example,
an edge router would), the configuration file may look unstructured, messy and confusing.

In any case, once in the correct context, just type in the configuration command, which
is typically structured in a keyword N * [optional-parameter] parameter format. For
instance, the following command would set the IS-IS hello timer on a given interface to
20 seconds. The function of this timer is not important for now, Chapter 5 details all of
the specifics and consequences of the IS-IS hello timer parameter.

London(config)#interface pos5/3

London(config-if)#isis hello-interval 20<ENTER>

Once you press the <ENTER> key the command is parsed and then executed immedi-
ately. So whatever you do, think beforehand and make sure that whatever you change
does not cut you off from router access (this happens more often than you might expect).

48 3. Introduction to the IOS and JUNOS Command Line Interface

There are configuration changes that require an entire set of commands to be entered on
a router. And if you enter them in the wrong order, then your in-band terminal (telnet)
session might be cut off. A good example of this is authentication of routing updates.
Typically, you have to specify a shared secret password that is stored locally on the router.
The second configuration step is a reference to the password, which makes the router send
authenticated information, but also makes the router expect authenticated routing informa-
tion with the shared secret. Imagine what happens if you mix up the order: first you tell the
router that everything has to be authenticated, and so is also expected to arrive authenti-
cated. What happens is that you will receive a few Hello messages and then your router
drops the adjacency because nothing has been actually authenticated because there is no
password yet! If you are relying on the network for configuration access, hope that there
is someone local you can reach to correct the problem through a direct console connection.

The authentication example is basically a two-step configuration transaction. The
term transaction was borrowed from SQL database environments, which faced the prob-
lem everyday that structured, multi-field data are not entered and stored all at once.
Because of transient conditions like two users modifying the same database records at
the same time, corrupted data was often the result. All modern databases offer transac-
tional integrity, which locks the database until the entire transaction is finished. In the
router world, this would mean that you can finish all the commands that belong together
for a desired functionality and the session would never be disrupted. Unfortunately, the
IOS user interface does not give you transactional integrity, which means that you can-
not configure a set of commands in any order without risk of disrupting your in-band tel-
net session. For a configuration transaction that involves more than one configuration
step, finding out the proper order of the commands is a daunting task and sometimes not
even possible! This is especially true if machines like provisioning systems or config-
uration robots are doing the configuration of the router more or less unsupervised, then
the provisioning software gets infinitely complex.

What can be done about this IOS immediate-change feature? The best current practice
is that the provisioning systems overwrite not the active configuration, but the Cisco
startup-configuration file and reboot the router at 3:00 am in the morning. Modifying the
startup-configuration file has the advantage that the configuration does not get effective
immediately. As the name implies, it only becomes active the next time the router is
rebooted. The following command loads a file named “London-startup-config” and over-
writes the startup configuration file of the router:

London#copy tftp://192.168.1.1/London-startup-config startup-config

What you have to do for this new configuration to become active is to reboot the router
(either automated or manually). This of course implies that you have designed enough
redundancy into the network so that you do not cause any major outages by the router
going out of service for the approximately 3 to 4 minutes it takes for the reboot, which is
a common time for large core routers like the GSR 12000 series:

London#reload

Proceed with reload? [confirm]

Connection closed by foreign host.

Cisco Systems IOS CLI 49

The router asks for confirmation and finally reboots with the new startup configuration
file. It should be noted here that sometimes it is not that easy to reboot the router right
away. Network redundancy is relatively easy to implement just by doubling the number
of routers in the core. However, when it comes down to the edge, especially for customer
access routers, what you need is a system redundancy, where you can do a full-chassis
reboot of a box without causing disruption. Unfortunately, routers are not as advanced in
terms of redundancy and resiliency as (for instance) public voice network switches, so
there is always some risk. So the missing transactional configuration feature for provi-
sioning IOS is still a major concern for large ISPs and carriers.

3.2.5 IS-IS-related Configuration Commands
As in the operational modes, IOS also has a structure for the configuration tree.
All IS-IS-related configuration is stored under the router isis and under the
interface <N> branch. Figure 3.5 gives a tree representation of commands and
options that can be configured in IOS platforms. This tree is based on IOS 12.0(23)ST,
a very common software release that many ISPs and carriers use.

3.2.6 Troubleshooting Tools
Cisco routers include a number of tools for use in troubleshooting router problems. The
two most helpful tools are the Cisco Discovery Protocol (CDP) and the debug command.

3.2.6.1 Cisco Discovery Protocol (CDP)

When you configure routers, first make sure that the packet-carrying circuits are up and
have a properly configured IP address on both sides of the link. You need an IP address to
properly test two-way connectivity using the ping command. However, there are several
cases, especially in troubleshooting, when you just want to verify that the data link (OSI RM
Layer-2) is up and is capable of transporting packets. Unfortunately, there is no standard
“ping-like” tool available that operates on OSI RM Layer-2 without an IP (Layer-3)
address. But Cisco has developed a clever tool called the Cisco Discovery Protocol (CDP)
to address that problem. CDP is encapsulated in a sub-network access protocol (SNAP)
frame. Encapsulating CDP in a SNAP frame has the advantage that it can be run on virtu-
ally all media, including Ethernet, Frame-Relay, ATM, PPP and Cisco-HDLC. It is enabled
by default on all Cisco routers. You can verify if you have Layer-2 connectivity, even on
interfaces without assigned IP addresses, using the show cdp neighbors command.

London#show cdp neighbors

Capability Codes: R – Router, T – Trans Bridge, B – Source Route Bridge

S – Switch, H – Host, I – IGMP, r – Repeater

Device ID Local Intrfce Holdtme Capability Platform Port ID

Munich POS1/0 171 R 12416 POS6/0

Pennsauken POS5/3 132 R 12416 POS12/0

50 3. Introduction to the IOS and JUNOS Command Line Interface

/

ro
ut

er
 is

is
in

te
rf

ac
e

is
is

au
th

en
tic

at
io

n

de
fa

ul
t-

in
fo

rm
at

io
n

di
st

an
ce

di
st

rib
ut

e-
lis

t

ex
te

rn
al

he
llo

ho
st

na
m

e

ig
no

re
-ls

p-
er

ro
rs

is
-t

yp
e

lo
g-

ad
ja

ce
nc

y-
ch

an
ge

s

ls
p-

ge
n-

in
te

rv
al

ls
p-

m
tu

ls
p-

re
fr

es
h-

in
te

rv
al

m
ax

-a
re

a-
ad

dr
es

se
s

m
ax

-ls
p-

lif
et

im
e

m
ax

im
um

-p
at

hs

m
et

ric
-s

ty
le

m
pl

s

ne
t

pa
ss

iv
e-

in
te

rf
ac

e

pr
c-

in
te

rv
al

re
di

st
rib

ut
e

se
t-

ov
er

lo
ad

-b
it

sp
f-

in
te

rv
al

su
m

m
ar

y-
ad

dr
es

s

tr
af

fic
-s

ha
re

up
da

te
-q

ue
ue

-d
ep

th

ke
y-

ch
ai

n

m
od

e

se
nd

-o
nl

y

m
d5

si
ng

le

a
dv

er
tis

e

ad
ja

ce
nc

y-
ch

ec
k

ad
dr

es
s-

fa
m

ily

ar
ea

-p
as

sw
or

d

de
fa

ul
t

do
m

ai
n-

pa
ss

w
or

d

ip is
pf

ls
p-

fu
ll

le
ve

l-1

le
ve

l-1
-2

le
ve

l-2
-o

nl
y

ns
f

ci
sc

o

ie
tf

in
te

rf
ac

e

in
te

rv
al

in
te

rf
ac

e

ip
v6

m
ul

ti-
to

po
lo

gy

ad
ja

ce
nc

y-
ch

ec
k

de
fa

ul
t-

in
fo

rm
at

io
n

de
fa

ul
t

di
st

an
ce

m
ax

im
um

-p
at

hs

pr
c-

in
te

rv
al

re
di

st
rib

ut
e

se
t-

ov
er

lo
ad

-b
it

sp
f-

in
te

rv
al

su
m

m
ar

y-
pr

ef
ix

ro
ut

e
pr

io
rit

y
hi

gh
ta

g

on
-s

ta
rt

up
w

ai
t-

fo
r-

bg
p

su
pp

re
ss

ex
te

rn
al

in
te

rle
ve

l

m
in

ac
ro

ss
-in

te
rf

ac
es

le
ve

l-1

le
ve

l-2

w
id

e

tr
an

si
tio

n

na
rr

ow

pa
ss

iv
e-

on
ly

ip
ro

ut
er

is
is

ip
v6

ro
ut

er
is

is

ad
ja

ce
nc

y-
fil

te
r

ad
ve

rt
is

e

au
th

en
tic

at
io

n

ci
rc

ui
t-

ty
pe

cs
np

-in
te

rv
al

h
el

lo

he
llo

-in
te

rv
al

he
llo

-m
ul

tip
lie

r

ls
p-

in
te

rv
al

m
es

h-
gr

ou
p

m
et

ric

ne
tw

or
k

pa
ss

w
or

d

pr
io

rit
y

re
tr

an
sm

it-
in

te
rv

al
re

tr
an

sm
it-

th
ro

ttl
e-

in
te

rv
al

ta
g

th
re

e-
w

ay
-h

an
ds

ha
ke

ke
y-

ch
ai

n

m
od

e

se
nd

-o
nl

y

m
d5

si
ng

le

ci
sc

o

ie
tf

po
in

t-
to

-p
oi

nt

bl
oc

ke
d

pa
dd

in
g

le
ve

l-1

le
ve

l-1
-2

le
ve

l-2
-o

nl
y

le
ve

l-1

le
ve

l-2

le
ve

l-1

le
ve

l-2

FI
G

U
R

E
3.

5.
IO

S
tr

ee
 f

or
 I

S-
IS

-r
el

at
ed

 c
on

fig
ur

at
io

n
co

m
m

an
ds

51

The output shows you the hostname of the neighbouring device, the local interface to the
remote device, the “platform name” of the router, and the port that the remote device is
using for your connection. The port is particularly interesting if you are doing low-level
troubleshooting with field personnel at the remote end. You can direct them to the port
configuration or even submit a configuration snippet that the remote personnel should
load on the router. Often field personnel are not used to configuring routers, and if asked to
configure an IP address or a certain line card setting, they sometimes decline. This is not
intended as an insult to field teams, who can’t be experts in everything, but it is a fact of life.
However, knowing the interface name, you can say to the field team “This is the config-
uration. Just plug in your laptop, login, do a configure terminal and then copy and
paste the configuration in.” This is a simple procedure that every field technician feels
comfortable with. CDP also conveys additional parameters like software versions and IP
addresses. The show cdp neighbor detail command reveals those details:

London#show cdp neighbor detail

Device ID: Munich

Entry address(es):

IP address: 192.168.48.151

Platform: cisco 12416, Capabilities: Router

Interface: POS1/0, Port ID (outgoing port): POS6/0

Holdtime : 161sec

Version :

Cisco Internetwork Operating System Software

IOS (tm) GS Software (GSR-P-M), Version 12.0(17)ST6

Copyright (c) 1986-2002 by cisco Systems, Inc.

Compiled Tue 07-May-02 00:49 by dchih

In the show cdp neighbor command there is also a column giving some infor-
mation about the router’s capabilities. Cisco of course has a whole variety of products
available that process packets at many layers of the OSI Reference Model. The show
cdp neighbor detail command shows you in a capabilities line at which layers
the device operates. For Internet routers, which are according to the OSI Reference
Model Layer-3 devices, the word “Router” should be listed here.

3.2.6.2 Debugging

Cisco IOS was the first commercial router operating system that had very powerful
debugging messages available. The debugging sub-system of the router works very
simply. You enter a structured command like debug <keyword>. This sets an inter-
nal flag in the software to log every event that matches that keyword. The output is then
written to a local logging buffer. The administrator can read out the logging buffer in
real-time on his vty (virtual terminal, just another term for telnet) session or on the con-
sole. Additionally, all logs can be stored on an external syslog server and logged by the
router to this particular server with the syslog protocol. The debugging flags are struc-
tured in a tree-like fashion, just like the operational and configuration commands. The
structure of debug-tree is shown in Figure 3.6.

52 3. Introduction to the IOS and JUNOS Command Line Interface

For example, if you do not know if your router is sending and receiving Hello packets,
you could set a debug flag to record all output in a logging buffer. Make sure that you are
in privileged (enable) mode before setting any debug flag, otherwise the system would
refuse to do so. This is a kind of safety check to avoid abuse and service degradation by
excessive logging, which places an additional load on the router. The assumption is if
you are given the enable password then you should know what you are doing. The set-
ting of certain debug flags can even make the router freeze because it is so busy writing
log messages to the logging buffer. Here is an IS-IS example of debug use:

London#debug isis adj-packets

IS-IS Adjacency related packets debugging is on

London#

Initially, nothing seems to be happening because you do not see any output on the
screen. However, the system is logging sent or received Hello packets, which are the
packets that bring up IS-IS adjacencies. You can examine the contents of the logging
buffer by issuing a show logging command:

London#show logging

Syslog logging: enabled (2 messages dropped, 0 messages rate-limited,

0 flushes, 0 overruns)

Console logging: level debugging, 1894 messages logged

Monitor logging: level debugging, 143 messages logged

Buffer logging: level debugging, 1894 messages logged

Logging Exception size (4096 bytes)

Trap logging: level informational, 1810 message lines logged

Cisco Systems IOS CLI 53

debug

isisip

access-list

bgp

interface

tcp

adj-packets

checksum-errors

local-updates

mpls

protocol-errors

snp-packets

spf-statistics

spf-triggers

update-packets

traffic-eng
advertisements

events

terse

authentication

nsf

information

cisco

detail

ietf

spf-events

FIGURE 3.6. IOS CLI for IS-IS-related debug commands

Log Buffer (16384 bytes):

*Jul 12 21:38:27.216 UTC: ISIS-Adj: Sending serial IIH on Serial3/0, length 4469

*Jul 12 21:38:29.056 UTC: ISIS-Adj: Rec serial IIH from *HDLC* (Serial3/0),

cir type L2, cir id 01, length 58

*Jul 12 21:38:29.056 UTC: ISIS-Adj: rcvd state UP, old state UP, new state UP

*Jul 12 21:38:29.056 UTC: ISIS-Adj: Action � ACCEPT

The bottom of the output displays the most recent events and which parts of the soft-
ware (here it is the ISIS-Adj sub-system) logged the message. If you do not want to
always monitor the logging buffer, another technique is to open up a second telnet
session to the router. You use the first for troubleshooting the router and changing the
configuration, and the second to read the output of the debugger. Additionally, because
repeatedly typing in the command show logging is a bit tedious, you can make the
router log all the messages to the second telnet session. You can make the router do this
by issuing the command terminal monitor:

London#terminal monitor

London#

*Jul 12 21:51:20.072 UTC: ISIS-Adj: Sending serial IIH on Serial3/0, length 4469

*Jul 12 21:51:21.228 UTC: ISIS-Adj: Rec serial IIH from *HDLC* (Serial3/0),

cir type L2, cir id 01, length 58

*Jul 12 21:51:21.228 UTC: ISIS-Adj: rcvd state UP, old state UP, new state UP

*Jul 12 21:51:21.228 UTC: ISIS-Adj: Action � ACCEPT

If you now issue a show logging command, you see your most recent logs as well
as an indication that the system is writing the logging buffer to a virtual terminal (telnet
session):

London#show logging

Syslog logging: enabled (2 messages dropped, 0 messages rate-limited,

0 flushes, 0 overruns)

Console logging: level debugging, 1856 messages logged

Monitor logging: level debugging, 109 messages logged Logging to: vty2(91)

Buffer logging: level debugging, 1856 messages logged

Logging Exception size (4096 bytes)

Trap logging: level informational, 1808 message lines logged

Additionally, it may sometimes be interesting to see what kind of debug flags the
router has set. The show debugging command displays you all debug flags currently
catching events, which are logged to the logging buffer:

London#show debugging

CLNS:

IS-IS Adjacency related packets debugging is on

London#

54 3. Introduction to the IOS and JUNOS Command Line Interface

Once you have finished your troubleshooting session, make sure that you turn off
debugging! Excessive debugging may degrade performance of the control plane and
hence seriously harm the system. The quickest command to turn off all debug flags is the
undebug all command.

London#undebug all

All possible debugging has been turned off

London#

3.2.7 Routing Policy and Filtering of Routes
A router running all different kinds of routing protocols is still not enough for today’s
marketplace. Modern routing OSs have a strong support for controlling what kinds of
routes are accepted and advertised in turn to neighbours. What sounds so easy to do at
first is actually one of the most complex parts of a vendor’s routing code. Handling rout-
ing policy often requires a dedicated language to specify every detail of what type of
routing policy you need in your routing domain.

Looking at the IOS command line style and hierarchy, you can see that there is no sin-
gle place where routing policies are configured. That’s no big surprise – with IOS, because
of its multiprotocol nature, each routing protocol implements its own routing policy pro-
cessing as part of the protocol’s specific routing code. So one policy module is there for
RIP, one for IS-IS, and another one for BGP. This design choice is actually very conven-
ient as long as your routing policy stays simple. However, for more complex policies,
this approach quickly becomes difficult to maintain, given the different styles sometimes
used in the protocol’s redistribution policy. With the rise of BGP as an interdomain pro-
tocol and the protocol for policy processing, it was clear that a new, common way of con-
figuring routing policies had to be implemented in IOS. That common routing paradigm
in IOS is called route-maps. We will discuss only IS-IS-specific routing policies and
route-maps, and only briefly. But this is fine. Due to the way IS-IS is used by service
provider’s routing policies, which is as a pure topology discovery protocol, there are not
many IP routes in the IS-IS routing protocol to worry about distributing, because BGP
does that job much better. We do not need policy processing in IS-IS as much as we
would need it in a book about BGP. Typically, in an ISP’s IS-IS network, there is only
one place where policy processing takes place: when passing down routes from IS-IS
Level 2 to Level 1. But let’s keep that aside for a while – there is more about IS-IS hier-
archical routing levels in Chapters 4 and 12.

A good example of an IS-IS protocol-specific policy is the redistribute isis ip
level-2 into level-1 distribute-list 101 metric-style wide
command. This seems like a very complex statement, but it is really quite simple. It just
tells the router to send (redistribute) any IS-IS Level-2 IP routing information to the
Level-1 routers (isis ip level-2 into level-1) and use a larger metric field
than originally specified (metric-style wide). The details of the redistribute
command are covered in Chapter 12. For now, the important part of the command is the
distribute-list 101 statement. The distribute-list refers to an extended-access-list,
which is a list of IP prefixes. In IOS, many sometimes complex policy operations can be

Cisco Systems IOS CLI 55

done with a single command plus an extended-access-list. In the following example, the
extended-access-list referred to by the distribute-list 101 command is shown:

London# show running-config

[…]

access-list 101 permit ip 192.168.1.0 0.0.0.255 any

access-list 101 permit ip 192.168.3.0 0.0.0.255 any

[…]

Confusingly, IOS can also use route-maps, which are the more flexible IOS routing
policy language. The route-map command introduces a multi-line sequence of match/
action pairs ordered by a sequence number. The most important clauses are the match
and set statements. These allow you to match on arbitrary prefix properties, such as
the interface it was learned (received) from, associated BGP community lists, or even
reference other access lists. The permit anddeny keyword control the action if and when
a prefix is matched. The permit keyword means that the prefix generally is accepted by
the router and can only be modified by means of the set command. The deny keyword
means that a prefix is dropped upon match. An example route-map looks like this:

London# show running-config

[…]

route-map hannes permit 10

match community 2

set metric 20

route-map hannes deny 20

match community 13

[…]

3.2.8 Further Documentation
There is a huge set of IOS-related material around. Probably the best starting site is
Cisco’s online manuals, which can be accessed at http://www.cisco.com/univercd/
cc/td/doc/product/software/index.htm.

3.3 Juniper Networks JUNOS CLI

The IOS-style CLI is the standard in the industry and many vendors copied it for their own
products. When Juniper Networks released the first version of its routing software named
JUNOS Internet software, many industry observers believed that it would be a clone of
the IOS CLI as well. However, the engineers at Juniper Networks who were in charge of
the user interface did not want to create just another clone of the IOS CLI. Being mostly
ex-Cisco employees, they had developed a good understanding of the limitations (espe-
cially the provisioning aspect) of the IOS software. For them it was crystal clear that they
wanted to create something new. So they replaced parts of the user interface that did not
work well and kept the properties that made IOS so successful.

56 3. Introduction to the IOS and JUNOS Command Line Interface

3.3.1 Logging into the System and Authentication
When you first log into a router running JUNOS, the first difference you see from IOS is
that the system prompts you in a UNIX fashion for a username and a password:

(20:45 hannes@unixbox:�) telnet frankfurt

Trying 192.168.77.12...

Connected to frankfurt.

Escape character is ‘^]’.

Frankfurt (ttyp0)

login: hannes

Password: *********

--- JUNOS 5.3R2.4 built 2002-06-03 18:59:57 UTC

hannes@Frankfurt>

This is because the underlying base OS for JUNOS is a heavily modified FreeBSD.
FreeBSD is a free UNIX clone just like the more popular Linux UNIX. Your can get fur-
ther information about FreeBSD at http://www.freebsd.org/.

But make no mistake: JUNOS and the original FreeBSD are different OSs, and large
parts of the networking-related kernel routines have been changed. FreeBSD is targeted
for a host operating system environment, much like a networked PC. Typically, host
operating systems have:

• A single routing table
• 1–3 network interfaces
• Tens of routes to handle

An operating system targeted for both edge and core routing functions has to handle
many more of each. Specifically, these needs are:

• Hundreds of routing tables
• Thousands of interfaces
• 100,000s of routes

However, there are still lots of things that remained in JUNOS, such as all the net-
working tools (telnet, SSH, ping and traceroute utilities) or, as in the previous example,
the login procedure.

Once you are logged in with your username, you have a set of privileges that are asso-
ciated with your username, similar to IOS. You can display those privileges by issuing a
show cli authorization command.

hannes@Frankfurt> show cli authorization

Current user: ‘hannes’ class ‘super-user’

Permissions:

admin -- Can view user accounts

admin-control -- Can modify user accounts

clear -- Can clear learned network information

Juniper Networks JUNOS CLI 57

configure -- Can enter configuration mode

control -- Can modify any configuration

edit -- Can edit full files

field -- Special for field (debug) support

floppy -- Can read and write from the floppy

interface -- Can view interface configuration

interface-control -- Can modify interface configuration

[…]

security –- Can view security configuration

security-control –- Can modify security configuration

This is one of the improvements that JUNOS offers. Instead of having a privilege level
of 1–15 assigned to the user-profile with each IOS command mapped to a minimum
privilege-level, each user profile in JUNOS is now associated with a set of flags that
control which parts of the system the user can access or even modify. The system is so
flexible that you can even break down which user can control what configuration lines
of the router’s configuration file. Using this, you could implement authorization schemes,
such as Operator A can only modify BGP, and Operator B can only configure IS-IS.
However, explaining the full extent of the authorization sub-system is beyond the scope
of this book. The only time you need to check that the network administrator has
assigned the necessary privileges is when a certain IS-IS-related keyword does not
show up where it should. In JUNOS there is the concept of user interface views. If you
do not have sufficient privileges then you do not even see the commands and keyword
in the user interface – they simply do not exist for that user – and neither auto-
complete nor entering a question mark reveals those missing commands because they
are not part of this user’s access profile. Consider the following example. User hannes
has been given superuser privileges. As a superuser, he can access the request
system reboot command, which will shut down all server processes and then
reboot the router. If the user frank logs in and is associated with the read-only profile and
wants to issue the same request, the command does not exist:

frank@Frankfurt> request ?

Possible completions:

message Send a text message to other users

For the user frank only the request message command exists, which would send a mes-
sage to all the connected users terminal session. Auto complete (pressing the TAB key)
does not produce any other completions beside the message keyword. Even if you try
to manually enter the request system reboot command the system acts as if it
does not know the command.

frank@Frankfurt> request system reboot

^

syntax error, expecting <command>.

frank@Frankfurt>

Please keep this concept in mind when exploring the IS-IS commands shown in the
rest of this book on a functioning router. If a certain command does not show up as

58 3. Introduction to the IOS and JUNOS Command Line Interface

expected, it could be that the network administrator has not granted you the access level
required to reveal one of the commands you might be looking for.

3.3.2 IS-IS-related Show Commands
Once you are logged into the JUNOS system, you are first placed into operational
mode, as in IOS. You know that you are in operational mode by looking at the prompt.
If the prompt is terminated using a “�” character then you are in operational mode,
just as in IOS:

hannes@Frankfurt>

Figure 3.7 shows the commands that are available in operational mode.
Unlike the Cisco implementation of the IS-IS Protocol, the JUNOS version was written

only to transport IP and not CLNP reachability information. Therefore all operational
commands are accommodated under the show isis branch of the CLI tree. Almost

Juniper Networks JUNOS CLI 59

route

show

interfacesisis

adjacency
database

interface

route

spf

statistics

brief
detail
extensive
instance

brief
detail
extensive
instance
level

brief
detail
extensive
instance

instance

topology unicast
multicast

brief

log

results

instance

chassis cli

topology

topology

topology

ipv6-unicast

unicast

multicast
ipv6-unicast

unicast
multicast

ipv6-unicast

unicast

multicast

ipv6-unicast

logical-router

logical-router

logical-router

logical-router

logical-router

inet
inet6

instance

level
logical-router

instance

level
logical-router

instance

level
logical-router

logical-router

hostname

FIGURE 3.7. The JUNOS CLI tree for IS-IS-related operational commands

every command in the hierarchy has a command-modifier as the last argument. Command
modifiers control the level of output that the command provides to the user. For example,
if you issue a show isis interface brief command, then the output shows you
all interfaces that have IS-IS configured. The keyword brief at the end of the command
tells the router that you only wish to see-minimal information available for the interface:

hannes@Frankfurt> show isis interface brief

IS-IS interface database:

Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric

so-2/1/0.0 2 0x2 Disabled Point to Point 10/3500

so-3/0/0.0 2 0x1 Disabled Point to Point 10/240

[…]

The extensive command modifier tells the router that you wish to see all information
that the router maintains for a given interface including timers and much more:

hannes@Frankfurt> show isis interface extensive

IS-IS interface database:

so-2/1/0.0

Index: 16, State: 0x6, Circuit id: 0x1, Circuit type: 2

LSP interval: 100ms, CSNP interval: disabled

Level 2

Adjacencies: 1, Priority: 64, Metric: 3500

Hello Interval: 9 s, Hold Time: 27 s

so-3/0/0.0

Index: 14, State: 0x6, Circuit id: 0x1, Circuit type: 2

LSP interval: 100ms, CSNP interval: disabled

Level 2

Adjacencies: 1, Priority: 64, Metric: 240

Hello Interval: 9s, Hold Time: 27s

[…]

JUNOS interface names, like so-3/0/0.0, are also different than in IOS. In JUNOS
there is an underlying interface naming convention that has to be learned to correctly
configure the router and interpret the CLI output.

3.3.3 Interface Name-space
JUNOS has four types of interfaces:

• Logical interfaces
• Permanent interfaces
• Virtual interfaces
• Physical interfaces

The only logical interfaces inside JUNOS are instances of the loopback (lo0) inter-
face, used for terminating control traffic like BGP, MSDP, management protocols like the
Simple Network Management Protocol (SNMP), Telnet and Secure Shell (SSH). There
is no NULL interface as in IOS that can be used to trash traffic. Instead, JUNOS has a
special next-hop type for trashing traffic. JUNOS also has a special aggregate facility for

60 3. Introduction to the IOS and JUNOS Command Line Interface

the announcement of aggregate routes. However, a detailed explanation of these is
beyond the scope of this book.

The two permanent interfaces are the fxp0 and the fxp1 interfaces. Juniper Networks
Routing Engines (REs) are off-the-shelf, industry-standard PCs that take care of the care
and feeding of the Packet Forwarding Engine (PFE). The REs have two Fast-Ethernet
Interfaces, one of them exposed to the outside world and one of them connected to the
packet-forwarding complex. Those Fast Ethernet Interfaces are based on Intel chipsets
and, in good FreeBSD tradition, those interfaces are referred to using the name fxp.

You can configure the fxp0 interface (the one exposed to the outside world) only.
Don’t attempt to configure the fxp1 interfaces: your configuration change might very well
interfere with internal RE to PFE communication. The typical application of the fxp0
interface is to use it for out-of-band (OOB) management access. This interface can be
used to send out all kinds of routing and signalling information, however, it cannot be used
to carry transit traffic. Figure 3.8 shows why JUNOS does not allow this. Traffic entering
the router would have to be squeezed through the fxp1 interface (the internal Fast
Ethernet Segment), which is dedicated to carrying control traffic only. Whenever the PFE
realizes that a route should use the fxp1 port as a next-hop for transit traffic, then the fab-
ric generates an ICMP unreachable packet back to the sender. Because of this design
choice, you get a modest amount of security for your management segment, which now
cannot be accessed from the Internet.

JUNOS makes a clear distinction between physical interfaces and logical interfaces.
On the physical interface level you can control properties of OSI Reference Model Layer
1 and 2. Examples of such properties are:

• Link MTU size
• Encapsulation method
• Frame checksum computation
• Layer 1 framing format
• Full/Half duplex operation

Juniper Networks JUNOS CLI 61

Internet

17
2.

16
.1

3/
24RE

fxp0fxp1
PFE

172.16.13/24 via FXP1 -> REJECT

FIGURE 3.8. Sub-nets connected to the fxp0 management port are not reachable from the Internet

Logical interfaces typically have properties from OSI Reference Model Layer 3.
Examples of such properties are:

• IP addresses/Prefix lengths
• ISO NETs
• Filters
• ICMP behaviour (redirect suppression)
• And many more…

First, consider the interface naming for the physical interfaces. (The logical interfaces
are a superset of the physical interfaces, so we start with the simple things first). JUNOS
has a structure similar to IOS as far as the interface naming is concerned: the first two
letters always describe what media type the interface is. Table 3.1 shows the two-letter
abbreviations and the corresponding fully specified interface media types. What follows
(after a dash) are three numbers separated by slashes. The three numbers represent the FPC
Slot, the PIC slot and the port number. If you are not familiar with Juniper Networks
hardware don’t worry: the FPC card is a carrier card like the VIP card for the Cisco 7500
Series. The FPC mostly contains buffering memory as well as classification and queuing
hardware. The PIC card is then mounted on top of the FPC card. This is how the FPC got
its name of Flexible PIC Concentrator.

PIC is an abbreviation for Physical Interface Connector. It is the place where the fibre
and copper lines are connected to the router. The reason the physical lines do not directly
connect to the FPC is flexibility. You can populate your FPC with PICs of arbitrary media-
types like Ethernet, Packet over SONET/SDH and ATM in a mix-and-match fashion.

Figure 3.9 shows how a physical port is referenced in JUNOS. The first part is the
interface media type: “at” stands for an ATM interface. It is inserted into FPC chassis slot
Number 3 (counting starts at 0, so the first slot is slot #0 and slot #3 is the fourth slot) on
the second PIC slot (#1) and finally on the third port (#2).

The good news about the JUNOS interface-naming scheme is that it is consistent
throughout all the platforms (M- and T-Series). On every platform from the little M5 up
to the T640, the interface naming stays consistent: FPC, then PIC, and finally the port
number. Below is an example of how the status of an interface is displayed using the
show interface �interface-name� command:

hannes@Pennsauken> show interfaces so-0/0/0

Physical interface: so-0/0/0, Enabled, Physical link is Up

62 3. Introduction to the IOS and JUNOS Command Line Interface

TABLE 3.1. JUNOS uses two-letter names for its different interface media types.
JUNOS interface abbreviation Interface media/type

at ATM over SONET/SDH ports
e1 E1 ports
e3 E3 ports
fe Fast Ethernet ports
so SONET/SDH ports
t1 T1 ports
t3 DS-3 ports
ge Gigabit Ethernet ports
t3 Aggregated Ethernet ports

Interface index: 11, SNMP ifIndex: 14

Description: to-New-York-so-7/0/1

Link-level type: Cisco-HDLC, MTU: 4474, Clocking: Internal, SDH mode,

Speed: OC3, FCS: 16,

Payload scrambler: Disabled

Device flags : Present Running

Interface flags: Point-To-Point SNMP-Traps

Link flags : Keepalives

Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3

Keepalive: Input: 507921 (00:00:06 ago), Output: 510818 (00:00:05 ago)

Last flapped : 2002-08-07 13:58:35 CEST (2d 08:58 ago)

Input rate : 42783824 bps (21297 pps)

Output rate : 58047120 bps (15777 pps)

SONET alarms : None

SONET defects : None

3.3.4 IS-IS-related Configuration Commands
Like IOS, JUNOS has a configuration mode. You need to get into configuration mode first
(if you have the related privileges to do so) to modify the router’s central configuration file.

You can get into configuration mode by issuing the configure command:

hannes@Frankfurt>] configure

Entering configuration mode

[edit]

hannes@Frankfurt#

You know you are in configuration mode in two ways – first the prompt terminates
with the hash (#) sign, and second the line before the prompt displays the configuration
level (or context) you are in. In JUNOS there is a multi-level hierarchy of configuration
commands. This is unlike Cisco IOS where the configuration file is only structured into
two levels. Figure 3.10 shows a full overview of the IS-IS-related configuration options
available in JUNOS configuration mode.

All options are under the protocols isis {} branch. When you want to configure
the protocols isis {} context you have to change to that context first using
the edit command.

Juniper Networks JUNOS CLI 63

Physical interfaces have standard names

– Type

– FPC slot

– PIC slot

– Port number

at 3 2 1

FIGURE 3.9. JUNOS interface names are notated in interface-type/FPC slot/PIC slot/port number
order

bg
p

pr
ot

oc
ol

s

po
lic

y-
op

tio
ns

is
is

di
sa

bl
e

ex
po

rt

gr
ac

ef
ul

-r
es

ta
rt

le
ve

l

m
ul

tic
as

t-
to

po
lo

gy

no
-ip

v6
-r

ou
tin

g

ov
er

lo
ad

di
sa

bl
e

he
lp

er
-d

is
ab

le

re
st

ar
t-

du
ra

tio
n

tim
eo

ut

<
ls

p-
na

m
e>

in
te

rf
ac

es
ch

as
si

s

ig
no

re
-a

tta
ch

ed
-b

it

in
te

rf
ac

e

la
be

l-s
w

itc
he

d-
pa

th

no
-a

ut
he

nt
ic

at
io

n-
ch

ec
k

ls
p-

lif
et

im
e

no
-ip

v4
-r

ou
tin

g

re
fe

re
nc

e-
ba

nd
w

id
th

rib
-g

ro
up

sp
f-

de
la

y

tr
af

fic
-e

ng
in

ee
rin

g

<
in

te
rf

ac
e>

di
sa

bl
e

cs
np

-in
te

rv
al

<
in

te
rv

al
>

di
sa

bl
e

ch
ec

ks
um

le
ve

l

po
in

t-
to

-p
oi

nt

<
le

ve
l>

di
sa

bl
e

he
llo

-a
ut

he
nt

ic
at

io
n-

ke
y

he
llo

-a
ut

he
nt

ic
at

io
n-

ty
pe

he
llo

-in
te

rv
al

ho
ld

-t
im

e

pa
ss

iv
e

pr
io

rit
y

te
-m

et
ric

le
ve

l
<

le
ve

l>

di
sa

bl
e

sh
or

tc
ut

s

di
sa

bl
e

m
et

ric

<
le

ve
l>

di
sa

bl
e

au
th

en
tic

at
io

n-
ke

y
au

th
en

tic
at

io
n-

ty
pe

ex
te

rn
al

-p
re

fe
re

nc
e

no
-c

sn
p-

au
th

en
tic

at
io

n
no

-p
sn

p-
au

th
en

tic
at

io
n

no
-h

el
lo

-a
ut

he
nt

ic
at

io
n

pr
ef

er
en

ce
w

id
e-

m
et

ric
s-

on
ly

FI
G

U
R

E
3.

10
.T

he
 J

U
N

O
S

C
L

I
tr

ee
 f

or
 I

S-
IS

-r
el

at
ed

 c
on

fig
ur

at
io

n
co

m
m

an
ds

64

[edit]

hannes@Frankfurt# edit protocols isis

[edit protocols isis]

hannes@Frankfurt#

The context displayed between the brackets changes to the protocols isis
context. Imagine the configuration hierarchy as a file system, and the different contexts
are the directories. The edit command behaves like the UNIX cd command, which is
used for changing directories.

If you want to go from there and edit the IS-IS Level-2 configuration then you simply
enter the following command:

[edit protocols isis]

hannes@Frankfurt# edit level 2

[edit protocols isis level 2]

hannes@Frankfurt#

You can go back to the top level using the top command. The top command
compares best to the UNIX cd / command which puts you at the root of a UNIX file
system tree:

[edit protocols isis level 2]

hannes@Frankfurt# top

[edit]

hannes@Frankfurt#

If you want to exit the configuration mode, type at any level exit configuration-
mode, which puts you back in operation mode. The prompt then changes back to “�”.

[edit protocols isis level 2]

hannes@Frankfurt# exit configuration-mode

Exiting configuration mode

hannes@Frankfurt>

Using the edit and top command, you can move around in the configuration hier-
archy without altering any configuration elements.

3.3.5 Changing the Configuration
The file system analogy explains the JUNOS configuration concept most clearly. The cd
command is used to move around in the file system hierarchy but it does not change any
of the files. In a UNIX file system, you create new files (for example) by using text edi-
tors like Emacs or Vi. But you do not need to learn the often cryptic Emacs and Vi key-
board sequences to configure a JUNOS router. This is just an analogy. The text editor
equivalents in JUNOS are the set and delete commands. With the set command
you do actually set a flag in the configuration hierarchy.

Reconsider Figure 3.10. If you want to configure an interface to perform checksum-
ming, in the protocols isis {} context you would type:

[edit protocols isis]

hannes@Frankfurt# set interface so-3/0/0.0 checksum

Juniper Networks JUNOS CLI 65

[edit protocols isis]

hannes@Frankfurt#

Going back to the file-system analogy, this command simply sets the checksum flag in
the protocols isis interface so-3/0/0.0 folder.

One of the most interesting concepts in JUNOS is that you can display the configuration
any time you are in configuration mode by using the show command. In IOS, this is not
possible, and you would have to exit configuration mode and type a show running-
configuration command to verify that your command has been properly accepted
and is part of the configuration file. Most network administrators compensate by having
two IOS terminal sessions open for each Cisco router. On the first you put yourself into
configuration mode, and on the second you stay in operational mode and issue the show
running-configuration commands to check your configuration changes.

But in JUNOS, the show command displays the configuration file at this context level
and all levels below:

[edit protocols isis]

hannes@Frankfurt# show

interface so-3/0/0.0 {

checksum;

}

[edit protocols isis]

Don’t get scared by the curly braces. They are just another representation of the folder-
like structure, and are very familiar to C-language programmers. They just help to visu-
alize the configuration hierarchy, as their use in programs helps to visualize coding
levels. For instance, if we change the editing context back to the top-level, then we would
see the folder structure (plus more curly braces) from the top-level perspective:

[edit protocols isis]

hannes@Frankfurt# top

[edit]

hannes@Frankfurt# show

[…]

protocols {

isis {

interface so-3/0/0.0 {

checksum;

}

}

}

[…]

[edit]

hannes@Frankfurt#

66 3. Introduction to the IOS and JUNOS Command Line Interface

The counterpart of set is the delete command. As the name implies, it is used to
delete a certain flag from the configuration. For instance, to remove the checksumming
flag from interface so-3/0/0.0, then the command would be delete interface
so-3/0/0.0 checksum:

[edit protocols isis]

hannes@Frankfurt# delete interface so-3/0/0.0 checksum

[edit protocols isis]

hannes@Frankfurt# show

[edit protocols isis]

hannes@Frankfurt#

A very convenient use of the delete command is that you can specify both individ-
ual elements and even entire branches (folders) for deletion. For instance, if you have a
rich set of parameters configured under the protocols isis level 2 {} branch,
and you do not want to delete the elements one by one, you can delete the entire level 2
configuration by issuing a delete level 2 command.

[edit protocols isis]

hannes@Frankfurt# show

[…]

level 2 {

authentication-key “9f5z69CuIEy36cl”; # SECRET-DATA

authentication-type md5; # SECRET-DATA

no-hello-authentication;

wide-metrics-only;

preference 100;

}

[…]

[edit protocols isis]

hannes@Frankfurt# delete level 2

[edit protocols isis]

hannes@Frankfurt# show

[edit protocols isis]

hannes@Frankfurt#

As with file systems in the UNIX world, you can access a configuration from any
context – all you have to do is specifying the full path in the configuration hierarchy. There-
fore, you can turn on checksumming from the protocols isis {} hierarchy level:

[edit protocols isis]

hannes@Frankfurt# set interface so-3/0/0.0 checksum

[edit protocols isis]

hannes@Frankfurt#

But this can also be done from the top-level hierarchy (note the longer path in the
command):

Juniper Networks JUNOS CLI 67

[edit]

hannes@Frankfurt# set protocols isis interface so-3/0/0.0 checksum

[edit]

hannes@Frankfurt#

Unlike IOS, when you enter the set and delete commands your JUNOS config-
uration does not become active immediately. You can modify the configuration file as
much and as often as you like, even deleting it fully and starting from scratch (not often
a good idea, but possible). Even complete deletion will not do any harm or disrupt your
connectivity to the router – yet.

3.3.6 Activating a Configuration
JUNOS changes its configuration on a transactional model. You really have two config-
urations in the system:

• The active configuration
• A candidate configuration

The active configuration is the one that the router currently executes. The candidate
configuration is originally a copy of the active configuration created when you enter con-
figuration mode, and it is the candidate configuration which is modified. Think of it
like a document that you open and modify – nothing changes until you do a SAVE on
your wordprocessor. The analogy of the wordprocessor’s SAVE in JUNOS is the
commit command. The commit command does a syntax and sanity check of the can-
didate configuration and, if satisfied, copies the candidate configuration to the active
configuration.

[edit protocols isis]

hannes@Frankfurt# commit

commit complete

[edit protocols isis]

hannes@Frankfurt#

Do not forget to commit your changes when you start working with JUNOS. You
might wonder why the changes did not take effect. If you are used to an IOS environ-
ment, forgetting to do a commit is a frequent mistake.

In wordprocessors there is the UNDO function if you made a change and you want get
back to a previous version of your document. JUNOS has a similar mechanism, which is
executed using the rollback command. You can go back to up to nine versions of the
configuration history by specifying a number after the rollback command.

[edit]

hannes@Frankfurt# rollback 3

[edit]

hannes@Frankfurt#

Note that the rollback command loads a historical configuration as just another can-
didate configuration. It is only re-activated using the commit command again.

68 3. Introduction to the IOS and JUNOS Command Line Interface

Figure 3.11 presents an overview of how the commit and rollback commands syn-
chronize between the active, candidate and historical configuration files.

When you first go into the configuration mode, it means that up to now there has been
no candidate configuration, and the candidate configuration is copied unchanged from
the active configuration. If a change to the candidate configuration is made and commit-
ted, then the candidate configuration replaces the active configuration. The old active
configuration is moved into the “archives”. Historical configurations in the archive are
numbered like the log rotation tools you may know from UNIX operating systems. Up to
fifty instances of the file are kept. During a commit operation, historical file #49 is rolled
out and deleted. The remaining other nine configuration files are renamed. Config #1
becomes Config #2, Config #2 becomes Config #3. And finally the previous active con-
figuration becomes historical Config #1.

The JUNOS configuration editor is a very comfortable piece of software that you
should enjoy using, especially those familiar with programming. Even more important
are the troubleshooting facilities, which you need to know in order to debug customers’
problems of all kinds.

3.3.7 Troubleshooting Tools
In the Cisco IOS, debugging routing protocol traffic is done using the debug command
once you are in privileged (enable) operational command mode. JUNOS is very
transaction-oriented and a transition from one configuration state to another has to be
explicitly executed using the commit command. And in JUNOS, debugging is done
in the configuration mode, not operation mode. Why?

Recall that turning on the debugging facility is a potentially dangerous thing and can put
the router out of commission very quickly. Just imagine what might happen if you receive
140,000 routes from an Internet route reflector and you have turned on detailed debugging

Juniper Networks JUNOS CLI 69

Commit

Rollback n

Candidate
configuration

Active
configuration

1 2 ...

0

FIGURE 3.11. JUNOS has a transactional system for changing, activating and rolling back
configurations

for each and every BGP packet. Most likely the router will be busier writing the debug out-
put to the local hard disk than doing something more useful, like routing packets. Therefore,
many network administrators are very cautious about permitting operators to use debug.

So one of the JUNOS design choices was that debugging should be part of the config-
uration file. There are actually several reasons for this:

• You can at least track who turned on a certain debug output, in case the router
becomes unstable.

• A router’s full configuration state (including the debugging state) is stored in one file.
For certain events, it may be desired to monitor the events constantly, like protocol
errors. In IOS the debugging state is lost after a reboot and so you need to manually
turn on all the debugging states that you want to monitor after a router reboot.

• Because it is part of the configuration file, you can take advantage of the commit
confirmed command. The commit confirmed command performs an automatic
rollback of the router to a safer state after a certain amount of time if the router
becomes unstable or unreachable. (This rollback is indeed automatic: you have to make
the change explicitly permanent to countermand this action.)

Each configuration branch in the JUNOS command line hierarchy like interfaces,
protocols isis, protocols bgp has a dedicated traceoptions branch
where you can configure all the events you want to debug. But first you have to specify
a file where all the debugging output is written. In JUNOS, you can’t just tell the router
to (for instance) put out all debug output directly to the console. You have to first
write the entire debug output into a file. However, you can make the CLI display all the
new lines in the file and display those on the console in real-time. The configuration snip-
pet below shows a typical configuration for tracing (debugging) the IS-IS routing
process:

[edit]

hannes@Frankfurt# show

[…]

protocols {

isis {

traceoptions {

file isis-trace size 10m;

flag error;

flag state;

flag normal;

flag lsp;

}

[…]

}

}

The traceoptions configuration branch always consists of two mandatory
statements. The file statement specifies the filename plus arbitrary properties like pro-
tection, maximum file size until it is rolled over and so on. The flag statement describes

70 3. Introduction to the IOS and JUNOS Command Line Interface

feature-specific event triggers that make the router log a line in the specified file. Each
routing protocol has different flags: BGP has different traceoption flags to IS-IS,
and so on, since routing protocols can work in fundamentally different ways. Figure 3.12
list the current layout of the traceoptions for the protocols isis {} branch.

You can examine the entries in the log file using the show log �logfile-name�
command:

hannes@Frankfurt> show log isis-trace

Aug 9 23:06:25 trace_on: Tracing to “/var/log/isis-trace” started

Aug 9 23:06:26 Received L2 CSN, source London, interface so- 2/1/0.0

Aug 9 23:06:26 LSP range Penssauken.00-01 to ffff.ffff.ffff.ff-ff

Aug 9 23:06:26 packet length 179

Aug 9 23:06:26 ERROR: CSN from London without authentication

Aug 9 23:06:26 Sending L2 CSN on interface so-3/0/0.0

Aug 9 23:06:26 LSP range 0000.0000.0000.00-00 to Stockholm.00-00

Aug 9 23:06:26 packet length 1478

The show log command starts displaying the file from the beginning, but it does
not display any additions to the end of the file made in real-time as the display scrolls.
You know the log file is displayed from the beginning because the first line contains the

Juniper Networks JUNOS CLI 71

bgp

protocols

policy-optionsisis

file

flag

interfaces chassis

traceoptions
all

csn

error

general

graceful-restart

hello

lsp

lsp-generation

normal

packets

policy

psn

route

spf

state

task

timer

FIGURE 3.12. The IS-IS traceoption flags control the verbosity of the logfile

statement that tracing has just started. However, if you want to display the most recent
additions to the end of the file in real-time, you need to start a monitor job.

hannes@Frankfurt> monitor start isis-trace

hannes@Frankfurt>

*** isis-trace ***

Aug 10 00:14:29 ERROR: IIH from London without authentication

Aug 10 00:14:29 Received L2 LSP Stockholm.00-00, interface so-3/0/0.0

Aug 10 00:14:29 from London

Aug 10 00:14:29 sequence 0x7c2, checksum 0x55bf, lifetime 65522

Aug 10 00:14:29 Updating L2 LSP Stockholm.00-00 in TED

Aug 10 00:14:29 Sending L2 LSP Stockholm.00-00 on interface fe-2/1/0.0

Aug 10 00:14:29 sequence 0x7c2, checksum 0x55bf, lifetime 65522

The router now continuously displays any new traces that are written to the file. If
there is a lot of routing protocol activity in the network, your console might get over-
whelmed by all the logging messages and you won’t even be able to type anything to stop
the flood. To stop the output from overwhelming your console, simply type ESC Q and
then the output immediately stops;

Aug 10 00:22:01 ERROR: CSN from London without authentication

Aug 10 00:22:01 ERROR: CSN from London without authentication

Aug 10 00:22:01 ERROR: CSN from London without authentication

*** monitor and syslog output disabled, press ESC-Q to enable ***

The output is now suspended, and resumes when the ESC Q toggle is used again. But
even with console output suspended, the monitoring job is still active, as shown by issu-
ing the monitor list command:

hannes@Frankfurt> monitor list

monitor start “isis-trace” (Last changed Aug 00:23:37 20)

hannes@Frankfurt>

Finally, to stop the output to the console, issue a monitor stop isis-trace
command. Don’t forget to unsuspend the output by pressing ESC Q again, otherwise you
may wonder when you issue your next monitor start command why there is no
output appearing on the screen:

hannes@Frankfurt> monitor stop isis-trace

hannes@Frankfurt>

*** monitor and syslog output enabled, press ESC-Q to disable ***

The traceoptions tell you about system internal events as seen by the routing software.
Sometimes the routing protocol messages seen from an interface perspective (as opposed
to the router perspective) may be critical for troubleshooting purposes. JUNOS has built-in
protocol analyzer software, which is basically an enhanced version of the UNIX tcpdump

72 3. Introduction to the IOS and JUNOS Command Line Interface

utility. It is invoked using the monitor traffic interface <interface-name>
command. There are a lot of additional options for the monitor traffic command. The
most important is the size option, as the tcpdump default only captures 68 bytes of a
packet, typically enough to display the headers of an IP packet, but not always enough
for a complete analysis of problems. If you need to troubleshoot routing protocols you
should specify at least the maximum size of the packet, because all of the information is
critical – not just the headers. For IS-IS this maximum size is 1492 bytes:

Tcpdump output
hannes@frankfurt> monitor traffic interface fe-0/0/1 size 1492

Listening on fe-0/0/1

00:37:30.219626 OSI, IS-IS, length: 77

L2 Lan IIH, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 1921.6807.7003, holding time: 120s, Flags: [Level 1, Level 2]

lan-id: 1921.6807.7003.02, Priority: 70, PDU length: 77

IS Neighbor(s) TLV #6, length: 6

SNPA: 00d0.b7b2.71cc

Protocols supported TLV #129, length: 2

NLPID(s): IPv4 (0xcc), IPv6 (0x8e)

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 172.17.33.1

IPv6 Interface address(es) TLV #232, length: 16

IPv6 interface address: fe80::7777:69ff:fea0:8001

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Restart Signaling TLV #211, length: 3

Flags [none], Remaining holding time 0s

Checksum TLV #12, length: 2

checksum: 0x5dfd (correct)

The monitor traffic command is very useful for diagnosing low-level protocol
errors. Because it provides very detailed output (as shown in the previous example), it is
also a good tool for learning about the IS-IS protocol.

3.3.8 Routing Policy
JUNOS probably has the most powerful language for controlling routing information
flow between routers. Because subsequent chapters modify the default behaviour as to
how IS-IS passes on routes to other routers, some familiarity with the JUNOS Routing
Policy Language (RPL) is required.

In JUNOS virtually every flow of routing information, even the flow of prefixes inter-
nal to the routing protocol (like the transfer of routes on an OSPF Area Border Router
(ABR) from one area to another) is subject to policy processing. Policies are present
simply everywhere in the routing sub-system.

In order not to reinvent the semantics of policy processing a new for each protocol, Juniper
Networks’ engineers took a different approach. Policies are stored in a protocol-neutral way

Juniper Networks JUNOS CLI 73

in the system and may be used by any protocol. Figure 3.13 illustrates the differences between
the policy processing model on IOS platforms and JUNOS.

In the IOS model, the flow of routes occurs between the various protocols. If, for
example, you want to configure redistribution from RIP to OSPF, the RIP process tells
the OSPF process that it has routes that may be included for redistribution. In JUNOS,
there is not that much interaction in between the protocols – there is a defined “choke
point” where all protocols install their routing information, which is the main unicast
routing table inet.0. So for each protocol one or more routing policies can be called. The

74 3. Introduction to the IOS and JUNOS Command Line Interface

Im
p

o
rt

IS-IS

BGP

OSPF

RIP

STATIC

Im
p

o
rt

Im
p

o
rt

E
xp

or
t

Export

Export Export

Export

E
xp

or
t

Export Ex
po

rt

E
xp

or
t

E
xp

or
t

Im
p

o
rt

Im
p

o
rt

IPv4 unicast routing table

Metric:193.203.0.0/25

Next-Hop:

FIGURE 3.13. In IOS the protocols own all the transactions for route redistribution

JUNOS model is shown in Figure 3.14, where the routing entry in the central routing
table holds “metainformation” about all routing protocol attributes.

Let’s compare how IOS and JUNOS work when it comes to routing information redis-
tribution. Consider a Cisco IOS configuration example where we redistribute RIP routes
to OSPF:

London#show running-config

[…]

router ospf 1

redistribute rip subnets

The configuration makes the router take all RIP routes and redistribute them to OSPF
with a default metric of 1. The interesting thing here is that we lose the metric informa-
tion of the original RIP routes. Maybe it would be important to the OSPF part of the net-
work what metric (in RIP it is called the hop count) the prefixes originally had, but that
is not possible.

In JUNOS things work differently: each route carries all the attributes that the differ-
ent routing protocols generate. Each route has fields for storing BGP attributes like the
community or AS-Path attributes, as well as OSPF and IS-IS information like the OSPF
area or IS-IS level. Each protocol fills in the fields that are relevant to the respective pro-
tocol when a route is installed in inet.0. For example, BGP fills in fields called Metric-1
and Metric-2 for BGP local preference and multi-exit discriminator (MED), and retains
the BGP community and AS-Path as well. In contrast, a route learned through OSPF
would only fill in the Metric and Tag fields (if it is an external route and the OSPF Tag is

Juniper Networks JUNOS CLI 75

IPv4 unicast routing table inet.0

Metric 1:

Metric 2:

AS-Path:

Community:

Tag:

193.83.223.224/28

Level:

Area:

Interface:

Next-hop:

Color:

Color 2:

IS-IS

BGP

OSPF

RIP

STATIC

AGGREGATE

Im
po

rt

E
xp

o
rt

Im
po

rt

E
xp

o
rt

Import

Export

Import

Export

Import

Export

Import

Tag 2:

FIGURE 3.14. In JUNOS the main routing table holds up meta-attribute information from all
possible routing protocols

present). Because of this routing table-centric approach, you do not lose information like
the routing metric when passing on information from one protocol to the other, because
some fields are common to all routes. Furthermore, you can even install an attribute that
does not exist in the source protocol. For example, you could set the AS-Path when cer-
tain routes are passed on from Level-1 to Level-2 in IS-IS. (Not that this particular exam-
ple is of practical relevance, it just demonstrates how powerful and flexible the JUNOS
policy language is.)

JUNOS policies work fairly directly: all they can do is either reject or modify incom-
ing routing updates, or alter or suppress outgoing routing updates. Policies can therefore
be applied on the inbound and on the outbound side of a routing protocol. In JUNOS an
inbound policy is called an import policy and an outbound policy is called an export
policy. Figure 3.15 shows where import and export policies take effect.

The import policy controls which routes get installed in the unicast routing table. An
export policy controls which routes are advertised to neighbouring routers. Note that
only routes that are installed in the routing table inet.0 are exportable to other routers.
A route that is known to JUNOS but not installed in inet.0 is called a hidden route in
JUNOS. Many issues arise when routes can plainly be seen arriving at the router, but are
never advertised because for one reason or another they have become hidden routes and
seem to have been swallowed up by the router in question.

In JUNOS, there is no interaction directly between the protocols. There is just
interaction between an individual routing protocol and the routing table as shown in
Figure 3.15. Each routing protocol may call one or more import and export policies.
The interesting thing is that there is a common syntax for routing policies irrespective
which routing protocol calls the policy. For illustration, create a simple policy that
selects the entire set of static routes present on a router. Routing policies consist of a
match clause and an action clause. The JUNOS keyword for the match clause is from,
and the action clause is introduced by the keyword then:

policy-options {

policy-statement all-statics {

from protocol static;

then accept;

}

}

76 3. Introduction to the IOS and JUNOS Command Line Interface

Neighbors

Protocol

Forwarding
table

Neighbors

Protocol

Import
Routes Routes

PFE

Export
Routing

table

FIGURE 3.15. JUNOS controls route advertisements via import and export policies

The above example shows a very simple policy. It creates a policy named all-statics under
the policy-options branch of the configuration hierarchy. Next, it defines the match and action
clauses. If the route’s originating protocol is “from” static, then accept that prefix. Note that
in the “then” part no detailed action is actually specified for the prefix. This is largely depend-
ent on which routing protocol has called the policy, and where the policy is applied.

For example, if the policy is applied as an export policy within OSPF:

protocols {

ospf {

export all-statics;

}

}

This means that all prefixes that are installed in the inet.0 routing table and are static
routes (these alone match the policy all-statics) will be redistributed into OSPF
and announced to all OSPF neighbours.

But if the same policy is applied as an export policy within BGP:

protocols {

bgp {

group internal {

export all-statics;

neighbor 172.26.250.2;

neighbor 172.26.244.11;

[…]

}

}

}

This means that all the static routes present in the inet.0 table are not announced to all
OSPF neighbors as in the previous example, but only to the BGP peers present in the
peer-group internal. So the ultimate result depends on where the policy is applied.

Policy processing is typically deployed for filtering BGP routes. Generally, IS-IS poli-
cies are simple, one-to-three term policies, which are easily readable. To learn more
about the JUNOS routing policy language and policy processing in general, the Juniper
Networks Book Initiative (JNBI) lists pointers to good books with more detailed elabo-
ration on about policy processing.

3.3.9 Further Documentation
The entire documentation about Juniper Networks Routers is available on the Juniper
Networks public website at http://www.juniper.net/techpubs/. Further documentation and
books about JUNOS routing technology is posted at http://www.juniper.net/company/jnbi/.

3.4 Conclusion

Both JUNOS and IOS offer the network operator powerful user interfaces to provision,
troubleshoot and change the network and router configurations. Interestingly, although

Conclusion 77

both IOS and JUNOS) user interfaces are different, there are plenty of common ele-
ments, such as plain-text ASCII configuration files, two working modes (operational
mode and configuration mode), auto-completion of commands, Emacs-style keyboard
sequences, and a rich debugging facility. Experience from training NOC teams has shown
that because of these common elements, an engineer that is used to one router OS can,
after a short learning and introduction phase, pick up the necessary skills to adapt to a new
environment quickly and easily.

78 3. Introduction to the IOS and JUNOS Command Line Interface

4

IS-IS Basics

79

The main challenge for people wanting to learn about IS-IS is that the specifications are
scattered across multiple standardization bodies. There is no single place to look at and
get a quick overview about IS-IS and how it routes the IP protocols. Meanwhile, all the
extensions to the base IS-IS protocol are documented in more than 25 documents, which
makes it difficult for novice users to get a quick overview.

This chapter provides a quick overview of IS-IS. A lot of the topics introduced in this
chapter will be explained in more detail in subsequent chapters. If you just want to get a
quick overview of how IS-IS works all you have to do is read this chapter.

Readers of the basic specification of IS-IS (ISO 10589) will most likely be surprised by
the constant use of OSI jargon that tries to invent an OSI counterpart for every term and
acronym used in IP and the Internet. So reading this often arcane language for under-
standing can be very difficult. Also, there is a lot of extra information contained in the
base specification unrelated to the protocol itself, like implementation details and even
advice on how to code. However, most of this advice is completely outdated and it has
become common to ignore most of the specification text. Once you have developed an
understanding about the jargon and what paragraphs not to read and consider, you will
find that IS-IS is a lean but powerful protocol, easy to use and even simpler to understand.

However, jargon cannot be completely avoided in IS-IS. This chapter also assumes
that readers are familiar with the basic concepts of the OSPF routing protocol and the
terms used in the IP protocol family. At first, there will be translation of OSI jargon to IP
terminology, but later in the book we use the OSI terms, which should become familiar
as the book progresses.

4.1 IS-IS and the OSI Reference Model

IS-IS is very different than other network routing protocols because it runs natively on
Layer 2 of the OSI Reference Model. What does that mean? Unlike the IP routing proto-
cols like RIP, OSPF and BGP, IS-IS does not need valid interface addressing information
to transmit a message. Of course IS-IS needs some information to properly transmit rout-
ing messages, but compared to other IP routing protocols, the IS-IS configuration file is
far smaller.

Running natively on Layer 2 of the OSI Reference Model has another important
aspect, which is suitability for routing multiple protocols. In fact IS-IS is totally agnostic
about what kind of prefixes it transports in its message. Figure 4.1 shows the position of
IS-IS in the networking stack. Here, IS-IS messages are directly encapsulated for an

802.3 Ethernet. And in the message is reachability information from the various network
layer protocols such as IPv4, IPv6 and even IPX. Netware uses a clone of IS-IS called
Netware Link State Routing Protocol (NLSRP), which shares most of the message types
with IS-IS, and it is used for conveying Netware’s IPX reachability information. Figure 4.1
also shows, somewhat surprisingly for those used to IP, that ISO’s Layer 3 protocol, CLNP,
is dependent on IS-IS and not the other way around as it would be with IP and OSPF.

This misconception is common, as we have learned over and over again when giving
IS-IS training classes. Most students think that running CLNP is the prerequisite for run-
ning IS-IS. This belief is reinforced if the students first learn about IS-IS on Cisco’s IOS.
For code legacy reasons, you have to enable CLNS routing first before you can run IS-IS
on IOS platforms. Even for the majority of IOS show commands there is still only the
show clns … syntax instead of show isis …. Therefore most people think that IS-IS
runs over CLNP, even though the contrary is the case. IS-IS is an independent protocol
and CLNP is just one of the many protocol address families it can transport.

IS-IS only understands two interface types: broadcast and point-to-point (p2p) media.
The most common example of broadcast media is of course the family of Ethernet speeds
(10, 100, 1000, 10,000 Mbps). But there are also older technologies like Token Ring, and
FDDI. In recent years there has been increased demand for Resilient Packet Ring (RPR)
technology, which is mostly an FDDI knockoff, but augmented with SONET/SDH head-
ers, which makes the frames transportable using SONET/SDH Time Division Multiplexing
(TDM) equipment. Resilient Packet Rings appear to IS-IS as broadcast media using the
usual LAN 48-bit IEEE MAC addresses. Of all these media types, Ethernet is the most
commonplace by far and is also the only broadcast media type that will be referenced
throughout the book. Figure 4.2 shows how a native IS-IS message is encapsulated in
Ethernet frames. All IS-IS messages are sent to one of the two well-known multicast
MAC addresses 0180:c200:0014 or 0180:c200:0014. On broadcast media such as Ethernet
there are no IS-IS unicast messages. IS-IS wants to make sure that every router con-
nected to the LAN hears all of its messages. The source MAC address is typically the
burned-in-address (BIA) of the sending Ethernet port. Next is the length field, which tells
the receiver how long the entire Ethernet frame will be. The next two bytes indicate the
destination service attachment point (DSAP) and source service attachment point
(SSAP). Each major networking protocol has an SAP code point assigned. The two
SAPs indicate which parts of the system talk to each other. A DSAP of 0xFE and a SSAP
of 0xFE means that an OSI protocol on the sender side wants to talk to an OSI protocol
on the receiver side (oddly, the DSAP and SSAP don’t have to match, but most protocols

80 4. IS-IS Basics

IS-IS common header

OSI Reference Model Layer 2

IP IPXIPv6CLNP

IEEE 802.3

Physical Layer OSI Reference Model Layer 1

FIGURE 4.1. IS-IS is a true multiprotocol IGP as it runs native on Layer-2

only understand other versions of themselves). The last byte before the common IS-IS
header is the control byte which tells the receiver if the sender desires flow-control at the
Ethernet level. IS-IS does not do flow-control at the MAC level, and turns it off using the
code point value of 3.

For Ethernet there are in general three different methods of encapsulating higher
layer information (packets) inside Ethernet frames. The encapsulation method shown in
Figure 4.2 is called 802.3 or, in Cisco Systems-IOS-speak, SAP encapsulation. There is
also the Ethernet II encapsulation also known as DIX or ARPA encapsulation, which
replaces the length field of the 802.3 encapsulation format with a 16-bit type code.
Assigning all type codes with values greater than 1500 (the limit for the length field)
avoids collisions between code points and valid frame lengths, which must be less than
1518 bytes altogether. The final encapsulation method is called sub-network access proto-
col (SNAP), and is an extension of the IEEE 802.3 encapsulation. The DSAP and SSAP
are set to 0xAA (the “SNAP SAP”) and this indicates that another 5-byte header follows,
which gives the protocols inside more room for type information and eases the allocation
of code points for vendor-proprietary protocols. This is achieved by prepending the
3-byte organizational unit identifier (OUI) that each Ethernet vendor has been assigned
before the 2-byte protocol code point (which is actually the DIX Ethernet type field that
the length field replaced!).

Interestingly, IS-IS never used any other encapsulation than 802.3. So although there
are OSI code points for the two other encapsulation methods (Ethernet II and SNAP)
they have never been widely used for IS-IS. Most IS-IS implementations did not even
accept IS-IS messages with a non-IEEE 802.3 encapsulation style. Today, IEEE 802.3
encapsulation is the only possible Ethernet encapsulation for IS-IS and the two others are
considered to be “illegal”.

IS-IS and the OSI Reference Model 81

Destination MAC Address 0180:c200:0014
or 0180:c200:0015

Bytes

6

6

2

1

1

1

min.: 27
max.: Link MTU-21

Source MAC Address

IEEE 802.3 Length field

IEEE 802.3 DSAP

IEEE 802.3 SSAP

IEEE 802.3 Control

IS-IS common header & TLVs

FCS

0xFE

0xFE

0x03

4

FIGURE 4.2. IS-IS messages are transported over Ethernet using IEEE 820.3 (802.2 LLC) encap-
sulation only

Inside the frame is the native IS-IS message, which can be a minimum of 27 bytes and
at maximum the size of the link MTU size minus 21 bytes. If you do the mathematics,
21 bytes is the sum of the two MAC address, DSAP, SSAP, Control byte fields, plus the
4 bytes of trailing frame check sequence (FCS) at the end of the frame. The link MTU size
varies with the type of Ethernet chipset in use. All Ethernet network interface cards (NICs)
must support at least the standard Ethernet MTU of 1518 bytes (including FCS). However,
there are chipsets around which can generate jumbo frames which generate Ethernet
frames up to 9000 bytes in length. That’s the reason the maximum IS-IS packet length is
dependent on the actual link MTU size and is not a simple number. The maximum
amount of IS-IS information that can be stored in a standard Ethernet Frame is 1518 minus
21, or 1497 bytes. IS-IS must ensure that it does not transmit frames any larger than
that even if it has to fragment the IS-IS message and scatter pieces across several Ethernet
frames (there is no support for fragmentation on the Ethernet level). There is more about
fragmentation and how IS-IS deals with larger than link-MTU-sized packets in Chapter 9.

For point-to-point media there are a variety of encapsulations like PPP, Cisco-HDLC,
Frame Relay and ATM RFC1483/2684 encapsulation. However, the most common
encapsulation is the Point-to-Point-Protocol (PPP), which will be the only one that is
used throughout the book. PPP has been designed to carry multiple network layer proto-
cols. Figure 4.3 shows the PPP model of multiplexing several protocols over a single link.
First, a protocol called the PPP line control protocol (LCP) opens up the circuit and first
negotiates parameters concerning the link. Examples of LCP duties are negotiation of
authentication, compression, three-way handshake etc.

Next, for each network protocol like IP, IPX, IPv6 and OSI, there is a dedicated control
protocol (CP). For instance, the IP Control Protocol (IPCP) assigns an IP address when
dialling in to a service provider’s access server. So the control protocol negotiates per-
network-protocol properties. For encapsulation of IS-IS messages over the point-to-point
circuit, first, the OSICP has to come up successfully. OSICP is a very lightweight protocol,
sometimes not even considered a protocol, more like something along the lines of a cap-
ability announcement like “Hey! I can speak OSI, so you can send me OSI frames if you
want.” Once the control protocol is done, the payload frames are transported using a
pre-protocol assigned code point. Figure 4.4 shows the structure of an IS-IS frame that has
been encapsulated in PPP. The frame simply gets prepended using the OSI code point
0x0023. Minimum frame size (assuming the smallest possible IS-IS message of 27 bytes)
is 27 plus 4 (PPP overhead), or 31 bytes. The biggest frame once again depends on the link
MTU size of the underlying circuit. Typically, SONET/SDH circuits have a maximum

82 4. IS-IS Basics

PPP LCP

PPP IPCP

PPP IP6CP

PPP OSICP

Router A Router B

FIGURE 4.3. Before traffic is transported the OSI control protocol and PPP line control protocol
have to get into opened state

transmission unit of 4474 bytes. By subtracting the PPP overhead (4 bytes) from the 4474
bytes, this results in 4470 being the maximum MTU size on most point-to-point circuits.

IS-IS skipped all the hassle of complicated varieties of encapsulation and interface
models by specifying very clearly in the specification how the format of the final frame
looks. This clearly helped interoperable implementations to exist right from the beginning.

4.2 Areas

OSI structures its network topology in a distinctive way. IS-IS is much more flexible
when it comes down to migrating parts of the network to another routing protocol or
grooming existing ones. The tool to make that happen is called an area.

In the infancy of link-state protocols, the whole network consisted of a single set of
routers that all shared a common database to compute the best paths through the network.
At this time almost everybody working in standardization bodies seemed to be concerned
about the nature of the SPF algorithm and doubted the scaling abilities of link-state routing
protocols in general. In light of the exponential nature of the SPF algorithm, where the
CPU demand seemed to grow infinite, the IS-IS protocol developers made an interest-
ing move.

The idea was to structure a large network in smaller parts called areas. The topologi-
cal horizon of the IS-IS routers becomes smaller to keep the CPU less busy during the
route calculation process. But if a bigger network is split into smaller networks, then a
set of disjoint sub-networks results. In order to connect these islands there need to be
routers that route traffic between the areas. Even if the topological horizon and hence the
computational complexity of the SPF run has been reduced, the network still has to retain
all available reachability information and the routers at the area borders inject that reach-
ability information into each other’s areas. Figure 4.5 shows how this is done. The Big
IS-IS network 4711 is split into two areas: Area 47 and Area 11. The computational com-
plexity has been halved; however, in order to ensure full connectivity the router between
Area 47 and Area 11, Router A, summarizes and injects all the reachable prefixes from
Area 47 to Area 11, and Router B does the reverse. The IP prefixes in this example
assume the reader is familiar with IP addressing and style. However, the transported pre-
fixes are not restricted to just IP, they could be from any address family. Router A and
Router B summarize their local prefixes and advertise them into the other areas. Router A
sends a summary route 172.16/16 representing the local 172.16.X/24 prefixes (including

Areas 83

Bytes

2

2

min.: 31
max.: Link MTU-4

PPP Header

PPP OSI Protocol

IS-IS common header & TLVs

0xFF03

0x0023

FIGURE 4.4. IS-IS over PPP

its own) towards Area 11 and Router B sends a summary route 172.17/16, resulting from
all the local 172.17.X/24 prefixes in Area 11, to Area 47.

The effect is remarkable – today, 1000–2000 routers in a single area are said to repre-
sent the upper boundary of IS-IS. With support of areas the network can grow to arbitrary
size – today the biggest multi-area networks have about 12,000–15,000 routers. The
authors do not endorse these optimistic area numbers, since a lot, is dependent on other
factors than just the raw number of routers. But the above example should make it clear
that by splitting up a large network into several smaller areas, the result is a network that
is much more scalable than with a single-area approach.

Note that in Figure 4.5 Router A and Router B are members of their assigned areas and
are not part of both areas. To those familiar with OSPF, this may seem odd at first, but IS-IS
makes a distinction between area boundaries and the routing hierarchy levels that result.
Decoupling area boundaries from routing hierarchy levels allows greater flexibility for
migrating, joining, or splitting areas. The tool in IS-IS for creating routing hierarchies is
called a level.

84 4. IS-IS Basics

Area 11Area 47

Area 4711

172.16.4/24
Router A Router B

172.17.7/24

172.17.8/24

172.17.9/24

172.16.1/24

172.16.2/24

172.16.3/24

172.16.1/24

172.16.2/24

172.16.3/24

172.17.7/24

172.17.8/24

172.17.9/24

172.16.4/24 172.17.6/24

172.16/16 172.17/16

FIGURE 4.5. For a working hierarchical routing, the border routers need to summarize the reacha-
bility information of their areas and inject it to the other areas

4.3 Levels

To understand why the introduction of an area leads to the idea of a level scheme to
denote routing hierarchies, compare the OSPF routing hierarchy with IS-IS. Figure 4.6
shows the differences between OSPF areas and IS-IS areas. In OSPF, the area border
router (ABR) has two interfaces in each area: one interface in Area 51 and another inter-
face in Area 0. One could say the demarcation line between the two areas is through the
“middle” of the ABR. In IS-IS, it is the other way around: there is not a special ABR that
sits between two areas. Routers stay in their assigned areas. One could say here that the
demarcation line is through the middle on the link between the routers in two areas.

How can two routers ever exchange routing information if they are in two entirely sep-
arate areas? In OSPF, the Area-ID of the routers at each end of the link has to match, other-
wise no adjacency will form between the two routers. An adjacency is a kind of promise
that a pair of routers can mutually exchange traffic. More about adjacencies and how they
are formed is found in Chapter 5.

In IS-IS, the Area-ID does not necessarily have to match for an adjacency to come up.
The reason is that for every link that runs IS-IS, there is a little tag indicating the kind of
topology level to which the link should belong. Each router in an IS-IS network builds
two different topologies: the Level-1 topology and the Level-2 topology. Figure 4.7
shows this. Each link carries one of three possible tags: L1, L2 or L1L2, which tells the
router in which topology level the link wishes to participate: Level-1, Level-2, or both.

Based on the level tags shown in Figure 4.7, the resulting topology is illustrated in
Figure 4.8. There are links in the figure that have non-matching Area-IDs on both ends
of the links (like the L2-only links between Areas 47, 11 and 12). However, Level-2 adja-
cencies are a bit kludgy by nature. All routers participating in the Level-1 topology do have
to share their Area-IDs; otherwise no adjacencies will form up, just as in OSPF. But when
a link is configured for Level-2, a matching Area-ID is not important as far as adjacency
formation is concerned. An adjacency will form no matter if the Area-IDs match or not.
For the IS-IS Level-2 backbone, the only constraint is that the Level-2 topology must be
continguous, and no Level-2 routers are isolated from any others.

Levels 85

Area 51

Area 0

Demarcation line

Area 11

Area 47

Are
a

52

OSPF IS-IS

FIGURE 4.6. OSPF vs. IS-IS topological boundaries

4.3.1 IS-IS Routing Hierarchy Rule
Routers that share the same Area-IDs determine the Level-1 topology, and Routers that share a
continguous set of Level-2 circuits determine the Level-2 topology

The interesting thing here is that a link can participate in both (Level-1 and Level-2)
topologies. And having a (logical) extra link handy is useful and helps to avoid

86 4. IS-IS Basics

Area 11

Area 12

Area 47
L1L2

L2

L1L2

L2

L1L2

L2

L1
L1

L1

L1

L1

L1

L1L1

FIGURE 4.7. The level information is configured on a per interface basis; three tags are possible per
circuit – L1, L2 and L1L2

Area 11

Area 12

Area 47

Level 2 Topology

Level 1 Topology

FIGURE 4.8. The resulting Level-1 and Level-2 topology based on Figure 4.7

sub-optimal routing. Figure 4.9 shows how OSPF routes inter-area versus intra-area traf-
fic. Consider traffic flowing between the two leaf-sites S (source) and D (destination).
Traffic arrives at the ABR and OSPF has two routes available to route that traffic – one
direct route (the intra-area) over two low-speed T1 circuits, and another route that leads
over the backbone (the inter-area route), which has one T1 segment less and plenty of
bandwidth available, as there is a Gigabit Ethernet segment in the path. But just like any
other hierarchical routing protocol, OSPF prefers to get inter-area backbone traffic to
intra-area routes as soon as possible. So ultimately the traffic takes the path indicated by
the gray arrow.

Common practice to fix that problem in OSPF is to spend money to put another link
between the two Area Border Routers as indicated by the thick black dotted line. This
link is configured to run in Area 52 and produces a lot of new, low-cost paths to avoid the
slower T1 hopping of traffic. In IS-IS the problem is solved similarly, except that you do
not have to expense two Gigabit Ethernet router ports! Figure 4.10 shows how IS-IS
avoids this expense by the level between the routers that were OSPF Area Border Routers
IS-IS L1L2 capable. Now, over the same physical circuit (the Gigabit Ethernet Segment),
IS-IS forms adjacencies on a per-level basis, and both Level-1 and Level-2 adjacencies
form on the same link. Therefore, the Gigabit Ethernet link is an integral part of Area 52
and preferred when traffic travels from S to D.

4.3.2 Route Leaking Between Levels
Every routing protocol passes a certain amount of routing information up the routing
hierarchy, and other routing information is passed down the routing hierarchy. There is a
bi-directional flow of routing information known as route leaking. To better understand
how IS-IS leaks routes between levels, first look at how OSPF passes routing information
up and down. Figure 4.11 shows how OSPF leaks information between levels. For sim-
plicity reasons, this example uses the default behaviour of how OSPF leaks routes. Of

Levels 87

Area 52

Area 0
(Backbone)

1000 Mbps

1.544 Mbps

1.
54

4
M

bp
s

1.
54

4
M

bp
s

Area 51

1.544 M
bps

D

S

FIGURE 4.9. The OSPF constraint that one interface can only be in one area can cause sub-optimal
routing

88 4. IS-IS Basics

Area 52

1000 Mbps

1.544 Mbps

1.
54

4
M

bp
s

1.
54

4
M

bp
s

S

D

Level 2 Topology

Level 1 Topology
1.

54
4

M
bp

s

FIGURE 4.10. IS-IS can share a link between Level-1 and Level-2 topologies – this fixes the sub-
optimal routing problem in a cost-effective way

ro
ut

es
 to

 B
B

Area 51 Area 52

A
rea 53

Area 0

routes to BB

routes to BB

ro
ut

es
 fr

om
 B

B

routes from BB

routes fro
m BB

FIGURE 4.11. OSPF short-circuits reachability information between all areas, which can be a
scaling harm

course, there are lots of other ways to leak OSPF routes between areas, such as Totally-
Stubby-Areas, Stub-Areas and Not-So-Stubby-Areas (NSSA), but this is just an example.
In our example network, there are three areas interconnected by three OSPF Area Border
Routers, and the backbone is OSPF Area 0. In OSPF, each ABR takes the routes it cal-
culated from the non-zero areas and redistributes it automatically to the backbone. The
gray arrow indicates this step. The backbone in turn redistributes all the routes it has
learned from all of the areas and feeds back that information to each as well. Ultimately,
each router gets all the routing information. This is one of the scaling issues of OSPF: the
fact that each area sees all the routes. This has resulted in all the add-on OSPF concepts
(Totally-Stubby-Areas, NSSA) to fix that behaviour.

IS-IS is very different in this respect. Similarly to OSPF, it leaks information from
Level-1 to Level-2. However, IS-IS does not leak down any information from Level-2 to
Level-1. Figure 4.12 shows how IS-IS deals with route distribution in a hierarchical routing
environment. IS-IS sets a bit in its routing messages for the respective areas. This particu-
lar bit is called the Attach bit or, for short, the ATT bit. Any router that is part of the Level-2
topology (that is, the router has at least one adjacency on a Level-2 circuit in the “Up” state)
must set the ATT bit on messages. The routers in the areas simply calculate their shortest

Levels 89

Area 11 Area 12

A
rea 13

routes to BB

A
T

T

ATT

ATT routes to BB

ro
ut

es
 to

 B
B

FIGURE 4.12. IS-IS does not distribute all reachability information down to the Level-2. Routes
just flow up and never down the hierarchy, which is a good scaling property

path to the closest router that has sent messages with the ATT bit set and installs a default
0/0 route in its routing/forwarding table pointing to the closest L1L2 router. This is exactly
the behaviour of Totally-Stubby-Areas in OSPF, and no wonder, since both address the
same issue. However, in IS-IS you can do a few things that cannot be achieved using
Totally-Stubby-Areas in OSPF, like injecting external routing information into the cloud.
Luckily, OSPF NSSAs fix that problem. So to quickly explain to those familiar with OSPF
the way that IS-IS leaks its routing information, it is safe to say “Almost like NSSA!”.
There will be more details on how exactly route leakage works in IS-IS, using a lot of
examples and router configurations, in Chapter 12 “IP Reachability Information”.

Assigning links arbitrarily to the two topologies proved to be a very flexible design
tool that today no network designer would be without. It would seem, then, that address-
ing and address allocation is not an important aspect of an IS-IS network design, but do
not be misled. A careful area design is what prepares an IS-IS network for all kinds of
migration and expansion. A clear understanding of the differences between area address-
ing and the routing hierarchy is at first a bit difficult to understand in IS-IS. However,
there is also a lot of operational flexibility that results from this differentiation, particu-
larly when it comes to migrating areas.

4.4 Area Migration Scenarios

In contrast to OSPF, an IS-IS router can be in multiple areas at the same time. Having
support for more than one area is mandatory to migrate area addresses. If a routing proto-
col has only support for one area at a time, then the change of area addresses becomes
highly disruptive. Just think about the disruptive nature of migrating an OSPF area,
which is a routing protocol that supports just one area address per adjacency. You cannot
migrate an OSPF network’s area during normal business hours: you need to allocate a
maintenance window for it.

IS-IS is friendlier to migrations in this respect. In the IS-IS Hello messages there is
room enough to support more than one Area-ID. In each IS-IS message, the first 8 bytes are
called the common header. Figure 4.13 shows the common header that is prepended to
all IS-IS messages. The last byte in the common header is a pre-indicator of the maximum
amount of Area-IDs the system is going to advertise. However, most IS-IS implementa-
tions (including IOS and JUNOS) do not support more than 3 areas in these messages
(of course, the total number of areas in the network is another matter).

This is no real limitation in practice, as support for three areas for one router at the
same time supports all the area migration scenarios of interest, which are:

• Merging two areas into a single area
• Splitting one area into two areas
• Renumbering two areas to a new area

How does IS-IS treat a pair of routers that have different Area-IDs? And how is adja-
cency formation affected by different Area-IDs? IS-IS does not require that the Area-ID
matches before a Level-1 adjacency comes up – support for multiple Area-IDs has been
mentioned already. So there is no single Area-ID that has to match. But first IS-IS collects

90 4. IS-IS Basics

the advertised Area-IDs from both sides of the link. Then IS-IS looks to see if there is an
Area-ID in common. If there is at least one matching area address then the Level-1 adja-
cency goes into the Up state. Figure 4.14 shows four routers (A, B, C, D), and not all of
them are in the same area. No problem! As long as there is at least a single pair of routers
that is present in both areas (Router A and B), the adjacency between A and B goes into the
Up state and the routes of all four routers get distributed and finally received by all the
routers in the Level-1 network.

Area Migration Scenarios 91

Intra-domain Routing Protocol Discriminator

Header Length Indicator

Version/Protocol ID Extension

0x83

Bytes

1

1

1

1

1

1

1

1

1

ID Length

PDU TypeR
0

R
0

R
0

PDU Version

Reserved

Maximum Area Addresses

6 (0)

1

3 (0)

0

PDU specific fields 17–33

TLV section 0–1467

FIGURE 4.13. The IS-IS common header consists of 8 bytes that are contained in every IS-IS message.
The last byte consists of the number of areas that the router supports

Area 11 Area 12

A B

DC

Level 2 Topology
Level 1 Topology

FIGURE 4.14. In an IS-IS Level-1 network there can even be multiple area addresses as long there
is at least a pair of routers present in both areas

Before going into the details of the migration scenarios, it will be helpful to show some
configuration snippets from JUNOS and IOS and also show for the first time the ISO
Network Entity Titles (NETs), which may be new. All you really need to know is that the
first few bytes of the NET specify the Area-ID, but the exact number of bytes varies. The
reason why there is no fixed mapping of the Area-ID into the NET is because the NETs are
variable in size and, depending on the address format, the Area-ID size also varies. There is
a more detailed presentation of NETs later in this chapter, in the “OSI Addressing” section.

The most common migration scenarios will demonstrate how flexible IS-IS interprets
the term area.

4.4.1 Merging Areas
Figure 4.15 shows two disjoint Areas 11 and 12, which are ultimately to be joined into a
common Area 11. The figure shows the network before and after the migration. Next to
the router there is the corresponding configuration snippet – a snippet far from being
complete – just the IS-IS-related configuration commands are presented. This migration
is rather simple. First, there are two pairs of routers, each pair is disjoint to the other pair.
As this is a multivendor book, there are configuration snippets from the two dominant
(IOS and JUNOS) IS-IS implementations in the Internet included.

The migration does not happen atomically (in a single step). Several transient configu-
rations have to be followed for a smooth transition. To be non-disruptive, first an additional
NET is configured on Router A. For a short period of time Router A is configured with two
NETs: 11.aaaa.aaaa.aaaa.00 and 12.aaaa.aaaa.aaaa.00. In the next step, add the common
Areas NETs to Router C as well. Now all the routers have Area-ID 12 configured. Now we
can clean up existing configurations and remove the Area 11 NET off Routers A and C. So
the areas have been merged into a common area in a non-disruptive way.

4.4.2 Splitting Areas
Splitting areas is done in a similar fashion to merging areas, just (in a sense) in the oppos-
ite direction. Figure 4.16 gives an example of how to break an existing area into two
smaller areas. First, the pair of routers has to be determined that will have both Area-IDs.
In this example, Routers A and B are the routers which have both Area-IDs configured.
The migration “style” here is again from the centre to the edge. So, first, the Area 11 NETs
are configured on the Routers B, A, and D. Finally, Area 12 is removed from Router C.
Again, the whole area can be configured in a non-disruptive fashion as long as the con-
figuration order is maintained.

4.4.3 Renumbering Areas
Renumbering areas means that one or more areas get a new Area-ID. This example
change of Area-IDs does not just affect some routers in the network, but all routers in the
network. Nevertheless, if the correct order is followed, even this complex migration can
be accomplished in a simple and non-disruptive fashion.

92 4. IS-IS Basics

Figure 4.17 shows that, first, the new area that all routers should migrate to is configured
on all the routers. This can be done without regard for any specific order. Next, both Area
11 and Area 12 are removed by deleting the NETs from the respective routers. That simple!
Recall that the maximum number of NETs supported on a single router is three. So having
the freedom of assigning three different Router IDs to a single router enables you to
accomplish any arbitrarily complex area migration scenario, since more than three Area-
IDs are never required.

Levels are a handy tool that allows the routing hierarchy to be independent of the area
addressing. The next section contains a short overview on how IS-IS stores its route
information and calculates routes throughout the network.

Area Migration Scenarios 93

Area 11 Area 12

router-c# show running-configuration
interface POS0/0
 ip router isis
router isis
 net 11.cccc.cccc.cccc.00

hannes@router-a> show configuration
interfaces {
 so-2/0/0 {
 unit 0 {
 family iso;
 }
 }
 so-3/0/0 {
 unit 0 {
 family iso;
 }
 }
 lo0 {
 unit 0 {
 family iso {
 address 11.aaaa.aaaa.aaaa.00;
 }
 }
 }
}
protocols {
 isis {
 interface lo0.0;
 interface so-2/0/0.0;
 interface so-3/0/0.0;
 }
}

Area 12

router-b# show running-configuration
interface POS1/0
 ip router isis
interface POS3/0
 ip router isis
router isis
 net 12.bbbb.bbbb.bbbb.00

router-c# show running-configuration
interface POS0/0
 ip router isis
router isis
 net 12.cccc.cccc.cccc.00

hannes@router-a> show configuration
interfaces {
 so-2/0/0 {
 unit 0 {
 family iso;
 }
 }
 so-3/0/0 {
 unit 0 {
 family iso;
 }
 }
 lo0 {
 unit 0 {
 family iso {
 address 12.aaaa.aaaa.aaaa.00;
 }
 }
 }
}
protocols {
 isis {
 interface lo0.0;
 interface so-2/0/0.0;
 interface so-3/0/0.0;
 }
}`

hannes@router-d> show configuration
interfaces {
 so-0/0/0 {
 unit 0 {
 family iso;
 family iso;
 }
 }
 lo0 {
 unit 0 {
 family iso {
 address 12.dddd.dddd.dddd.00;
 }
 }
 }
}
protocols {
 isis {
 interface lo0.0;
 interface so-0/0/0.0;
 }
}

A B

DC

Level 2 Topology
Level 1 Topology

A B

DC

router-b# show running-configuration
interface POS1/0
 ip router isis
interface POS3/0
 ip router isis
router isis
 net 12.bbbb.bbbb.bbbb.00

hannes@router-d> show configuration
interfaces {
 so-0/0/0 {
 unit 0 {
 family iso;
 }
 }
 lo0 {
 unit 0 {
 family iso {
 address 12.dddd.dddd.dddd.00;
 }
 }
 }
}
protocols {
 isis {
 interface lo0.0;
 interface so-0/0/0.0;
 }
}

FIGURE 4.15. IS-IS area merging example

4.5 Local SPF Computation

IS-IS follows a simple principle called distributed databases and local computation.
Distributed databases means that all routers agree how many routers are in the network
and how they are connected with each other. Local computation means that each router
receivers the same topological information and prefixes unaltered. So, for example, no
router is allowed to change the originator’s information.

IS-IS stores all information about other routers and links in the link-state database
(LSDB). There is a dedicated LSDB per Level: one for the Level-1 and one for the Level-2.

94 4. IS-IS Basics

Area 12

router-b# show running-configuration
interface POS1/0
 ip router isis
interface POS3/0
 ip router isis
router isis
 net 12.bbbb.bbbb.bbbb.00

router-c# show running-configuration
interface POS0/0
 ip router isis
router isis
 net 12.cccc.cccc.cccc.00

hannes@router-a> show configuration
interfaces {
 so-2/0/0 {
 unit 0 {
 family iso;
 }
 }
 so-3/0/0 {
 unit 0 {
 family iso;
 }
 }
 lo0 {
 unit 0 {
 family iso {
 address 12.aaaa.aaaa.aaaa.00;
 }
 }
 }
}
protocols {
 isis {
 interface lo0.0;
 interface so-2/0/0.0;
 interface so-3/0/0.0;
 }
}

hannes@router-d> show configuration
interfaces {
 so-0/0/0 {
 unit 0 {
 family iso;
 }
 }
 lo0 {
 unit 0 {
 family iso {
 address 12.dddd.dddd.dddd.00;
 }
 }
 }
}
protocols {
 isis {
 interface lo0.0;
 interface so-0/0/0.0;
 }
}

Area 11 Area 12

router-b# show running-configuration
interface POS1/0
 ip router isis
interface POS3/0
 ip router isis
router isis
 net 12.bbbb.bbbb.bbbb.00
 net 11.bbbb.bbbb.bbbb.00

router-c# show running-configuration
interface POS0/0
 ip router isis
router isis
 net 11.cccc.cccc.cccc.00

hannes@router-a> show configuration
interfaces {
 so-2/0/0 {
 unit 0 {
 family iso {
 address 12.aaaa.aaaa.aaaa.00;
 }
 }
 }
 so-3/0/0 {
 unit 0 {
 family iso;
 }
 }
 lo0 {
 unit 0 {
 family iso {
 address 11.aaaa.aaaa.aaaa.00;
 }
 }
 }
}
protocols {
 isis {
 interface lo0.0;
 interface so-2/0/0.0;
 interface so-3/0/0.0;
 }
}

hannes@router-d> show configuration
interfaces {
 so-0/0/0 {
 unit 0 {
 family iso;
 }
 }
 lo0 {
 unit 0 {
 family iso {
 address 12.dddd.dddd.dddd.00
 }
 }
 }
}
protocols {
 isis {
 interface lo0.0;
 interface so-0/0/0.0;
 }
}

Level 2 Topology

Level 1 Topology

A B

DC

A B

DC

FIGURE 4.16. Area splitting example

You can display the contents of the database using the show isis database com-
mand on both IOS and JUNOS.

IOS command
The show isis database command shows first the Level-1 and next the Level-2
database.

Local SPF Computation 95

Area 11 Area 12

router-b# show running-configuration
interface POS1/0
 ip router isis
interface POS3/0
 ip router isiser isis
rout
 net 12.bbbb.bbbb.bbbb.00
 net 11.bbbb.bbbb.bbbb.00

router-c# show running-configuration
interface POS0/0
 ip router isis
router isis
 net 11.cccc.cccc.cccc.00

hannes@router-a> show configuration
interfaces {
 so-2/0/0 {
 unit 0 {
 family iso {
 address 12.aaaa.aaaa.aaaa.00;
 }
 }
 }
 so-3/0/0 {
 unit 0 {
 family iso;
 }
 }
 lo0 {
 unit 0 {
 family iso {
 address 11.aaaa.aaaa.aaaa.00;
 }
 }
 }
}
protocols {
 isis {
 interface lo0.0;
 interface so-2/0/0.0;
 interface so-3/0/0.0;
 }
}

hannes@router-d> show configuration
interfaces {
 so-0/0/0 {
 unit 0 {
 family iso;
 }
 }
 lo0 {
 unit 0 {
 family iso {
 address 12.dddd.dddd.dddd.00;
 }
 }
 }
}
protocols {
 isis {
 interface lo0.0;
 interface so-0/0/0.0;
 interface so-0/0/0.0;
 }
}

Area 13

router-b# show running-configuration
interface POS1/0
 ip router isis
interface POS3/0
 ip router isis
router isis
 net 13.bbbb.bbbb.bbbb.00

router-c# show running-configuration
interface POS0/0
 ip router isis
router isis
 net 13.cccc.cccc.cccc.00

hannes@router-a> show configuration
interfaces {
 so-2/0/0 {
 unit 0 {
 family iso;
 }
 }
 so-3/0/0 {
 unit 0 {
 family iso;
 }
 }
 lo0 {
 unit 0 {
 family iso {
 address 13.aaaa.aaaa.aaaa.00;
 }
 }
 }
}
protocols {
 isis {
 interface lo0.0;
 interface so-2/0/0.0;
 interface so-3/0/0.0;
 }
}

hannes@router-d> show configuration
interfaces {
 so-0/0/0 {
 unit 0 {
 family iso;
 }
 }
 lo0 {
 unit 0 {
 family iso {
 address 13.dddd.dddd.dddd.00;
 }
 }
 }
}
protocols {
 isis {
 interface lo0.0;
 interface so-0/0/0.0;
 }
}

Level 2 Topology
Level 1 Topology

A B

DC

A B

DC

FIGURE 4.17. Area renumbering example – during configuration the worst case is that 3 areas are
necessary, which is the reason that 3 areas is the default that every vendor does support

Frankfurt#show isis database

IS-IS Level-2 Link State Database

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

Frankfurt.00–00 * 0x000003db 0x4BA7 692 0/0/0

London.00–00 * 0x00000570 0xCD17 42134 0/0/0

[…]

JUNOS command
The JUNOS show isis database output looks similar to the IOS output:

hannes@London> show isis database

IS-IS level 1 link-state database:

0 LSPs

IS-IS level 2 link-state database:

LSP ID Sequence Checksum Lifetime Attributes

Frankfurt.00–00 0x3db 0x4ba7 62094 L1 L2

London.00–00 0x570 0xcd17 63349 L1 L2

[…]

After receipt of all LSPs in a given IS-IS network, the router runs a shortest path first
(SPF) calculation to find out the “shortest path” for a given prefix through the network.
The SPF calculation is an algorithm derived from graph theory that can find, in a finite
numbers of steps, the shortest distance between a pair of nodes. There is an entire chap-
ter dedicated to the internals of the SPF calculation and the associated commands to
troubleshoot SPF problems, Chapter 10 “SPF and Route Calculation”.

4.6 IS-IS Addressing

When people begin studying IS-IS, the first pitfall for them is OSI addressing. Variable
length addressing and complicated delegation schemes are bad enough. But IS-IS inherit-
ing its addressing scheme from the CLNP address family creates another level of confusion
because sometimes the boundaries between CLNP and IS-IS are not clear to the novice.

IS-IS addressing follows a different semantic style and paradigm than IP addresses do.
However, it is surprisingly simple compared to IP addressing. In this chapter, the OSI
addressing paradigm will be discussed in comparison to IP. At the end, several examples
of addressing schemes, plus guidelines for assigning and delegating OSI addresses in a
network, will be presented.

4.6.1 IP Addressing
Before introducing OSI addressing, consider the basics of IPv4 addressing. (This book
does not consider IPv6 addressing, but IS-IS works just as well with IPv6 as IPv4, another
advantage compared with the extensive re-writes needed for OSPFv6.) The IPv4, address

96 4. IS-IS Basics

is a fixed, 32-bit entity. It has a different meaning for routers and for hosts like PCs or
workstations. Please note that the term “hosts” in this context has nothing to do with
mainframe technology. It is simply a term borrowed from ancient IP terminology mean-
ing a computer or workstation that runs IP. For a host, the address consists of two parts:
The network part and the host part. The boundary between the network and host part is
defined using the network mask. The network mask is typically a continguous sequence
of bits usually written down in decimal notation. For instance, a 24-bit “netmask” could
be written as 24 consecutive bits, or in more readable decimal representation as
255.255.255.0. Since the introduction of classless interdomain routing (CIDR) in the
Internet, as described in RFC 1518, it has become common not to write up the entire
netmask, but just the prefix-length. The prefix-length is the decimal representation of the
“bit border” between the network and the host part of the IP address. The shorter the prefix-
length, the larger the host count beyond. Table 4.1 shows the relationship between a few
selected prefix lengths (netmasks) and the potential host count.

Why is the netmask or prefix-length important? Because routers and hosts figure out,
based on the prefix-length or netmask, if a destination address is on the local sub-net or
not. If the prefixes of the source and destination match, then the stations are on the same
sub-net (or at least they should be for IP to work properly).

Consider the example in Figure 4.18, which shows IP address 192.168.218.133/24.
The trailing /24 indicates a network/hosts border at 24 bits. The router (and other hosts)
applies the netmask to find out if a given source/destination address pair in a packet is on
the same sub-net. If this example, host 192.168.218.133 wants to communicate with host
192.168.218.22. Each IP device knows that the destination host is local. How? The two
IP addresses are compared, but just to the network boundary: in this case only the first
24 bits are compared. The first 24 bits match (192.168.218 � 192.168.218), so the destin-
ation host must be on the same sub-net. Therefore the packet is sent directly to the destin-
ation host. What if the destination IP address is not on the local network (the prefixes do
not match)? Then the packet needs to be forwarded to a default-router which is always

IS-IS Addressing 97

TABLE 4.1. Host count by prefix length
Prefix length Netmask Host count

/8 255.0.0.0 16777216
/12 255.240.0.0 1048576
/16 255.255.0.0 65536
/20 255.255.240.0 4096
/21 255.255.248.0 2048
/22 255.255.252.0 1024
/23 255.255.254.0 512
/24 255.255.255.0 256
/25 255.255.255.128 128
/26 255.255.255.192 64
/27 255.255.255.224 32
/28 255.255.255.240 16
/29 255.255.255.248 8
/30 255.255.255.252 4
/31 255.255.255.254 2
/32 255.255.255.255 1

present on every LAN connected to another IP sub-net (the Internet is the collection of all
public IP sub-nets). The default router on the LAN runs a routing protocol like IS-IS and
interdomain routing protocols like BGP to learn where the destination prefix is located
(actually, the router only cares about the next-hop closer to the destination). Based on
that information, the router builds up its routing table, extracts a forwarding state from
that, and populates the forwarding ASICs. When traffic arrives, the router tries to find out the
best match prefix for a given IP packet destination address and forwards the traffic one
hop closer to its destination. A lot of the information in this book covers how IS-IS learns
and distributes IP prefixes.

Before considering the OSI addressing scheme, the IP addressing model needs to be
detailed first. Each protocol address family differs in terms of things like: Where are
addresses applied? At the interface-level or at the box-level, do addresses have to be unique?
What is the scope of addresses? How easy is renumbering? These kinds of questions and
the resulting answers is what we refer to as the addressing model. In the following sections,
the IP addressing model is examined and answers provided for the above questions. Along
the way, we discuss the differences between numbered and unnumbered interfaces and
how all of this relates to the OSI way of addressing.

4.6.2 IP Addressing Model
In the IP world, each address on a router needs to be assigned to a sub-net, and the IP
address it uses to attach that sub-net must be unique. In illustration, Figure 4.19 shows an
IP router with five physical and one logical interfaces. The router holds two Gigabit
Ethernet interfaces and three Packet-over-SONET/SDH (POS) interfaces. Each of the
two physical interfaces holds an address. In the figure, both Gigabit Ethernet circuits are
configured using /24 addresses, which is a very typical prefix length for POP LANs. The
POS interfaces are true point-to-point interfaces and therefore do not need more than two
IP addresses (one for each end of the link). A /31 address would be the prefix of choice for
point-to-point interfaces. Unfortunately, /31 interface routes have long been treated like
a pariah among IP prefixes. When assigning IP prefixes, two special addresses in the prefix-
range are reserved and must not be used, the first and the last address of the prefix range.
The first address typically represents the sub-net itself and the last address is used as a
broadcast address for subnet-wide broadcasts. However, a /31 address has only room for

98 4. IS-IS Basics

0–8

11111111

192
0000000011111111 11111111

9–16 17–24 25–32

8 8 8 24� ��

Network/Host borderline

168 218 133

FIGURE 4.18. The border between network and host parts of the IP address

2 addresses (the one host bit). If the first one and the last one of these two addresses must
not be used to satisfy the IP conventions, there is actually nothing left to be assigned to
devices. Therefore /31 routes have never been used in the past. However, for point-to-
point interfaces, no one needs a sub-net descriptor and a broadcast address because in a
point-to-point environment there is just one neighbour, which hardly requires a broadcast
to reach. RFC 3021 revises the common practice of assigning the first and the last
address to sub-net and broadcast addresses for /31 prefixes and makes them usable again.
Although modern routers all support /31 prefixes per RFC 3021, the management software
of the most common OSS management suites lack this support and often display error mes-
sages like “Illegal Network Mask” when they scan the router’s interface tables and do see
a /31 allocation. So, before introducing /31 addresses in your network, check with your
Network Management System vendor and see if the software supports /31 netmasks. We
find /30 addresses for point-to-point interfaces to prevail in most networks.

Before discussing the unnumbered interface POS2/0 in the figure, the Virtual Loopback0
interface is discussed first. Why would anyone need a virtual interface? Virtual interfaces
have the advantage of not being tied to hardware, which can fail, and therefore never go
down. In the TCP/IP family, any session between a pair of computers is tied to IP addresses,
which in most cases are tied to hardware. Therefore, we want to tie our sessions to the
most reliable interface. Designers of early routing software introduced the loopback
interface for that purpose. Most session-oriented routing protocols source their BGP
updates from a loopback interface. This has the advantage that if the underlying physical
hardware fails, the BGP session can be rerouted as well, resulting in overall better
resiliency behaviour for the router’s control plane. The loopback interface is also the
interface that is used when Network Operation Centre (NOC) teams want to access the
router. Theoretically, any IP address that has been assigned to any of the interfaces can
be used to access the router. However, if the interface is currently down, this will not
work. If the router’s loopback address is used in management sessions, there is always at
least one interface in the “up” state, as long as the router is functioning at all. When IP
engineering teams prepare routers for the live network, typically the first address that is
configured on the router is the loopback interface.

IS-IS Addressing 99

Unnum
bered

POS2/0

172.16.2.12/31
POS2/3

172.16.32.1/24
GigabitEthernet4/0

17
2.

16
.2

.9
/3

0

POS4/
0

172.16.31.1/24
GigabitEthernet5/0

192.168.27.3/32
Loopback0

FIGURE 4.19. An IP router typically has an IP address configured on all interfaces

The unnumbered interface is an interface that does not carry IP addresses, and this prac-
tice is intended to save IP addresses. Additionally, many people see the advantages of
unnumbered interfaces as less administration and housekeeping of IP addresses, which
are typically of importance at the edge of the network. Many IP protocols rely on the exis-
tence of IP addresses, for instance, to terminate a TCP session. How are sessions termi-
nated using unnumbered addresses? Here the loopback address performs an interesting
function. The loopback address is used as “replacement” whenever a packet leaves the
router. For instance, if a router wants to send a logging event that a link has gone down,
and the shortest path to the logging host goes out of an unnumbered interface, the router
uses its loopback IP address as the source IP address. Unnumbered interfaces do have the
disadvantage of fewer troubleshooting possibilities. If a neighbouring router does have an
IP address, a simple ping will find out if it is capable of responding. However, with
unnumbered interfaces, no ping to the neighbouring router helps, because there is no IP
address assigned to the interface. What can be pinged is the neighbouring router’s loop-
back address. However, this assumes a proper routing of the loopback IP address, and this
requires a routing protocol like IS-IS. If the problem is that routing protocol does not work
or does not come up, then troubleshooting gets difficult. Most networks use numbered
links in the core and unnumbered interfaces some place at the edge, if at all. In most cases,
unnumbered interfaces are not used anywhere in the network.

Why are loopback and unnumbered interfaces that important? In the OSI addressing
section, it will be shown that the IP addressing style and the OSI addressing style can be
compared (and also easily explained) using the loopback and unnumbered interface
addressing model.

4.6.3 OSI Addressing
IS-IS inherited its addressing structure from the OSI suite of networking protocols, as
many other protocols (such as ATM) did. Before the structure of OSI addresses is
explored, the addressing model of an OSI router should be discussed. Figure 4.20 shows
the way that OSI addressing is accomplished. First of all, there is just one OSI address
per router, which is typically assigned to the central routing process like in Cisco
Systems’ IOS, or to a virtual loopback interface as in Juniper Networks JUNOS. There
can be more than one OSI address assigned per router for address migration purposes,
however, the scope of an assigned address is router-wide. There are no other interface
addresses assigned to an OSI router. End Systems (hosts in IP) discover and register
their addresses with the IS-IS router using a protocol called ES–IS (End-System to
Intermediate System), a protocol that exists in parallel with IS-IS and is at the same level
in the networking stack. As far as IP routing is concerned, ES–IS does not play a role
here, because the IP End Systems use a static-allocation method to “discover” their
router. The term “unnumbered” is used deliberately in Figure 4.20 because that best
describes OSI routing works: at least one NET per router needs to be configured and then
the router sources all routing messages with the configured NET. Compared to the IP
model, OSI behaves exactly as if a user configured just a single address for the loopback
interfaces and configured all the other interfaces in the chassis as unnumbered.

100 4. IS-IS Basics

This discussion has been using the terms OSI address and NET interchangeable,
which is correct. The NET is technically a subset of a full OSI address structured as illus-
trated in Figure 4.21. The NET consists of three parts:

• The Area-ID
• The System-ID
• The NET Selector (NSEL)

The NET is easier to understand when read from right to left and not from left to right as
an IP address.

4.6.3.1 NSEL

The last byte of the NET is called the selector or NSEL byte. For IS-IS, without excep-
tion, this byte must be zero. If it is not zero, then no adjacencies form. Compared to the
IP world, the NSEL is like the protocol field in the IP header, and can further multiplex
several sub-systems on a given NET. For IS-IS routers, the NSEL is always set to zero to
mean “this system”.

4.6.3.2 System-ID

Any link-state routing protocol must ensure that each node in the network can be identi-
fied uniquely. If a node cannot be identified uniquely then all subsequent functions of the

IS-IS Addressing 101

System ID
(6 Bytes)

NSEL
(1 Byte)

49.0001.1921.6821.1137.00
variable length Area

(1-13 Bytes)

AFI
(1 Byte)

FIGURE 4.21. The Network Entity Title (NET)

Unnum
bered

POS2/0

Unnumbered
POS2/3

Unnumbered
GigabitEthernet4/0

Unn
um

be
re

d

POS4/
0

Unnumbered
GigabitEthernet5/0

49.0001.1921.6817.4012.00
Loopback0

FIGURE 4.20. IS-IS only needs one address per router

protocol will fail, including LSP origination, SPF calculation and so on. Having non-
unique System-IDs in a network has one of the nastiest failure patterns troubleshooters
will ever encounter. Often it takes hours to establish that there is an ambiguity problem,
and then it takes many more hours to uniquely identify the “bad guy” in the network.
When contrasting then the router ID in OSPF is the functional equivalent of System-ID
in IS-IS.

One of the oddities of IS-IS is that in ISO 10589 there is support for variable length
System-IDs. The theory was that the ideal way to be a routing protocol for anybody is to
make the System-ID length variable. The IS-IS System-ID’s length ranges from 1 to 8 bytes,
but thankfully no vendor has ever implemented IS-IS System-IDs with a length other than
6 bytes. It is one of the great mysteries of IS-IS why the revised ISO 10589 specification
still supports System-IDs of other than 6 bytes in length. The length of the System-ID is
included in the IS-IS common header (see Figure 4.13). Today, virtually all router imple-
mentations do updates from IS-IS speakers with a System-ID length other than 6 bytes.

System-ID allocations schemes, on the other hand, can be very different. Almost every
network we know of has a different allocation scheme. So arguing about allocation and/or
delegation schemes is a pointless exercise: most ISPs have opted for a certain scheme
long ago and are going to stick with it. The problem with introducing another allocation
scheme is the administration of System-IDs, of course. Uniqueness must be guaranteed,
and so there are allocation schemes like picking the System-ID from a list (this very
quickly gets to its end as the network grows). Implementing a central database to gener-
ate unique System-IDs for a network is better, but usually means additional implementa-
tion costs. The best current practices we have seen so far are based on translation schemes
that translate the IP loopback address into an IS-IS System-ID. The IP address should be
unique already, although it is a bit smaller than the System-ID (32-bit IP address vs. 48-bit
System-ID). But a translation scheme that translates to a bigger numbering space does
not lose information, so the property of uniqueness is retained. Calculating the System-ID
based on the IP address actually avoids all kinds of extra System-ID management work,
because the System-ID is simply inherited from the IP address, and most service providers
already have tools and systems in place to administer IP address allocation. Figure 4.22
shows the most common IP address conversion schemes for the IS-IS System-ID, and
these are discussed below.

1. BCD encoding. The first method is known as binary coded decimal (BCD) encoding.
The idea is very simple. Write up an IP address in decimal notation. Make sure that
every number is a 3-digit number by filling in with leading zeros. Figure 4.22 shows
the IP address 192.168.2.117 becoming the string 192168002117. Finally, just change
the position of the dots. After each 4 digits, put a dot, so the System-ID becomes
1921.6800.2117. BCD encoding is by far the most common translation scheme.

2. Direct translation. In the second method, make a copy of the hex notation of the IP
address directly into the byte positions 3, 4, 5 and 6 of the System-ID. This approach is
not very friendly to human operators, except for living hex calculators (how many readers
knew instantly that 117 decimal is 0x75?). The only advantage here is that machines
(probes or robots) can convert the IP addresses a bit easier, but it is not worth the effort.
There is no real advantage over the first approach, so this scheme is rarely used.

102 4. IS-IS Basics

3. Direct translation and prepending with POP/Topology codes. The third scheme is
mostly used to guarantee unique topologies if a system runs multiple IS-IS routing
process instances. Similarly to the second scheme, the hex-encoded IP address is
copied down to the byte positions 3, 4, 5 and 6 of the System-ID. But then the first two
bytes are filled with some sort of topology or POP code. The idea here is to guarantee
uniqueness, even among the instances of the routing process. If IS-IS is run as the rout-
ing protocol between VPN customers, and even this customer should have a unique
System-ID, this method makes a lot of sense. The System-ID space is big enough to
afford the luxury of making multiple instances of NETs unique, even inside a router.
This scheme is mostly used in very large deployments of the IS-IS protocol.

4.6.3.3 Area-ID

The Area-ID is the variable part of the NET and can range from 1 byte to 13 bytes in length.
In most deployments, Area-ID sizes of 1, 3 or 5 bytes are used. The content of the first
byte tells how to interpret the rest of the Area-ID. This first byte is called the Address
Family Identifier (AFI).

The following well-known AFIs are defined:

39 DCC (data country code)
45 E.164
46 ICD (International code designator)
49 private-addressing

E.164, DCC, or the ICD addressing schemes are not covered in this chapter because
they describe pure delegation schemes either according to a phone-numbering plan (E.164),
per country (DCC), or per international organization (ICD). For more about AFIs, see the
ATM Forum Addressing User Guide version 1.0.

IS-IS Addressing 103

Byte 1

19

192.168.2.117 0xC0.A8.02.75

Byte 2

21

Byte 3

68

Byte 4

00

Byte 5

21

Byte 6

17. .
Byte 1

00

Byte 2

00

Byte 3

C0

Byte 4

A8

Byte 5

02

Byte 6

75. .
Byte 1

01

Byte 2

F4

Byte 3

C0

Byte 4

A8

Byte 5

02

Byte 6

75. .

BCD conversion

direct HEX translation, leading
bytes are zeroed

direct HEX translation, leading
bytes prepended with POP/
Topology code (0x1F4 � 500)

1

2

3

FIGURE 4.22. The three most common conversion schemes to calculate the System-ID based on
the loopback IP address

Because selecting an Area-ID is a purely local AS matter, any of the preceding three
methods can be used, or AFI 49. This AFI has been especially created for purely private
addressing. AFI 49 can be thought of as the RFC 1918 of OSI addressing. RFC 1918 dele-
gates the 10/8, 172.16/12 and 192.168/16 prefixes for private use.

4.6.4 Examples of OSI Addressing
This section presents four examples of NETs that can be used in a network.

• 01.1921.6813.2134.00
This first address is the minimalist form of an IS-IS NET, with a total length of
8 bytes. Because the 1-byte NSEL is always 0 and the System-ID is always 6 bytes,
this leaves room for only 1 byte of Area-ID, which results in a possible 255 different
areas. The System-ID is derived from the IPv4 address 192.168.132.134.

• 49.0001.1921.6822.2193.00
This second address is the most commonly deployed format of an ISO NET. It uses
the “private” AFI 49 along with a 2-byte area number, which even gives large IS-IS
clouds plenty of room to grow. The System-ID is derived from the IPv4 address
192.168.222.193.

• 49.0CF8.0001.1930.8322.3228.00
If two service providers merge, there might be Level-1 Area-ID collisions. The sec-
ond example can be enhanced to make the Area-ID unique by extending the Area-ID
to 4 bytes and prepending a 2 byte routing domain (ISO talk for the OSPF AS num-
ber, or ASN) in the form of the 2-byte area number. Note that 0x0cf8 is the hex encod-
ing for ASN 3320. The System-ID is derived from the IPv4 address 193.83.223.228.

• 47.0005.0000.0000.0000.20ff.0001.0100.8806.3201.00
This last 20-byte NET is the extreme case of IS-IS addressing. RFC 1237 contains
further details about how the space between byte #2 and byte #9 is structured, and
what the leading 0x0005 represents. Prepended to the System-ID is the 2 byte routing
domain, along with the 2-byte area number. Note that 0x20ff is the hex encoding for
ASN 8447. The System-ID is derived from the IPv4 address 10.88.63.201.

4.6.5 Configuring NETs
You can configure any of the above NET formats. But where they are configured is dif-
ferent depending on router NOS: in JUNOS the NET is configured under the interfaces
lo0 branch, and in IOS the NET is configured using the keyword net under the router
isis section.

IOS configuration
New-York# show running-configuration

[…]

router isis

net 49.0cf8.0001.1930.8322.3228.00

[…]

104 4. IS-IS Basics

JUNOS configuration
hannes@London> show configuration

[…]

interfaces {

lo0 {

unit 0 {

family inet {

address 172.31.208.1/32;

}

family iso {

address 49.0cf8.0001.1930.8322.3228.00;

}

}

}

}

[…]

You can configure any of these formats on JUNOS, by setting the address under the
family iso statement on any interface. Normally, the virtual loopback interface
lo0 is used, just for consistency.

4.7 Names, System-, LAN- and LSP-IDs

Even if it is simple to derive System-IDs from IP addresses, in a modestly large network
there might be several different types of conversion schemes. Troubleshooting such a
network is not an easy task, as you always need to remember what conversion scheme a
node’s System-ID has been based on. Troubleshooting a large set of adjacencies also
poses a problem, because looking at a long listing of System-IDs (which have little to do
with the IP addresses on the routers), it is not always easy to find out what router corres-
ponds to the Down adjacency.

JUNOS configuration
hannes@London> show isis adjacency

[…]

show isis adjacency

Interface System L State Hold (secs) SNPA

so-4/2/0.0 1921.6800.1014 2 Up 26

so-5/2/0.0 1921.6800.1018 2 Up 27

so-5/3/0.0 1921.6800.1011 3 Up 25

so-6/2/0.0 1921.6800.1012 3 Up 28

so-6/3/0.0 1921.6800.1012 3 Up 27

[…]

However, exactly the same problem is also known to OSPF deployments: it is some-
times very awkward to troubleshoot adjacencies from just a big list of IP addresses. The
human brain is simply not built for doing pattern matches on IP addresses (evolution

Names, System-, LAN- and LSP-IDs 105

might eventually change this). In OSPF, the problem has been fixed by utilizing the
Domain Name System (DNS) resolution service for translating IP addresses on an adja-
cency back to the name of a peer. This makes debugging much more convenient.

Utilizing the DNS for name resolution has two major problems as far as IS-IS is
concerned:

• The DNS does not understand 48-bit System-IDs
• Relying on the DNS for convenient troubleshooting when the network may be in trou-

ble creates a chicken-before-the-egg problem. Most troubleshooters really hate it when
the System-ID lookup finds out that the DNS is not reachable, and this only by looking
at their OSPF peers, and the output takes 15 seconds per DNS lookup-timeout period
unless all the adjacencies are displayed. Also, statically defining the System-ID to name
mappings can be a painful experience as someone has to synchronize the System-ID to
name mappings manually across all routers in the network. One mismatched entry and
people often get absolutely lost during the troubleshooting process.

IS-IS is much smarter in this respect. It has the name resolution service for IS-IS built
into the protocol. When first displaying an IS-IS adjacency, operators are pleased to find
that all systems are listed using their hostname. The mechanisms behind this unique
translation service are discussed in Chapter 13 “IS-IS Extensions”.

Then why discuss name resolutions in the introduction chapter? Just because IS-IS uses
the System-ID in various places. The two commonest cases are in the LAN-ID and the
LSP-ID, used for giving a routing update a unique ID. Figure 4.23 and Figure 4.24 show
various IDs in the IS-IS protocol that use the System-ID as their first 6 bytes.

The name resolution scheme affects these IDs as well, so output is displayed in the
form Washington.00-00 or Frankfurt.04 or London.00-00. The router is just trying to
make the output as convenient as possible!

hannes@London> show isis adjacency

[…]

IS-IS level 1 link-state database:

London.00–00 Sequence: 0x175, Checksum: 0x2306, Lifetime: 3763 secs

IS neighbour: Frankfurt.04 Metric: 63

IS neighbour: Pensauken.00 Metric: 63

106 4. IS-IS Basics

1921.6820.4003.02
System-ID Pseudonode-

ID

FIGURE 4.23. The LAN ID occurs in many IS-IS messages – the first 6 bytes represent a System-
ID and therefore the CLI renders the output using the Hostname-to-System-ID database

The System-ID field of the LSP-ID is displayed as a name. However, the origin
router’s System-ID is displayed with the show isis hostname command (the same
in IOS and JUNOS), which displays the hostname cache on the local router.

IOS command
IOS marks the local node with an asterisk (*):

Frankfurt#show isis hostname

Level System ID Dynamic Hostname

1921.6800.1013 London

* 1921.6800.1014 Frankfurt

1921.6800.1018 Washington

[…]

JUNOS command
JUNOS displays in addition if the entry has been learned via other routers, or if it has
been locally configured. The local node is always marked “Static”.

hannes@London> show isis hostname

IS-IS hostname database:

System ID Hostname Type

1921.6800.1013 London Static

1921.6800.1014 Frankfurt Dynamic

1921.6800.1018 Washington Dynamic

[…]

4.8 Summary

This chapter explored the foundations of IS-IS. The independence of area addressing and
routing hierarchy was contrasted to the OSPF model where Area 0 implicitly makes up a

Names, System-, LAN- and LSP-IDs 107

1921.6820.4003.02-00
System-ID Pseudonode-

ID
Fragment-

ID

FIGURE 4.24. The LSP-ID uniquely identifies an IS-IS router announcement – the first 6 bytes
represent the System-ID of the sender therefore the CLI renders the output using the Hostname-
to-System-ID database

routing hierarchy. The concept of an arbitrarily assigned level to the underlying physical
topology was explained. This flexibility allows IS-IS to make very resilient POP top-
ology without spending extra costs for physical intra-POP links just to heal the topology.
The IP addressing model and the OSI addressing model were discussed in a comparative
way; interestingly, the IS-IS model corresponds almost exactly to the unnumbered IP
routing model. IS-IS inherits its addressing structure from the OSI suite of protocols.
Address assignment is a relatively easy task. The fixed part of the NET can be calculated
based on the IP loopback address of the router and/or the POP/topology codes that are
unique to each service provider. The Area-ID is the only variable part in the system, and
based on network size, most IS-IS networks use 3 or 5 byte Area-IDs. Most Area-IDs
start with 49 because the 49/8 prefix has been allocated for private use – it is the RFC
1918 of the OSI suite. Finally, this chapter presented the IS-IS built-in name resolution
service and several commands to display those ID formats which benefit from the address
resolution service as well.

108 4. IS-IS Basics

Virtually all routing (and signalling) protocols include a method of automatic neighbour
discovery that enables a router to determine if there are any other adjacent routers running
the same routing protocol. Once you enable IS-IS on an interface, the routing protocol
will automatically find out if there are other routers out there speaking the same protocol
and version and immediately start to interact with these remote routers. Additionally the
routing protocol needs to verify if the link is two-way capable (that is, equally able to pass
protocol traffic in both directions) before it can announce a Reachability Information TLV
in a link-state PDU (LSP) and flood it throughout the topology. This verification of link
capabilities and bi-directional checks is done using a process known as handshaking. This
chapter examines how IS-IS routers perform neighbour discovery and handshaking on
LAN and WAN circuits. Additionally, different properties of handshaking methods, such as
the simple 2-way handshake and the inherent problems of using this 2-way handshaking
method are discussed.

You will also learn the details of adjacency finite state machine changes and network
stability improvement techniques like adjacency hold downs. Finally, requirements of
highly resilient neighbour “liveness” checking will be presented and popular solutions
will be explored including technologies like bi-directional fault detection. Everything
will include configuration snippets, show command and debug output, plus tcpdump out-
put for a better understanding of the IS-IS protocol.

5.1 Hello Message Encoding

Each routing protocol uses Hello messages for neighbour discovery and to perform
handshaking. In IS-IS, just like in any other routing protocol, this function is performed
through the use of what IS-IS calls Intermediate System to Intermediate System Hello
(IIH) messages. IS-IS uses dedicated IIH messages for the two types of topologies a
router can be configured to be a member of: there is one Hello type for the Level 1 adja-
cencies and one Hello type for the Level 2 adjacencies. There are more details about the
IS-IS hierarchical Level 1/Level 2 routing paradigm in Chapter 4 “IS-IS Basics”.

IS-IS supports two different circuit types: point-to-point (p2p) and broadcast LAN cir-
cuits. There is a dedicated type of Hello Message for point-to-point circuits and another
one for broadcast circuits. So in theory there should be two Hello messages for each cir-
cuit type (point-to-point or broadcast) and two Hello message types for each Level, L1
or L2. This should total four distinct Hello message types.

109

5

Neighbour Discovery and Handshaking

In ISO 10589, however, there was some concern that running two Hellos (one per
level) on point-to-point links would consume too much bandwidth on narrow-band links.
So IS-IS is optimized for point-to-point circuits and only uses one PDU type for both
levels. Figure 5.1 shows the structure of the IS-IS common header, which starts every IS-IS
message. The 8-bit PDU type field indicates the type of message that is carried inside the
IS-IS message. On the right of the figure there is a list of the nine distinct PDU types for
IS-IS. Three out of the nine PDU types are reserved for Hello messages. The point-
to-point circuit types share one PDU type (17) for both levels, so there are not really
four different Hello messages but only three.

What do the Hello messages look like on the wire? Each IS-IS message type is
prepended with an 8-byte common header that tells the receiver about the IS-IS protocol
version being used, the header length, the maximum number of concurrent areas sup-
ported, as well as other IS-IS global parameters, such as the length of the System-ID
field. Figure 5.1 shows the structure of the common header that is prepended to all IS-IS
related messages. In the figure, you can see that some of the fields are already filled in
with number values. We have chosen not only to show the frame structure, but also to
show how the frames are populated with number values. These numbers represent con-
stants and fill in the common header with typical values. It is interesting to note that some
header fields, such as the number of supported areas and the length of the System-ID
field, are set to zero. Zero has a special meaning in IS-IS. Using the zero value is equiv-
alent to telling routers to use the default value for a field, which is not typically zero.

110 5. Neighbour Discovery and Handshaking

Intra-domain routing protocol discriminator

Header Length Indicator

Version/Protocol ID Extension

0x83

Bytes

1

1

1

1

1

1

1

1

1

ID Length

PDU TypeR
0

R
0

R
0

PDU Version

Reserved

Maximum Area Addresses

6 (0)

1

3 (0)

0

PDU specific fields 17–33

TLV section 0–1467

15
16
17
18
20
24
25
26
27

Level 1 LAN Hello
Level 2 LAN Hello
 p2p Hello
Level 1 Link State PDU
Level 2 Link State PDU
Level 1 CSNP
Level 2 CSNP
Level 1 PSNP
Level 2 PSNP

PDU
Type

Name

15

Level LAN circuit p2p circuit

1

2 16
17

FIGURE 5.1. Three out of the nine IS-IS PDU types are allocated for Hello messages on p2p and
broadcast circuits

Oddly, because the default value is not explicitly set out in detail in IS-IS, each imple-
mentation has to intuitively know the default values. The default value for System-ID-
Length is 6 bytes and the default value for Maximum Area Addresses is 3, but these are
really de facto defaults and not set out as hard limitations.

You should now have a basic understanding of IS-IS Hello messages. The following
sections discuss LAN Hello messages and point-to-point messages in greater detail.

5.1.1 LAN Hello Messages
Figure 5.2 shows the structure of an IS-IS Hello message as it is used on LAN (IS-IS
broadcast) circuits. First there is the IS-IS common header. The header length of LAN
Hello messages is always set to 27 bytes – this represents the aggregate length of the
common header (8 bytes) and the LAN Hello header (19 bytes). The PDU type is either
15 or 16 depending on whether or not this is a Hello message targeted for Level 1 routers
or Level 2 routers respectively.

Hello Message Encoding 111

Intra-domain routing protocol discriminator

Header Length Indicator

Version/protocol ID Extension

0x83

Bytes

1

1

1

1

1

1

1

1

1

ID Length

PDU Type
R

0
R

0
R

0

PDU Version

Reserved

Maximum Area Addresses

6 (0)

1

3 (0)

0

Reserved

TLV section 0–1467

15, 16

27

circuit
type 1, 2, 3

Source ID

Holding Time

PDU Length

PriorityR

Designated IS LAN-ID

1

ID Length (6)

2

2

1

ID Length (6) � 1

FIGURE 5.2. Structure of the L1, L2 LAN Hello PDU

The IS-IS LAN Hello message header starts with a field indicating which levels have
been configured on this circuit (the LAN). For the two lower order bits (the six other high
order bits are reserved and should be set to zero) there are three valid values:

• 0x1 Level 1 only
• 0x2 Level 2 only
• 0x3 Level 1 and Level 2

If the Circuit Type field is set to zero (both bits are zero, or “cleared” as code devel-
opers say) this represents an illegal value and the router will silently discard the Hello
message, assuming that there is something broken.

The Source-ID field contains the System-ID (the default length is 6 bytes) of the sender.
Holding Time represents the time after which the neighbour wants to be declared

dead. This sounds strange, but unlike humans, routers can specify their maximum ses-
sion lifetime. Typically, default holding time values are between 27 and 30 seconds
depending on the routing code implementation (IOS � 30 seconds and JUNOS � 27
seconds). Setting the holding time (for example) to 30 seconds is interpreted by the
receivers of the Hello message as follows: “If the neighbour router with the reported
System-ID does not send a Hello message for a period of 30 seconds, we’ll declare the
neighbour router dead and take appropriate action.” This action usually involves telling
the other neighbours that the adjacency relationship between these two routers has been
terminated. Each Hello message received resets the countdown number for this drop-
dead timer.

Figure 5.3 illustrates the sequence of events that refresh the hold timer. At t[0s], the
router receives a Hello message that sets the hold timer to 30 seconds. So the receiving

112 5. Neighbour Discovery and Handshaking

Neighbour
down

threshold

40

30

20

10

0

Hold Timer
(s)

10 20 30 40 50 60

New hello received
new hold time 30s,

reset hold timer

t (s)

New hello received
new hold time 30s,

reset hold timer

New hello received
new hold time

increased to 40s,
reset hold timer

FIGURE 5.3. Each Hello message resets the hold timer

router initializes a countdown timer, starting at 30 seconds. Next, the neighbouring
router will refresh the adjacency. To calculate the frequency for those refreshes there is a
constant called the Hello multiplier which is by default set to the value 3. The neigh-
bouring routers refreshes the Hello each (hold-timer divided by the Hello multiplier
time) period. Using the default values of 30/3, the adjacency should get a refresh every
10 seconds. If a router wants to lower the Hello frequency, no problem, as long as the
neighbouring router makes sure that the adjacency gets properly refreshed within the
hold-time period. The Hello message is resent every 10 seconds (or t[10s,20s], as repre-
sented in Figure 5.3) resulting in a saw-tooth shaped figure over time. A router can also
decide to change its hold-timer anytime – for example, at t[30s] a Hello message with the
hold time set to 40 seconds is received. This resets the countdown timer, as might be
expected, to 40 seconds. This is a unique capability among IP routing protocols: each
IS-IS router can set its hold-timer independently from every other router on the network.

This feature is quite different from OSPF networks where the Hello and the dead timer
have to match throughout entire sub-net, otherwise the routers will not form neighbour
adjacencies. On OSPF LANs, changing timers on the fly is disruptive and lacks the flexi-
bility that IS-IS gives you, unless you somehow manage to change all the Hello and
dead timers at the same point in time using a configuration script/robot. IS-IS is much
more operationally friendly in that respect, because IS-IS does not rely on any other
routers to match its timers like OSPF does. In OSPF, all the timers have to be aligned
with the designated router (DR).

In IS-IS such a change does not require any coordination/scripting effort. If you want
to change your own timers, you simply do it in a step-by-step fashion with no service dis-
ruption at all.

The PDU Length field contains the length of the entire packet including the common
header and the LAN Hello header.

The Priority and DIS LAN-ID fields are related to the election procedure of the
Designated Intermediate System (DIS). Chapter 7, “Pseudonodes and Designated
Routers”, contains a detailed description of why a DIS is needed and how the DIS
is elected on a LAN. The IS-IS DIS has much the same duties and functions as the
OSPF DR.

Multiple adjacencies on a circuit are displayed differently in the command line inter-
faces of Cisco and Juniper Networks. Cisco IOS displays multi-level LAN adjacencies in
one line, while JUNOS displays multi-level LAN adjacencies in two lines.

IOS command output
In IOS a Level 1 and Level 2 adjacency on a LAN circuit is displayed as L1L2 in the show
isis Adjacency output.

London#show clns neighbors

System Id Interface SNPA State Holdtime Type Protocol

Amsterdam GigE8/0 00a0.a512.3318 Up 21 L1L2 IS-IS

Pennsauken GigE4/0 00a0.a512.28d7 Up 18 L2 IS-IS

Frankfurt FastE5/0 0090.6900.fe27 Up 24 L2 IS-IS

Hello Message Encoding 113

114 5. Neighbour Discovery and Handshaking

Intra-domain routing protocol discriminator

Header Length Indicator

Version/Protocol ID Extension

0x83

Bytes

1

1

1

1

1

1

1

1

1

ID Length

 PDU TypeR

0
R

0
R

0

PDU Version

Reserved

Maximum Area Addresses

6 (0)

1

3 (0)

0

Reserved

TLV section 4–1467

17

20

circuit
type 1, 2, 3

Source ID

Holding Time

PDU Length

Local circuit ID

1

ID Length (6) � 1

2

2

1

FIGURE 5.4. Structure of the point-to-point Hello PDU

JUNOS command output
In JUNOS a Level 1 and Level 2 adjacency on a point-to-point circuit is displayed as two
separate adjacencies in the show isis Adjacency output.

hannes@Munich> show isis Adjacency

Interface System L State Hold (secs) SNPA

ge-0/1/0.0 Vienna 2 Up 17 0:90:69:2b:e:7

ge-0/1/0.0 Vienna 1 Up 22 0:90:69:2b:e:7

ge-0/2/0.0 Munich-2 1 Up 21 0:90:69:2b:e:7

On point-to-point circuits there is a dedicated Hello type for adjacency management:
the point-to-point IIH PDU (17), which will be highlighted in the next section.

5.1.2 Point-to-point Hello Messages
Figure 5.4 shows the basic structure of a Hello message used on point-to-point cir-
cuits. The point-to-point Hello message is a little shorter than its LAN counterpart, but
essentially it contains the same set of information that the LAN Hello message does.

For instance, the point-to-point Hello contains:

• Circuit Type
• Source ID
• Holding Time
• PDU Length

All of these fields have the same meaning and function as in the LAN Hello. Note that
the Designated Router and Priority fields are missing. That’s because on point-to-point
circuits there is no election of a designated router, and so the point-to-point Hello mes-
sage does not need to carry the Priority and DIS LAN-ID fields.

Additionally, there is the Local Circuit-ID field that carries the link’s circuit number
The IS-IS specification leaves it quite open as to what value should be inserted for the
Local Circuit-ID. For example, in the IOS implementation, the Interface Index of the
sender’s interface is taken as the Local Circuit-ID. The JUNOS implementation always
sets this value to 0x1. The JUNOS implementers of this “constant” Local Circuit-ID
argue that the Circuit-ID is not needed anywhere for processing, such as in SPF calcula-
tions, timer countdowns, or anything else. The Local Circuit-ID is there for purely link-
local informational purposes. And if something has just informational purposes, then no
harm can be done by not setting it to anything other than a constant.

How can IS-IS build both Level 1 and Level 2 adjacencies on a point-to-point link with just
one message type? Figure 5.2 showed that LAN Hellos have two PDU types, one for each
level, whereas point-to-point Hellos share one PDU type for both levels. The difference in pro-
cessing the point-to-point Hello compared to the LAN Hello is that receipt of a point-to-point
Hello resets the hold timers for all levels, as indicated in the Circuit Type field. For example,
if the Circuit Type field indicates that this is just a Level 1 adjacency, then just the hold timer
of Level 1 is reset. The same logic goes for Level 2 and Level 1/Level 2 capable circuits –
whatever level is indicated in the Circuit Type, those corresponding hold timers get reset.

In contrast to point-to-point Hellos, receipt of a LAN Hello just resets the hold timer
according to the PDU type. A received Hello containing PDU Type 15 just resets the
Level 1 hold timer, while a PDU Type 16 resets the Level 2 hold timer only.

Command line interfaces of routers have different ways of displaying a joint Level
1/Level 2 adjacency. For example, JUNOS displays an L1L2 adjacency on a point-to-
point circuit as Level 3. Of course there is (yet) no Level 3, but the reason for this is sim-
ple: if you take the bit patterns of a Level 2 circuit (10b) plus the bit pattern of a Level 1
circuit (01b) the sum equals to (11b), which is the binary value for 3.

JUNOS command output
In JUNOS a Level 1 and Level 2 adjacency on a point-to-point circuit is displayed as
Level 3 in the show isis Adjacency output.

hannes@Frankfurt> show isis Adjacency

Interface System L State Hold (secs) SNPA

so-0/0/0.0 Munich 3 Up 28

so-0/1/0.0 London 2 Up 27

so-0/2/0.0 Milan 2 Up 25

so-1/0/0.0 paris 2 Up 24

Hello Message Encoding 115

IOS command output
In IOS a Level 1 and Level 2 adjacency on a point-to-point circuit is displayed as L1L2 in
the show clns neighbors output.

London#show clns neighbors

System Id Interface SNPA State Holdtime Type Protocol

Amsterdam PO4/0 *PPP* Up 19 L1L2 IS-IS

Pennsauken PO4/1 *PPP* Up 18 L2 IS-IS

Frankfurt PO4/1 *PPP* Up 24 L2 IS-IS

To summarize, Hello messages are the method used for discovering neighbours. IS-IS
routers send Hellos according to their configured link types, and wait for responses that
are a match. Receipt of a matching Hello message means another router on the link is at
least configured to run IS-IS. This is a good start, but not the whole story of establishing
and maintaining a full IS-IS router adjacency.

The next step is to check if the underlying circuit to the neighbour router is two-
way capable. Two-way capable means a pair of routers can transmit and receive their
peer’s Hello messages. A router needs to be sure that “I can see you and you can see
me”, before advertising an adjacency in its LSP. In order to verify two-way circuit
capability the router needs to perform a handshaking function. There are several differ-
ent handshake algorithms available and, unfortunately, some cannot even guarantee
that the underlying link is two-way capable, due to a mistake in the ISO 10589
specification.

Even if the router is fooled by a broken handshake mechanism, nothing breaks on
the network if (for example) the circuit is just one-way capable and the router announces
the one-way reachability (I can see you, but you cannot see me) in its router LSP. During the
SPF calculation there is a verification called the two-way check that makes sure no
transit path is calculated through a one-way circuit. The two-way check will be described
in more detail in Chapter 10 “SPF and Route Calculation”.

Before IS-IS starts to verify two-way connectivity over a link it actually probes
the link first to find out if it supports large packets for data exchange at a later
stage.

5.2 MTU Check

In IS-IS the largest packet (which is typically the LSP) may become 1492 bytes (MAC
layer excluded). IS-IS tests the link by artificially bloating its Hello size up to 1492 bytes.
There is a dedicated Message Element in the Hello PDU called a Padding TLV that is
used for this purpose. Figure 5.5 shows the structure of the Padding TLV #8. The
content of the Padding TLV is filled up with random data. The information that it
does contain does not matter – what matters is that it makes the PDU artificially big
up to maxLSPsize (�1492 bytes). The tcpdump output below shows such a padded
Hello.

116 5. Neighbour Discovery and Handshaking

Tcpdump output
20:16:37.411690 OSI, IS-IS, length: 1492

L1 Lan IIH, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 1921.6800.1008, holding time: 120s, Flags: [L1, L2]

lan-id: 1921.6800.1008.02, Priority: 64, PDU length: 1492

IS Neighbor(s) TLV #6, length: 6

SNPA: 0090.692b.0e52

Protocols supported TLV #129, length: 1

NLPID(s): IPv4 (0xcc)

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 193.83.223.236

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Restart Signaling TLV #211, length: 3

Flags [none], Remaining holding time 0s

Padding TLV #8, length: 255

Padding TLV #8, length: 255

Padding TLV #8, length: 255

Padding TLV #8, length: 255

Padding TLV #8, length: 255

Padding TLV #8, length: 150

If a router exchanges these bloated Hello PDUs in both directions then it can be sure
that the underlying media sufficiently supports the maximum packet sizes necessary for
IS-IS.

IOS and JUNOS do have different styles of how and when they do implement adja-
cency checks. IOS pads each and every Hello that it transmits on the wire. On large WAN
Hub Routers that terminate a lot of circuits – for example on a Router running Frame
relay or ATM circuits – periodic emission of large packets can be a burden to
the control plane processor. If you know that your underlying link supports at least
1492 bytes sized packets then you can turn off the artificial bloating of Hello PDUs using
the no hello padding router configuration command.

MTU Check 117

TLV Type

TLV Length

Padding Data

8

Bytes

1

1

1–255

FIGURE 5.5. The Padding TLV #8 is used to bloat IIHs up to at least 1492 bytes

IOS configuration
The no hello padding command turns off MTU check against the underlying
media.

!

router isis

no hello padding

[…]

!

JUNOS encompasses a technique called smart padding, where the router transmits
padded Hellos only at the beginning of the Adjacency Bring up. After both ends of a
router have completed the handshake procedure JUNOS automatically omits the Padding
TLVs in the Hello message. That behaviour is a nice compromise between strict MTU
checking and making sure that the IS-IS router does not consume excess bandwidth in
tight WAN environments. The brief Tcpdump output shows the JUNOS specific vari-
ation in packet sizes during an IS-IS Adjacency bring up.

Tcpdump output
20:16:37.411690 OSI, IS-IS, L1 Lan IIH, src-id 1921.6800.1002,

lan-id 1921.6800.1002.02, prio 64, length 1492

20:16:37.412312 OSI, IS-IS, L2 Lan IIH, src-id 1921.6800.1002,

lan-id 1921.6800.1002.02, prio 90, length 1492

20:16:37.414060 OSI, IS-IS, L1 Lan IIH, src-id 1921.6800.1003,

lan-id 1921.6800.1003.02, prio 70, length 1492

20:16:37.414466 OSI, IS-IS, L2 Lan IIH, src-id 1921.6800.1003,

lan-id 1921.6800.1003.02, prio 64, length 1492

20:16:37.418232 OSI, IS-IS, L1 Lan IIH, src-id 1921.6800.1002,

lan-id 1921.6800.1003.02, prio 64, length 65

20:16:37.418742 OSI, IS-IS, L2 Lan IIH, src-id 1921.6800.1002,

lan-id 1921.6800.1002.02, prio 90, length 65

20:16:37.420914 OSI, IS-IS, L1 Lan IIH, src-id 1921.6800.1003,

lan-id 1921.6800.1003.02, prio 70, length 90

20:16:37.421055 OSI, IS-IS, L2 Lan IIH, src-id 1921.6800.1003,

lan-id 1921.6800.1002.02, prio 64, length 90

20:16:37.423429 OSI, IS-IS, L1 Lan IIH, src-id 1921.6800.1002,

lan-id 1921.6800.1003.02, prio 64, length 65

20:16:37.423909 OSI, IS-IS, L2 Lan IIH, src-id 1921.6800.1002,

lan-id 1921.6800.1002.02, prio 90, length 65

The next few sections show how the IS-IS Protocol verifies two-way connectivity over
a link. From now on, the term handshaking is used as a replacement for “verifying two-
way connectivity”. That is really all that handshaking means.

118 5. Neighbour Discovery and Handshaking

5.3 Handshaking

In the IS-IS specification there are two general ways of handshaking:

• 2-way handshake
• 3-way handshake

Figure 5.6 illustrates what occurs during a 2-way handshake. IS-IS is started on Router
A. A Hello message is sent to Router B. As soon as Router B responds with a Hello
Message of its own, Router A will declare the Adjacency with Router B up. The impor-
tant aspect here is that Router A does not know if the Hello message from Router B is in
response to the Hello message that Router A sent or if it is just any Hello message that
Router B has generated (perhaps Router A’s Hello message has been lost on the link).
There is no state that is kept. That insight is significant later when we explore a failure
conditions resulting from a pure 2-way handshake check. Of course the same procedure
is executed from Router B’s perspective as well. The Router B perspective is not shown
in Figure 5.6, because the picture would have been too crowded and harder to under-
stand. But Router B of course also sends a Hello message and as soon as Router B
receives any Hello message from Router A, Router B will declare the adjacency up.
Only two messages are necessary in the 2-way handshake. The 3-way handshake works
differently.

Handshaking 119

Router A Router B

tt

Router B
Adjacency UP

IIH
Router A

misc. TLVs

IIH
Router B

misc. TLVs

IS-IS enabled
on the circuit

Router A
Adjacency UP

FIGURE 5.6. For 2-way handshakes only two messages are required to declare a circuit up

Figure 5.7 shows a 3-way handshake transition. Router A first sends the Hello mes-
sage out, just as before. Next, Router B responds with a Hello message. Router A will
know that this Hello was not sent by accident (in the 2-way case Router A never really
knows) because the Hello message from Router B carries an indication that this Hello
has been sent in response to Router A’s original Hello. This is done by mentioning Router
A explicitly in the message body, by means of a special TLV. Later, in the finite state
machine section such an event is described as Seenself. Router B receives Router A’s
Hello message and now realizes that it has been seen by the neighbour (Router A) and
declares the adjacency up. Router A now responds by sending a third Hello message
back to Router B confirming that it has also seen Router B’s Hello message, which
causes Router B to declare the adjacency (from its perspective) now up as well. The
3-way handshake is a stateful transition and much more robust than the simple 2-way
version, but does require an extra message.

IS-IS uses different message elements and handshaking methods depending on
whether it is performing the handshaking on LAN or on point-to-point circuits. The
following section shows where and in which environment the different handshaking
methods are used, and what TLVs are encoded in the Hello messages to convey neigh-
bour adjacency state in IS-IS.

5.3.1 The 3-way Handshake on LAN Circuits
On LANs, IS-IS uses a 3-way handshake. Figure 5.8 shows the state changes on the LAN
from Router A’s perspective. Please note that for better visibility again, only the state

120 5. Neighbour Discovery and Handshaking

tt

Router B
Adjacency UP

IIH
Router A

misc. TLVs

IIH
Router B

“I have seen Router A”

&

IS-IS enabled
on the circuit

IIH
Router A

“I have seen Router B”

&

Router A
Adjacency UP

Router A Router B

misc. TLVs

misc. TLVs

FIGURE 5.7. The 3-way handshake is a stateful transition

t
t

R
o

u
te

r
A

M
A

C
 0

09
0.

69
aa

.a
aa

a
R

o
u

te
r

B
M

A
C

 0
00

0.
0c

b
b

.b
b

b
b

R
o

u
te

r
C

M
A

C
 0

09
0.

69
cc

.c
cc

c

t

R
ou

te
r

C
A

dj
ac

en
cy

 U
P

IS
-I

S
 e

na
bl

ed
on

 th
e

ci
rc

ui
t

R
ou

te
r

A
A

dj
ac

en
cy

 U
P

IIH
R

o
u

te
r

C

I’v
e

S
ee

n
M

A
C

 0
09

0.
69

aa
.a

aa
a

m
is

c.
 T

L
V

s

IIH
R

o
u

te
r

A

m
is

c.
 T

L
V

s

IIH
R

o
u

te
r

B

I’v
e

S
ee

n
M

A
C

 0
09

0.
69

aa
.a

aa
a

m
is

c.
 T

L
V

s

R
ou

te
r

B
A

dj
ac

en
cy

 U
P

IIH
R

o
u

te
r

A

I’v
e

S
ee

n
M

A
C

 0
00

0.
0c

b
b

.b
b

b
b

M
A

C
 0

09
0.

69
cc

.c
cc

c
m

is
c.

 T
L

V
s

R
ou

te
r

A
A

dj
ac

en
cy

 U
P

FI
G

U
R

E
5.

8.
O

n
L

A
N

s
th

e
ro

ut
er

s
ne

ed
 to

 s
en

d
a

lis
t o

f
vi

si
bl

e
ne

ig
hb

ou
rs

 to
 c

om
pl

et
e

th
e

3-
w

ay
 h

an
ds

ha
ke

121

transactions for Router A are shown in the figure. First, Router A sends a Hello onto the
LAN. Routers B and C, which both get the LAN-based message of course, respond to
Router A’s Hello by sending a Hello that lists Router A’s source MAC address from
Router A’s original Hello message encoded in a dedicated TLV. The structure of the TLV
will be discussed shortly.

Router A receives these Hellos from Routers B and C and realizes “Hey, they both got
my Hello message! Otherwise, my MAC address would not be listed in their Hello.”
Thus, Router A declares the adjacencies to Router B and C up. To complete the 3-way
handshake, Router A notifies Routers B and C that Router A has seen the recent Hello
from both of them by listing Router B and C’s MAC address in one of its own TLVs.
Once Routers B and C receive the Hello from Router A, the 3-way handshake is com-
pleted (due to Seenself) and the adjacency to Router A is declared up by both Router B
and C.

The TLV that conveys the MAC addresses is called the “IS Neighbor TLV #6”. The
structure and encoding rules for this are discussed in the following section.

5.3.1.1 IS Neighbour TLV #6

Figure 5.9 shows the structure of the TLV that provides the “Hello, I have seen you”
function in order to complete the 3-way handshake. The TLV code point allocated to the
IS neighbour’s TLV is #6. The structure is actually very simple. It is essentially an array
of SNPAs. SNPA is an abbreviation for Sub-Network Point of Attachment. On broadcast
LANs a SNPA is the ISO term for a standard, 48-bit IEEE MAC address. The 48-bits
equals six bytes, so the maximum length of this TLV is always a multiple of six. If it is
not, then the TLV is malformed.

On the network analyzer’s output, the list of MAC addresses is listed under the IS
Neighbour stanza. The number of MAC addresses (4 entries) matches the TLV length of
4 bytes (4 � 6 � 24).

Tcpdump output
The IS Neighbour TLV #6 contains a list of MAC addresses of the routers that are
visible from the sending router’s perspective:

122 5. Neighbour Discovery and Handshaking

TLV Type

TLV Length

IS Neighbor MAC Address (SNPA)

6

Bytes

1

1

6

N * 6

IS Neighbor MAC Address (SNPA) 6

FIGURE 5.9. The IS Neighbour TLV #6 conveys the neighbour state for the 3-way handshaking
procedure

09:38:23.996041 OSI, IS-IS, length: 74

L1 Lan IIH, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 1921.6800.1012, holding time: 27s, Flags: [L1, L2]

lan-id: 1921.6800.1012.02, Priority: 64, PDU length: 75

IS Neighbor(s) TLV #6, length: 24

SNPA: 0090.69b2.71ca

SNPA: 0090.69b2.41cc

SNPA: 0000.0c54.fadd

SNPA: 0000.0c11.cc1e

Protocols supported TLV #129, length: 2

NLPID(s): IPv4, IPv6

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 172.16.33.1

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Restart Signaling TLV #211, length: 3

Flags: [none], Remaining holding time 0s

On LAN circuits there is only a single handshaking method available: the 3-way
handshake using the IS-Neighbour TLV #6. On point-to-point circuits there is an imple-
mentation choice between 2-way and 3-way handshakes. The next section shows how
handshaking on point-to-point circuits works, what flaws have been revealed in the ori-
ginal specifications, and how the handshake methods finally evolved.

5.3.2 The 2-way Handshake on Point-to-point Circuits
The original ISO 10589 specification proposed just a 2-way handshake on point-to-point
circuits. Through implementation and deployment experience, several scenarios are
known today where the use of 2-way handshakes causes IS-IS to get blind spotted and in
the worst case, to completely black hole traffic.

Most of these failure scenarios are related to routers connected by unidirectional links,
which is quite frequently the result of a failure to network equipment. In networking
environments, unidirectional links can occur quite easily. Typically, a fibre path between
a pair of routers is composed of two fibres: one for transmitting and one for receiving. If
one of the two fibres breaks, the routers are reduced to one-way connectivity. In most
cases this is not a big problem if there is just a simple fibre run between a pair of routers
and the transmit fibre on one side breaks. The receiver on the other end of a fibre link will
detect a loss of signal and the entire circuit is declared down. The trouble really starts if
there is an active network element between the two routers, such as a LAN switch, so that
the light is not missing on one side and the circuit always stays up.

Figure 5.10 shows Router A and Router B connected through an ATM switch. Please
note that this problem is not just specific to the ATM technology. The ATM switch here
serves just as an example: it could be any Layer 2 technology like an active Ethernet
device or a Frame Relay switch and so on.

In total, there are four fibres in this small network. There is a pair of fibres between
Router A and the ATM switch, and another pair of fibres between Router B and the ATM
switch. Now imagine that the transmit link between Router B and the ATM switch

Handshaking 123

breaks. Router A is still receiving a signal from the ATM switch, because the local link is
still fine. But because “the light does not go out” at the Router A end, both sides (Router
A and the ATM switch) think that everything is fine and the link is up and running to
Router B.

Please note that in practice there are Layer-2 management protocols like LMI, PPP LCP
or ATM OAM cells that would help to detect that there is an end-to-end connectivity prob-
lem. However, these protocols take time to detect error conditions and in the meantime
IS-IS could have announced bogus information and flood it through the network.

This example of the conditions that result in unidirectional links will be the basis for most
of the issues with the 2-way handshake in IS-IS. The next two sections describe very common
failure scenarios that all start with one-way connectivity as the root cause of the problem.

5.3.2.1 Failure Scenario 1: SONET/SDH APS

In most carrier environments, an underlying SONET/SDH network is used to provision
broadband links between routers. SONET/SDH networks are complex networks on their
own and offer a variety of functions at the OSI-RM Layer 1, the Physical Layer. One
of these functions is Automatic Protection Switching (APS), where “extra” bandwidth
and ports in the network are provisioned to support redundancy of the SONET/SDH
circuits.

There are rumblings in the networking industry that this additional layer of network-
ing intelligence will be made obsolete in the near future and that IP routers will soon be
connected just by raw Dense Wavelength Division Multiplexing (DWDM) pipes. This
might come true for very high speed (OC-48/STM-16 and beyond) links in the core, but
at the edges of the network and in regional access networks, SONET/SDH networks will
be present for a long time to come. And DWDM has been stalled somewhat by expensive
equipment, so a discussion of SONET/SDH APS and IS-IS is still important and will be
so for the foreseeable future.

In any case, DWDM core or not, look at the edge of the network and assume the net-
work uses transport capacity from a regional city or metropolitan area carrier. Typically
the customer has the choice of an unprotected circuit or a protected circuit. In the pro-
tected circuit, the regional carrier pre-provisions bandwidth and ports in order to recover
from failed or broken equipment in any part of the network. Assume this is the protected
flavour of the circuit, which is always a good idea if the budget allows. What follows

124 5. Neighbour Discovery and Handshaking

RxTx

Rx Tx

My Adjacency
to Router B is ok

Router BRouter A

ATM Switch

FIGURE 5.10. Active elements between routers do not propagate downstream loss of signal errors

does not require any detailed familiarity with SONET/SDH. All terms and equipment
roles are fully explained as needed.

Figure 5.11 shows a failure scenario where Router A and Router B are connected by a
SONET/SDH pipe. Router A is located at the spoke site and Router B is located at the
central hub site. Additionally, a second redundant SONET/SDH port has been pre-
provisioned in case a link to one of the routers or even the router itself at the central site
fails. The SONET/SDH Add–Drop Multiplexer (ADM), the network element that links the
routers at both customer sites, needs to make sure its ports are still up. In SONET/SDH
networks, the ends of a SONET/SDH link (in this case, the routers) can send heartbeat
signalling messages in the overhead bytes of the SONET/SDH transmission frame
header for redundancy purposes. Routers A and B send heartbeat signals in order to
inform the ADMs that everything is okay. If the ADM does not receive a heartbeat signal
from the routers for a period of 50 milliseconds (ms), then the ADM will automatically
switch over to the backup circuit (Router C).

Note that both Router B and Router C listen on the wire for APS signalling messages
because the ADM connects both routers, receive fibres. However, Router C’s transmit
fibre is not ordinarily active (it is not needed). This fibre only gets activated in failure
mode when Router B or one of its links goes down. Realize that this is a purposeful, one-
way connection for SONET/SDH APS. It is exactly this one-way connection that will
cause trouble in IS-IS environments. Consider the following scenario:

1. Router A sends a Hello message
2. Both Routers B and C receive the Hello message
3. Router B responds with a Hello message and declares the adjacency to Router A up
4. Router C also responds with a Hello message. But the Hello response does not get

through to the spoke site (no active transmit). However, Router C thinks it has suc-
cessfully delivered the Hello and declares the adjacency up. So Router A knows it has
an adjacency with Router B and vice versa, which is fine. The problem is that Router C
also thinks it has an adjacency with Router A and therefore will forward traffic
down the “broken” (inactive) link, which is only to be used for APS purposes. This is
a serious issue because the traffic from Router C to Router A will get black holed
because the transmit fibre is not connected all the way through the ADM.

Handshaking 125

Central "Hub" site

Network cloud

Spoke site

Network cloud

SONET/SDH
Add drop multiplexer

(ADM)

Rx

Tx

Rx Rx

Tx

1

2

3
24

3
Tx

Router B

Router C

Router A

FIGURE 5.11. The protected SONET circuit is creating a unidirectional link in the backup case

The whole point here is that a backup link at the Physical Layer looks like it can be
used by Layer 3 (IP and IS-IS), but this is not the case. This is just a consequence of the
use of the 2-way handshake on point-to-point circuits. Scenarios like this, where traffic
gets black holed, are very difficult to troubleshoot. Most Network Operation Centre
(NOC) teams are fooled by the fact that the router adjacency is up and their thinking is
that the circuit must be delivering injected traffic. Trusting the 2-way handshake in this
case leads to a serious impairment of the network.

5.3.2.2 Failure Scenario 2: Parallel Links

The previous failure scenario does not do any damage, because all the IS-IS routers in the
network would soon realize during the SPF calculation that Router C believes it has an
adjacency with Router A, but Router A does not report an adjacency to Router C. The
SPF algorithm, which is used to calculate paths through the network, has an additional
stability rule built in. If two routers do not indicate to each other that they have an adja-
cency, then the SPF algorithm disregards the adjacency between the two routers, which
means that no transit traffic is sent over the unidirectional link. However, based on the
previous failure condition, it is relatively easy to construct a four router scenario (two
routers on each side of the link) where both sides report a stale adjacency that ultimately
passes the 2-way check during the SPF calculation. This example simply uses a three
router scenario for a clearer explanation of the underlying problem. So far, we have not
mentioned the details of the SPF calculation, but there will be much more about that
topic in Chapter 10 “SPF and Router Calculation”.

This section shows one other example of failure. In this example even the SPF-2-way
check will be spoofed, which serves as a last resort protection from black holing traffic.

Consider the scenario in Figure 5.12. Here there are two routers interconnected by two
circuits composed of two fibres in each direction. Now, assume there are two fibre
breaks. The transmit fibre from Router A to Router B on circuit #1 has failed and, in addi-
tion, the transmit fibre from Router B to Router A on circuit #2 is broken. Here is the
sequence of events that happens:

1. Router A sends a Hello message on circuit #2
2. Router B responds to the Hello message on circuit #2 and declares the adjacency up
3. Router B sends a Hello message on circuit #1
4. Router A responds to the Hello message on circuit #1 and declares the adjacency up
5. Both Routers A and B tell other routers in the network that they can see each other,

when in fact they can’t because of the fibre failures mentioned earlier. This failure sce-
nario passes even the check during the SPF calculation. This makes both Router A and
B attract transit traffic which will be black holed by both sides.

So 2-way handshaking on point-to-point links in IS-IS suffers from robustness prob-
lems in practice. Therefore the basic IS-IS protocol needs to be extended so that the more
reliable 3-way handshakes are made on point-to-point circuits. Using the error-prone
2-way handshake procedure results in the set of problems generated by unidirectional links
due to APS or multiple fibre breaks. The 3-way handshake on point-to-point circuits is
discussed in the following section.

126 5. Neighbour Discovery and Handshaking

R
o

u
te

r
A

R
o

u
te

r
B

ci
rc

ui
t #

1

ci
rc

ui
t #

2

I h
av

e
an

 a
dj

ac
en

cy
 w

ith
R

ou
te

r
B

 o
n

ci
rc

ui
t #

1

I h
av

e
an

 a
dj

ac
en

cy
 w

ith
R

ou
te

r
A

 o
n

ci
rc

ui
t #

2

1

T
x

R
x

T
x

R
x

R
x

T
x R
x

T
x

23

4

5

FI
G

U
R

E
5.

12
.T

w
o

re
po

rt
ed

 u
ni

di
re

ct
io

na
l L

SP
 a

dv
er

tis
em

en
ts

 m
ak

e
ot

he
r

ro
ut

er
s

th
in

k
th

at
 th

er
e

is
 a

 s
in

gl
e

bi
-d

ir
ec

tio
na

l a
dv

er
tis

em
en

t

127

5.3.3 The 3-way Handshake on Point-to-point Circuits
In LAN environments, the IS Neighbour TLV #6 does convey the information elements
needed for performing the 3-way handshaking function. Unfortunately, this specific TLV
is tailored to LAN environments only. Recall that the information elements to transport
the “Hello, I have seen you” message is the SNPA, a MAC address. MAC addresses are
typical to broadcast circuits such as, Ethernet, however, the typical WAN OSI-RM Layer 2
protocols like PPP, Cisco-HDLC, Frame-Relay, or ATM RFC 1483-SNAP, do not have
the notion of MAC addresses. All of those WAN protocols are optimized for point-to-
point environments where MAC addressing is not used or necessary. Typically the WAN
protocols just need to frame a packet and transmit it to the remote end. Addressing is not
needed because there are just two speakers on the circuit: the remote router and the local
router. Fortunately, there is an extension to the base ISO 10589 specification, RFC 3373,
that specifies an optional TLV that carries adjacency states and a few other information
elements in a special TLV. The Adjacency State TLV #240 is discussed in the next section.

5.3.3.1 Adjacency State TLV #240

The main purpose of transporting adjacency states is to find out if the Hello message that
a router has received was sent in response to receipt of a previous Hello, or is just any
Hello sent by the remote router. If a router detects that the Hello received was sent in
response to a previous Hello message sent, it is safe to assume the routers are on a work-
ing, bi-directional circuit. This excludes the set of problems previously discussed that
resulted from the presence of unidirectional circuits.

Figure 5.13 shows the structure of the Adjacency State TLV #240 TLV. The TLV is a
variable length and can span 1, 5, 11 or 15 bytes. The minimum length is 1 byte. The first
byte conveys the current state of the adjacency, which can be one of three values:

• 0x2 Down
• 0x1 Initializing
• 0x0 Up

128 5. Neighbour Discovery and Handshaking

TLV Type

TLV Length

Adjacency State

240

Bytes

1

1

1

1, 5, 11, 15

Extended Local Circuit-ID 4

Neighbour System-ID 6

Neighbour Extended Local Circuit-ID 4

Optional

FIGURE 5.13. The second part of the Adjacency State TLV is optional

Figure 5.14 shows how the TLV content is changed during a 3-way handshake. Here
is how the TLV works in the 3-way handshake:

1. Router A send a Hello reporting the adjacency as Down
2. Router B replies to Router A’s Hello. Router B tells Router A that this particular Hello

message was generated in response to Router A’s previous Hello message by setting
the Adjacency State to Initializing. Router A now knows that the circuit is truly
bi-directional and declares the adjacency Up.

3. Router A sends a Hello back to Router B setting the Adjacency State to Up which
causes Router B to declare the adjacency up on the Router B side as well.

There are two different flavours of the Adjacency TLV deployed in the field. The
first one is derived from one of the first Internet drafts before the document was extended
and finally went to RFC state. The early version is a crippled version which just carries
a single byte adjacency state. The more recent flavour implements the full 15 bytes
of RFC 3373. From the router’s debug logs and show commands you cannot tell
if you receive the single or 15-byte version. Tcpdump is used to reveal the version
received.

Handshaking 129

tt

Router A Router B

Router B
Adjacency UP

IS-IS enabled
on the circuit

Router A
Adjacency UP

IIH
Router B

Adj. State TLV #240
“Initializing”

IIH
Router A

Adj. State TLV #240
“Down”

IIH
Router A

Adj. State TLV #240
“Up”

FIGURE 5.14. JUNOS always sends the 15-byte version of TLV #240, IOS per default sends the
1-byte version and optionally the 15-byte version

Tcpdump output
Older versions of JUNOS and IOS only support the 1-byte Adjacency state TLV #240:

00:29:47.706711 OSI, IS-IS, length: 38

p2p IIH, hlen: 20, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3(0)

source-id: 1921.6809.0034, holding time: 27s, Flags: [Level 2 only]

circuit-id: 0x01, PDU length: 38

Point-to-point Adjacency State TLV #240, length: 1

Adjacency State: Up

Protocols supported TLV #129, length: 1

NLPID(s): IPv4

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 172.16.5.156

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Tcpdump output
Recent versions of JUNOS and IOS support the fully fledged, 15-byte version of the
Adjacency State TLV #240:

11:35:23.248504 OSI, IS-IS, length: 50

p2p IIH, hlen: 20, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 1921.6809.0034, holding time: 27s, Flags: [Level 2 only]

circuit-id: 0x01, PDU length: 50

Point-to-point Adjacency State TLV #240, length: 15

Adjacency State: Up

Extended Local circuit ID: 0x0000001a

Neighbor SystemID: 2092.1113.4007

Neighbor Extended Local circuit ID: 0x0000005f

Protocols supported TLV #129, length: 1

NLPID(s): IPv4

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 172.16.5.156

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Wrapping just the Adjacency State (1 byte) inside the TLV and not adding the optional 14
bytes information only addresses the unidirectional link problem to some degree. One issue
is still open: A router can never be 100% sure if a change in the adjacency state is targeted
to the receiver itself. A broken or flapping (rapidly up and down) link in a SONET/SDH
environment, which frequently terminates at two different routers, can make IS-IS blind
spotted and causes the same problems that have been observed with the plain 2-way checks.

This issue might seem very far-fetched or esoteric. But the IETF is known for deliver-
ing pragmatic protocols that solve real problems. The fact that the Adjacency State TLV
was revised in a later version of the draft that finally went into RFC 3373 to include the
Neighbours System-ID so that the neighbour can be sure that a change of adjacency state

130 5. Neighbour Discovery and Handshaking

was generated by receipt of the neighbour’s recent Hello message indicates that this was
a real concern. If there was a state change by a neighbour and the Source-ID is not listed
in the Neighbor Extended Local Circuit-ID field, then it was certainly not the receipt of
the router’s Hello change that triggered the state change.

Additionally, there was concern about the size (8 bits) of the Local Circuit-ID field in
the point-to-point Hello message. Modern routers can be configured with literally thou-
sands of interfaces (usually logical interfaces, but still interfaces) and so that field needed
to be extended. TLV #240 transports 32-bit Local Circuit IDs, which should give any
router plenty of Circuit-IDs for the time being. Normally routers insert the local interface
index or SNMP index into this field.

Contemporary JUNOS releases support the 15-byte version of TLV #240 only. In IOS
you can control the emission of the 1-byte or 15-byte version using the isis three-
way-handshake interface configuration option.

IOS configuration
The ietf option to the isis three-way-handshake configuration command emits the
15-byte version of TLV #240. The default parameter is the cisco option which generates
the one-byte TLV payload.

interface POS4/1

[…]

isis three-way-handshake ietf

encapsulation ppp

[…]

!

If an implementation follows ISO 10589 by the letter, then the expectation would be
that after a completed 2-way or 3-way check, an adjacency goes into the Up state.
However, this may not be the case. Most implementations perform additional checks
before an adjacency is declared Up.

5.4 Sub-net Checking

IS-IS is often expected to be a true multi-protocol IGP. Because adjacency formation,
database synchronization and topology calculation (through SPF) is based on Layer-2
information, one would expect that it is entirely decoupled from any network layer
dependencies. That assumption does not match the deployed reality. IS-IS routers indeed
do verify that the next-hop the router is announcing is valid. The receiving router checks
all occurrences of the Interface Address TLV #132 and also checks it against the list of
local IP addresses configured on that circuit. Figure 5.15 shows the structure of the IP
Interface Address TLV #132 which is a simple list of IP addresses that contains a router’s
primary and secondary IP addresses.

Both IOS and JUNOS verify that there is a common IP sub-net. If there is no common
IP sub-net there is also no viable next-hop that can be entered in a routing table, and
therefore the adjacency is considered invalid and stays in the Down / Initializing state.

Sub-net Checking 131

There is unfortunately no show command in the router CLI that reports a sub-net mis-
match. You need to turn on debugging in IOS and tracing in JUNOS to get any indication
there is something wrong in this regard.

In IOS, a sub-net mismatch can be detected once the isis adj-packets debug is
turned on. In JUNOS, the trace option flag list needs to include the error flag.

IOS debug output
For IOS to detect sub-net mismatches the debug isis adj-packets needs to be turned
on. Additionally you need to run terminal monitor to display the logging output on the
vty.

London#debug isis adj-packets

IS-IS Adjacency related packets debugging is on

London#terminal monitor

Oct 26 22:33:11: ISIS-Adj: Sending serial IIH on POS4/1, length 4469

Oct 26 22:33:19: ISIS-Adj: Rec serial IIH from *PPP* (POS4/0),

cir type L1L2, cir id 01, length 1492

Oct 26 22:33:19: ISIS-Adj: No usable IP interface addresses in serial IIH

from POS4/0

JUNOS debug output
For JUNOS to detect sub-net mismatches the flag error under the proto-cols isis
traceoptions {} stanza needs to be configured. The logging messages will then be
written into the specified IS-IS logfile (isis.log)

hannes@Frankfurt> show log isis.log

Oct 26 22:16:13 trace_on: Tracing to “/var/log/isis.log” started

[…]

Oct 26 22:33:43 ISIS L3 periodic xmit to interface so-0/2/2.0

Oct 26 22:33:45 ISIS L3 hello from 1921.6800.1068 interface so-0/2/2.0

absorbed

Oct 26 22:33:45 ISIS ERROR: IIH from 1921.6800.1068 without matching

address, interface so-0/2/2.0

132 5. Neighbour Discovery and Handshaking

TLV Type

TLV Length

IP Address

132

Bytes

1

1

4

4

N * 4

IP Address

FIGURE 5.15. The contents of the Interface Address TLV #132 are matched against the local IP
address to check if there is a matching sub-net

After the sub-net check is positive, and there are no other configuration mismatches,
such as misaligned authentication strings or circuit types and levels, the adjacency
should go to the Up state.

The transition from Down to Up does not occur immediately after receipt of a valid IIH
message. There are some intermediate states in between, and there is also some damping
logic involved, which makes sure that the network is not overwhelmed because of a
flappy link. The next section is about the adjacency finite state machine and hold down
logic of adjacencies.

5.5 Finite State Machine

Most routing protocols maintain a finite state machine (FSM) for neighbour manage-
ment. The FSM is a graph that describes steady states and the events that enable transi-
tions from one state to another. In Figure 5.16 there is a FSM for a 2-way handshake.

The three states are:

• Down
• New
• Up

A receipt of a valid (level, area and authentication needs to match) IIH transitions from
Down to New and finally to Up. A mismatch of level, area and authentication, or a time-
out of interface down events immediately transitions the adjacency from Up to Down.

Two-way adjacencies and hence 2-way state machines are an anachronism (as demon-
strated by the previous examples) and are deprecated today. Figure 5.17 shows the FSM
for the 3-way handshake.

Finite State Machine 133

Adj. Timeout
Intf. Down
bogus System-ID
Area Mismatch
Level Mismatch

rcvd IIH

Adj. Timeout
Intf. Down
bogus System-ID
Area Mismatch
Level Mismatch

rcvd IIH

rcvd IIH

UpNew

Down

FIGURE 5.16. The finite state machine for a 2-way adjacency (deprecated)

The 3-way handshake encompasses four states:

• Down
• New
• Init
• Up

The additional Init state has been created for 3-way handshake functionality. Upon
receipt of a valid IIH, the adjacency is moved to the Init state. From there a Seenself event
is necessary to proceed to an Up state. The Seenself event can be an Adjacency State of
1 (Init) as part of the Adjacency State TLV #240, or the router’s own SNPA listed in the
IS Neighbour TLV #6.

As soon as an adjacency is declared Up the router needs to originate a LSP packet
reporting the new adjacency to other routers in the network. A good IS-IS implementation
tries to protect other routers from locally flapping adjacencies. That means if the local
circuit is flapping at a high frequency, there is a risk that the entire network will be
overwhelmed with LSPs. Both IOS and JUNOS use timers that artificially hold down

134 5. Neighbour Discovery and Handshaking

Adj. Timeout
Intf. Down
bogus System-ID
Area Mismatch
Level Mismatch

rcvd IIH && seenself

rcvd IIH
rcvd IIH && seenself

rcvd IIH && seenself && hold down timer

Adj. Timeout
Intf. Down
bogus System-ID
Area Mismatch
Level Mismatch

Adj. Timeout
Intf. Down
bogus System-ID
Area Mismatch
Level Mismatch

rcvd IIH
rcvd IIH && seenself

rcvd IIH

Up

Init

Down

New

FIGURE 5.17. The Finite State Machine for a 3-way adjacency

an adjacency that is about to enter the Up state for a limited amount of time. Typically
those timers are in the range of 1–60 seconds depending on factors such as:

• Flapping history
• Amount of LSP traffic
• Number of adjacencies per interface

If an adjacency has flapped frequently in the past then it is highly likely that it will flap
in the future too. It is safe to hold down adjacencies longer if they have a higher amount
of transitions over time. JUNOS does, for example, measure the amount of LSPs that are
transmitted through local interfaces. If the amount of LSPs is higher than one LSP per
second then probably the network is shaky and it is not safe to contribute to further churn
by announcing an additional LSP. Finally, a common action is to treat point-to-point or
single adjacency LAN circuits better than LAN circuits with multiple adjacencies. The
idea behind that is if there are some adjacencies already in the Up state then we are prob-
ably in the middle of taking up a big LAN segment and there will be more changes to
come. Waiting a little extra time here does not do a lot of harm but highly reduces the
churn if a big LAN goes down.

For high-resiliency routing, it is imperative how fast the router detects that an adja-
cency is Down. In the FSM there are two events for Down transitioning: the adjacency
timeout and interface down event. In the next section there is a short overview about
IS-IS neighbour liveliness detection and how that impacts high-resiliency routing.

5.6 Neighbour Liveliness Detection

The Internet has evolved from an academic playground to a business-critical infrastruc-
ture. Customers and their Internet service providers are keen to tune the convergence
speed in case a backup circuit has to be engaged. The most dominant element for con-
vergence behaviour is neighbour liveliness detection. Today there are several options to
detect if a circuit to an adjacent router is still able to deliver packets:

• IGP Hellos
• Interface Tracking
• LMI Protocol

The two major IS-IS implementations treat all three sources of information equally.

5.6.1 IGP Hellos
The historical way of detecting that a neighbour is down is by tracking receipt of a neigh-
bour’s Hello packets. That method has two disadvantages. First, on a busy router with
many adjacencies the generation and receipt of hundreds of IIH messages may over-
whelm the routing process. Second, many routing protocols do not support sub-second
timers. Consider Figure 5.4, which displays a point-to-point IIH header. The Hold Time
field is a discrete 16-bit field which supports timer values from 1–65535 seconds, but no
sub-second timers. The same problem applies to the OSPF routing protocol: The Hello

Neighbour Liveliness Detection 135

136 5. Neighbour Discovery and Handshaking

and Dead timer there needs to be conveyed in the protocol. The lowest unit are once
again seconds. One of the nice things about IS-IS has been that the Hello timer does not
need to get encoded on the Hello message. The Hello timer is a purely local matter. The
timer that gets transported using the IS-IS protocol is the hold timer which can go down
to 1 second. The Hello timer is therefore a fraction of the hold timer.

In IOS and JUNOS sub-second Hello timers are configured differently: IOS needs
the keyword isis hello-interval minimal in its interface configuration.
Depending on the isis-hello-multiplier value, IOS dispatches Hellos in frac-
tions of this value.

IOS configuration
interface POS4/1

[…]

ip router isis

encapsulation ppp

[…]

isis hello-multiplier 5 level-1

isis hello-interval minimal level-1

!

Unfortunately, IS-IS has no show command to display its sub-second timers. The fol-
lowing Tcpdump output monitors the arrival times of the point-to-point IIH messages.
Note that they are all spaced within 200 ms � a random jitter.

Tcpdump output
19:15:15.246711 In OSI IS-IS, p2p IIH, length: 4469

19:15:15.440708 In OSI IS-IS, p2p IIH, length: 4469

19:15:15.700683 In OSI IS-IS, p2p IIH, length: 4469

19:15:15.896695 In OSI IS-IS, p2p IIH, length: 4469

19:15:15.1082736 In OSI IS-IS, p2p IIH, length: 4469

In JUNOS, all you can configure is the hold timer. Set it to 1 second and the system
dispatches Hellos at the hold-timer/3 frequency. Note that on point-to-point media you
need to configure the hold-time to the same value on both IS-IS levels otherwise the sys-
tem will use the default hold-time values of 27 seconds. The reason for this behaviour is
the sharing of the Hello message between both levels.

JUNOS configuration
protocols {

isis {

[…]

interface so-0/1/2.0 {

level 1 hold-time 1;

level 2 hold-time 1;

}

interface lo0.0;

}

}

JUNOS displays the Hello timers in millisecond resolution using the show isis
interface detail operational level command.

JUNOS command output
hannes@Frankfurt> show isis interface detail

IS-IS interface database:

so-0/1/2.0

Index: 67, State: 0x6, Circuit id: 0x1, Circuit type: 3

LSP interval: 100 ms, CSNP interval: 5 s

Level Adjacencies Priority Metric Hello (s) Hold (s) Designated

Router

1 1 64 10 0.333 1

2 1 64 10 0.333 1

The JUNOS interface multiplier is hard coded (meaning it cannot be changed) to a
value of 3. A hold-timer of 1 second therefore results in a Hello interval of 333 ms, which
is the lowest Hello interval possible on JUNOS.

Relying on Hellos puts an upper boundary of 1 second to the detection time following
a link-failure on the routing protocols. But by tracking an interface state, routers can
detect the liveliness state much more quickly.

5.6.2 Interface Tracking
The chipsets that drive modern router interfaces report link errors, such as a loss of
signal, to the routing sub-system within a few milliseconds. For high-speed detection,
therefore, optical interfaces are the best choice. However, there are still similar prob-
lems, as illustrated in Figure 5.10. If there are active elements in the middle of the trans-
mission chain, then local errors are not propagated downstream and the receiving router
does not detect that the light went out.

SONET/SDH offers a true advantage over other physical media like Ethernet, which
do not propagate local errors to downstream Network Elements.

Many Protocols like Frame Relay and ATM also include their own Local Management
Interface (LMI) protocol which performs link-layer keep-alive checking, and so on.
Unfortunately there is still no LMI-like protocol for Ethernet. Bi-directional fault detec-
tion attempts make a neutral liveliness-checking protocol available.

5.6.3 Bi-directional Fault Detection (BFD)
BFD is defined in draft-katz-ward-bfd-01, and its encoding rules are documented in
draft-katz-ward-bfd-v4v6-1hop-00. BFD is an answer to the following problems:

• Link-Layer neutral high frequency keep-alive protocol
• Offload high frequency keep-alive processing from the IGP Layer

Neighbour Liveliness Detection 137

138 5. Neighbour Discovery and Handshaking

• Support sub-second timers on behalf of protocols that cannot
• Negotiate timers dynamically

The BFD protocol, unlike many other protocols, includes no auto-neighbour discov-
ery. It has client software instead, typical of the IP routing protocols, and based on the
detected IGP neighbours. The IGP asks the BFD module to set up a BFD session to the
Link IP addresses of the provided neighbours.

BFD is (at time of writing this book) only available for JUNOS. The first release with
support for BFD is JUNOS 6.1 onwards. The configuration of BFD is a property of the
interface {} stanza inside the protocols isis {} branch.

JUNOS configuration
Under the bfd-liveness-detection stanza you can configure the minimum transmit
interval plus the detection-time multiplier.

protocols {

isis {

interface so-1/2/0.0 {

bfd-liveness-detection {

minimum-interval 100;

multiplier 5;

}

}

[…]

interface lo0.0;

}

}

In this example the router emits Hello packets at a rate of once every 100 ms. If the
neighbour does not receive BFD control packets for 500 ms, this router can declare the
origniator dead and move to an interface down state in the FSM.

BFD runs on top of IP UDP port 3784 and 3785. Port 3784 is used for control packets
and 3785 is used for Echo Mode traffic. The JUNOS implementation just supports con-
trol packets for liveliness detection. Echo Mode is envisioned for the future: the plan is
that forwarding plane software can generate that traffic and the control plane is only
needed for parameter setup.

The following Tcpdump output shows the parameters that are conveyed using the
24-bytes fixed length packet.

Tcpdump output
The BFD protocol runs on top of UDP port 3784 and 3785. It is meant as a high frequency
keep-alive mechanism which augments routing protocols that do not have sub-second
timer support.

09:32:30.884968 IP 172.16.223.236.3784 > 172.16.223.235.3784: BFDv0,

length: 24

Control, Flags: [I Hear You], Diagnostic: Control Detection

Time Expired (0x01)

Detection Timer Multiplier: 5 (500 ms Detection time),

BFD Length: 24

My Discriminator: 0x00000001, Your Discriminator: 0x00000002

Desired min Tx Interval: 100 ms

Required min Rx Interval: 200 ms

Required min Echo Interval: 0 ms

Session state transactions are provided using the Flag contents. The Desired/
Required Timer Fields are used for negotiating a common timer that both peers can
accept. The pair of discriminators is necessary to multiplex several sessions between a
pair of hosts.

After BFD has been enabled on both sides, one can verify if a BFD-capable neighbour
has been found on the other end and if the BFD session is Up. The show bfd ses-
sion command displays the session state.

JUNOS command output
Using the show bfd session command you can display the current state and details of
the active BFD sessions.

hannes@Frankfurt> show bfd session extensive

Transmit

Address State Interface Detect Time Interval Multiplier

172.16.223.236 Up so-0/1/2.0 1.000 0.100 5

Client ISIS L1, TX interval 0.100, RX interval 0.100, multiplier 5

Client ISIS L2, TX interval 0.100, RX interval 0.100, multiplier 5

Session up time 12:34:22, previous down time 00:00:06

Local diagnostic CtlExpire, remote diagnostic None

Remote heard, hears us

Min async interval 0.100, min slow interval 1.000

Adaptive async tx interval 0.100, rx interval 0.200

Local min tx interval 0.100, min rx interval 0.100, multiplier 5

Remote min tx interval 0.100, min rx interval 0.100, multiplier 5

Local discriminator 1, remote discriminator 2

Echo mode disabled/inactive

1 sessions, 2 clients

Cumulative transmit rate 10.0 pps, cumulative receive rate 5.0 pps

BFD is likely to become the dominant keep-alive protocol due its open implemen-
tation. It is expected to even be the protocol of choice between routers and servers.
For server applications like voice-over IP or financial applications there are open-source
BFD implementations for hosts available.

Neighbour Liveliness Detection 139

5.7 Summary

IS-IS adjacency processing has changed over the years. It started out with simple 2-way
finite state machines and, due to the underlying problems of not detecting half-broken
links, it quickly evolved to a 3-way FSM. It is remarkable that the defects of the under-
lying protocol have been solved with just the addition of an optional Adjacency State
TLV. Reliably detecting that a neighbour is Up or Down is not enough for today’s ser-
vice provider environments. On the one hand the implementation has to be slow enough
to protect the network from flapping adjacencies that are propagated through the network –
on the other hand there is a need for quick keep-alive detection mechanisms. Due to the
rise of Ethernet as popular core-facing interface technology, an LMI-like protocol like
Bi-directional Fault Detection (BFD) had to be designed. The application of BFD to
serve as an IGP detection protocol is just the start. It is expected that BFD will be used
for other network protocols or other environments like application keep-alive detection
for mission-critical servers.

140 5. Neighbour Discovery and Handshaking

6

Generating, Flooding and Ageing LSPs

141

Unlike distance vector protocols, such as RIP, link-state routing protocols, such as OSPF
and IS-IS, don’t tell only their neighbours about the topology of the network. Link-state
protocols distribute both their IP reachability and topological view far beyond their adja-
cent neighbours, ultimately flooding this information to all routers in an area.

To keep the reachability information in the network current, link-state protocols need
to have a basic set of functions available that can be used to originate, distribute and
finally revoke, or time-out topology information. In IS-IS-speak, that piece of topology
information is encoded in a link-state protocol data unit (LSP). This chapter covers these
functions and the surrounding network events th at cause the IS-IS protocol to generate,
flood and finally age LSPs.

Link-state routing protocols such as IS-IS follow a paradigm that can best be described
as distributed databases with local computation, which is quite different to the way other
common routing protocols like RIP and BGP work. Distributed databases are discussed
in more detail in the following section.

6.1 Distributed Databases

Before explaining how a distributed database works, first consider what a localized data-
base looks like and how routing protocols use it. Localized databases mean that every
router has its own local view of the network and does not know the exact topology of the
network as a whole. This is like a tourist in a foreign city having no clue about what the
overall topology of the city (the street layout) looks like. All the tourist has is a local view
of the places and streets that are next to the tourist’s immediate location. This makes it
very difficult to find the best path to a landmark or museum, and in the worst case situation,
the tourist has to try out several paths, being careful not to circle around the same locations.
Localized databases work the same way. In contrast, a distributed database approach
works differently: here all of the routers share common information about what the network
looks like. If the tourist in the example has got lost, a distributed database map would give
them a more complete map of the best way to get to a particular destination in the city (or
in this case, the network).

How does IS-IS compute the map of the network? If each router just contributes its
local view to its neighbours, and if that information can be shared among all the routers
in a network, then each will ultimately have a global map of the network. Link-state rout-
ing protocols, such as IS-IS, work like a jigsaw puzzle, as shown in Figure 6.1. Each
router in the figure represents one piece of the puzzle, and if all of the puzzle pieces are
present, then each router can start to put the puzzle together to acquire an understanding

of what the big picture looks like. The collection of puzzle pieces is called the link-state
database. IS-IS has a number of techniques called flooding and synchronizing to get a
complete map of the network. In this chapter, you will learn about the individual puzzle
pieces, which are called link-state protocol data units (LSPs), and how IS-IS distributes
the information they contain.

IS-IS, by default, tries to acquire two maps from its neighbours and therefore maintains
two databases to store topology-related information. Information for the first map, which
typically represents the topology inside the close collection of routers, called a point-
of-presence (POP), is stored in the Level 1 (L1) database. Sticking with the lost tourist
example, think of this as just a local map that guides you around the next few streets. The
second map, which typically represents the backbone structure of the network, is stored

142 6. Generating, Flooding and Ageing LSPs

Pennsauken

Frankfurt

London

Washington

NewYork

Paris

FIGURE 6.1. A distributed link-state database is like a jigsaw puzzle

Distributed Databases 143

in the Level 2 (L2) database. This would best compare to a nationwide map where all the
freeways and highways are shown. You can take a quick look into both of these link-state
databases to find out exactly which puzzle pieces the database holds by issuing a show
isis database command on both the IOS and JUNOS software platforms.

IOS command output
The contents of the IS-IS link-state database can be displayed using the show isis
database command:

Amsterdam# show isis database

[…]

IS-IS Level-1 Link State Database:

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

New-York.00-00 0x00002fac 0xC24F 60128 1/0/0

[…]

IS-IS Level-2 Link State Database:

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

LINX-gw.00-00 0x00000128 0xB8EF 36163 0/0/1

LINX-gw.01-00 0x00000128 0x455A 42001 0/0/0

VIX-gw.00-00 0x00000123 0xEFC1 5023 0/0/0

[…]

The output shows you one “puzzle piece” of information in each line. Each LSP is
uniquely identified by its LSP-ID. The exact format of the LSP-ID will be discussed later
in this chapter. All that is important for now is that it says something about the router that
originated that LSP. The sequence number is a kind of version field that tells receivers
which information is more recent. The checksum enables to check at the receiver if the
LSP has been corrupted during its long way through the network. Finally, hold-time and
the ATT/P/OL gives some information about the validity of that information and how
long it will be valid, and just like a passport it has an expiration date.

JUNOS command output
In the JUNOS software, you can display the IS-IS database using the show isis data-
base command. Watch for an inconsistency between the LSPs being sent and received,
as this is a problem indication:

hannes@New-York> show isis database

IS-IS level 1 link-state database:

LSP ID Sequence Checksum Lifetime Attributes

New-York.00-00 0x2fac 0xc24f 62063 L1 Attached

[…]

4 LSPs

IS-IS level 2 link-state database:

LSP ID Sequence Checksum Lifetime Attributes

LINX-gw.00-00 0x128 0xb8ef 36063 L1 L2 Overload

LINX-gw.01-00 0x128 0x455a 41901 L1 L2

VIX-gw.00-00 0x123 0xefc1 4922 L1 L2

[…]

12 LSPs

The JUNOS software output contains similar information to the IOS software output.
The only difference is the little bit more detailed breakdown of the so-called attribute
typeblock, which will be discussed later in this chapter. As far as the attribute typeblock
is concerned, the JUNOS output is more verbose than the IOS equivalent.

Based on the information in the two link-state databases for L1 and L2, each router in
an IS-IS network computes the topology of the network independently of every other
router. This principle of independent router operation is called local computation. This is
the topic of the next discussion.

6.2 Local Computation

Routing protocols, such as RIP or BGP, compute the best path through a network in a dis-
tributed fashion. That is, no single RIP or BGP router knows what the other routers know
about the route, and this is a real limitation. For instance, each time a RIP router passes on
a route to its neighbour, the route gets a worse value. This “worseness” is indicted in a
metric field, which represents the hop-count (number of routers) that a router is away from
the router attached to the source sub-net. In Figure 6.2 the sub-net 192.168.1/24 is directly
connected to RIP Router #1. Router #1 reports the sub-net to its neighbours with a hop
count of 1. Router #2 learns the sub-net with a metric of 1 and reports it further to the right
side of the figure after incrementing the metric field by one. The routing update therefore
arrives at Router #3 with a metric of 2. But Router #1 has no idea what value this route has
on Router #3. RIP routing illustrates how a distributed computation scheme works.

IS-IS utilizes a totally different way of calculating routing information. Before the route
calculation takes place, all IS-IS routers distribute the information about the local views
of the routers to each other. Intermediate routers along the way must not change these
views (represented in the LSPs). After this distribution (flooding), a common route-
calculation scheme, which in IS-IS is called the shortest path first (SPF) algorithm, is
applied. Note that each router computes the routes independently from every other router.

144 6. Generating, Flooding and Ageing LSPs

19
2.

16
8.

1/
24

…

RIP Router 1 RIP Router 2 RIP Router 3 RIP Router 4

192.168.1/24 (1) 192.168.1/24 (2) 192.168.1/24 (3)
…

192.168.1/24 (4)
……

FIGURE 6.2. RIP calculates the metric in a distributed fashion

Local Computation 145

You can watch the result of the SPF calculation by issuing a show ip route isis com-
mand on IOS platforms and a show isis route command on Juniper Network routers.

In IOS, you cannot see the entire results of the SPF calculation – all you can see are
the results that make it into the main routing table. That excludes redundant routers that
happen to be in both IS-IS levels. The IS-IS learned routes that are active in the routing
table can be displayed using the show ip route isis command.

IOS command output
Amsterdam#show ip route isis

[…]

i L1 192.168.0.55 [115/10] via 172.16.144.2, POS3/0

i L1 192.168.0.57 [115/10] via 172.16.144.2, POS4/0

i L2 192.168.1.122 [115/10] via 172.16.177.18, GigabitEthernet3/0

[…]

The output tells us basically what routes (second column) did get installed in the local
routing and forwarding tables. Each line contains information about a single route. The
first column shows the level. The numbers in the brackets after the route give informa-
tion about the weight or, as it is called in Cisco IOS speak, the administrative distance of
the routing protocol that inserted this route into the routing table (in this case, IS-IS).
After the “via” statement the IP address of a locally connected router appears (the next-
hop). Finally the end of each line gives the physical interface through which the next-hop
can be reached and this is how packets to this destination will leave the router.

In the JUNOS software, you can display both the immediate results from the SPF calcu-
lation as well as the routes installed in the routing table. The SPF results are displayed using
the show isis route command. The IS-IS learned routes that are active in the main
routing table can be displayed using the show route protocol isis command.

JUNOS software command output
hannes@Pennsauken> show isis route

IS-IS routing table Current version:L1: 0 L2: 485

Prefix L Version Metric Type Interface Via

172.16.44.248/30 2 485 61770 int so-3/0/0.0 London

192.168.49.5/32 2 485 67850 int so-3/0/0.0 London

192.168.49.67/32 2 485 67860 int so-3/0/0.0 London

192.168.52.177/32 2 485 127850 int so-3/0/0.0 Frankfurt

192.168.54.164/32 2 485 128510 int so-3/0/0.0 Frankfurt

172.16.176.0/24 2 485 121770 int so-3/0/0.0 Frankfurt

172.16.176.32/30 2 485 127830 int so-3/0/0.0 New-York

172.16.176.60/30 2 485 123790 int so-3/0/0.0 New-York

[…]

The format of the output is one route entry per line. The first column contains the route
and the second column contains information about the level where this route did result
from. The version field is just an internal number that tells you how the SPF run number

based upon this route was calculated. The version field is typically not interesting in
troubleshooting networks. The metric tells the distance relative to the local router of the
prefix. Next is an indication whether the route is internal or external. Typically all the
routes are internal unless routes have been injected from other routing protocols into the IS-
IS database. Finally, the interface where the traffic leaves the router is displayed, plus the
forwarding router’s name.

JUNOS software command output
hannes@Pennsauken> show route protocol isis

inet.0: 118243 destinations, 246129 routes (118243 active,

0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

172.16.44.248/30 *[IS-IS/18] 4d 12:57:11, metric 41550, tag 2

> to 172.16.5.93 via so-3/2/0.0

192.168.49.5/32 *[IS-IS/18] 2d 07:26:54, metric 67850, tag 2

> to 172.16.5.93 via so-2/3/0.0

192.168.49.67/32 *[IS-IS/18] 1d 20:01:28, metric 67860, tag 2

> to 172.16.5.93 via so-7/0/0.0

[…]

In the show route protocol isis output we can see a subset of routes that got
displayed in show isis routes. Those are the routes that competed for installation in
the routing table with other routing protocols that may have had similar information;
however, the routes in this table are the ones that have won. In JUNOS the level of routes
is displayed in the tag field – a tag 2 means that this is a Level 2 route. The number in the
brackets is a similar value to the administrative distance for IOS platforms, called sim-
ply the route preference. The to and via keywords indicate the next-hop and the outgoing
interface.

The universal transport vehicle to build the IS-IS database map is called a link-state
protocol data unit or LSP for short, which is another OSI-speak word for link-state
packet. In the following sections, you will see what information an LSP contains, how
the LSP gets distributed, and how LSPs get throttled when the network is busy.

6.3 LSPs and Revision Control

The information element that transports IS-IS-related information to populate all the
routers’ link-state databases is called the link-state PDU or LSP. Each router in an IS-IS
network generates at least one LSP that describes, as the name implies, the current state
of the links to other routers. Actually, an LSP conveys more than just the state of the links
or circuits on the router. Routers use LSPs as a kind of envelope to get different types of
information elements such as IP routes, checksums and even router names across to other
routers. LSPs need to be accurate and up-to-date. If, for example, a link between a pair
of routers goes down, both routers must immediately tell the other routers in the network

146 6. Generating, Flooding and Ageing LSPs

that the link is down. The other routers then update their link-state databases, schedule
an SPF calculation, and remove that broken link from any transit paths in the network
that might use the failed link.

Now, assume that a remote router gets two conflicting messages at the same time. That
is, messages arrive almost at the same time claiming that a link is up and down. Consider
Figure 6.3. There are three routers connected by point-to-point links. Unfortunately, the
link between Router B and Router C is constantly going down, then up, and a short time
later, it goes down again. In network-speak this a flapping link. Next, assume that Router
B is a busy router with its CPU being loaded close to the ceiling. Therefore, Router B is
slower in processing the link-down/link-up events. In addition, the subsequent regener-
ation of its LSPs that report the link as down or up to other routers is slower.

Figure 6.4 shows the LSP messages from Router A’s perspective. Both Router B and
Router C find out first that there is a link-up event. However, Router C processes that event
far faster than the overloaded Router B. The trouble occurs as the link flaps again, this time
transitioning from the Up to the Down state. Router B still did not send the previous LSP
out because it was too busy. Router B’s LSP is now outdated information because the link
is now in the Down state. So both LSPs (Router B’s old Up one and Router C’s accurate
Down one) arrive at the same time at Router A. Now Router A needs to decide which is the
most accurate report – the Up or Down state message. The LSP to use should be the most
recent one, but in the example the most recent rule would fail because the propagation
delay from Router B to Router A made that inaccurate LSP arrive after Router C’s up-to-
date LSP. The conclusion here is that LSPs need to carry some sort of version information
to explicitly tell the receiving router what is current and what is outdated LSP information.

6.3.1 Sequence Numbers
Link-state routing protocols carry version information through a Sequence Numbers
field. IS-IS has a linear sequence number space starting from one and counting up. That
means that the first LSP that is announced by a router has the sequence number 0x1.
Each time the router issues a new view of the local environment to its neighbours, the
router will package that information in an LSP, increment the sequence number by one,
and send the LSP to all of its neighbours. The neighbours compare the incoming LSP
with the LSP in the local database. If the received LSP is new to them (that is, the

LSPs and Revision Control 147

What is the most recent
message?

Router A

Router B

Router C

FIGURE 6.3. The routers have to find out what is the most recent event

received LSP is not in the local database at all), then they unconditionally install the LSP
into their local link-state database. If the LSP is already installed in the database, the
receiving router needs to check if the sequence number is higher than the sequence num-
ber of the LSP that is already installed in the link-state database. If the LSP is newer, then
the router will flush (or discard) the existing LSP and update the LSP with the more
recent one. If it turns out (like in the previous example) that the most recent arriving LSP
is older (has a lower LSP sequence number) then the one installed in the link-state data-
base and therefore carries outdated information, the received LSP is silently discarded.
As IS-IS is a reliable protocol, the router will of course acknowledge receipt of that LSP
to the neighbour that sent it. If not acknowledged, the router will see the LSP again after
5 seconds, once the neighbour retransmits it. You can learn more about acknowledging
and retransmission of LSPs in Chapter 8.

The LSP sequence number field is a 32-bit identifier, giving room for about 4 billion
LSP updates. LSPs are subject to strict pacing, which means, for example, that a router
must not originate more than one LSP every 5 seconds. 2^32 times 5 seconds results in
an interval of 21,474,836,480 seconds, or roughly 681 years. So the sequence number
space is not likely to get to its end, at least not until readers are retired, which is typically
the timeframe that engineers care about.

Seriously, it is just assumed that the LSP sequence space will not run out. Assumptions
always cause a lot of trouble for engineers. The root-cause of the Y2K scare went back to

148 6. Generating, Flooding and Ageing LSPs

“slow”
Router B

Router C

tt t

Router A

LSP
Router B

Link Up to Router C

Link “Up”

Link “Down”

Big
processing

delay

Big
processing

delay

LSP
Router B

Link Down to Router C

LSP

Link Up to Router C

Router C

LSP

Link Down to Router C

Router C

Little
processing

delay

Little
processing

delay

Conflicting
Messages
hit Router A

FIGURE 6.4. In distributed environments Router A can get confused if the Link-Up or Link-Down
is the most recent event

assumptions about events that should not be a problem but ultimately were. The bottom
line is the Y2K problem cost corporate customers a lot of money to sanity check their
applications and to spot software problems before the millennium turnover. But IS-IS is
well prepared in that respect, since there actually is something that can be done if the LSP
sequence number space is ever maxed out. So what does a router do if it wants to originate
a new LSP and does hit the ceiling of the LSP sequence space? Now, the assumption is
that this ceiling will never be reached. But even if it finally is, there is a well-defined pro-
cedure to handle that event: the router must simply wait for a period of max-age seconds.
This sounds odd at first: why does waiting solve anything? And how long does max-age
last? As it turns out, it lasts a Lifetime – an LSP’s Lifetime.

6.3.2 LSP Lifetimes
In addition to the revision information (the LSP sequence numbers), link-state protocols
include in their LSPs a field called the Lifetime, which helps to control the maximum
validity span of LSPs. A router announcing an LSP does not mean that the LSP will be
valid forever, only for the number of seconds indicated in the Lifetime field of an LSP.
Adding a Lifetime field to the protocol helps to protect against stale (and potentially
wrong) entries in the link-state database. Consider a scenario where a router is taken out
of the network by being powered down. The LSP(s) of that powered-down router is or are
still installed in the link-state database of all the routers in the network. If the originating
router did not revoke or purge them (you will see shortly how this works), the LSPs would
stay in the link-state database forever. The Lifetime field in the LSP is a 16-bit entity,
which means that the Lifetime field can be set as high as 2^16-1 or in decimal notation
65,535 seconds, or a little over 18 hours.

The Lifetime field provides an answer to the unlikely event of IS-IS LSP sequence num-
ber space exhaustion. Before an IS-IS router can generate a new LSP with a sequence
number of 1, the router must wait until the Lifetimes of all previous LSPs it has generated
has expired and the LSPs have disappeared from all other routers’ link-state databases.
At most, this wait (max-age) will be 18 hours. This sounds very high, but waiting 18 hours
every 681 years should not be much of a problem for a network. And in practice, IS-IS
implementations only use the maximum 18-hour Lifetime when extreme background
flooding silence is needed. Most of the time, IS-IS uses the default Lifetime value of
1200 seconds (20 minutes). This value can be changed in most IS-IS implementations,
and often it is changed. But what stops every LSP from disappearing from the network
every 20 minutes? A periodic LSP refresh.

6.3.3 Periodic Refreshes
LSPs with maximum Lifetimes have the consequence that LSPs need to get refreshed.
Refreshing means that a router has to re-originate its LSPs periodically. The re-origination
interval has, of course, to be less than the LSP’s Lifetime. For example, if the LSP is
valid for 1200 seconds (the default value), the router needs to refresh the LSP in less than
1200 seconds in order to avoid removal of the LSP from the link-state database by other

LSPs and Revision Control 149

routers. The recommended max-LSP-origination-interval is the Lifetime minus 300 sec-
onds. So in a default environment this would be 900 seconds.

Figure 6.5 shows in a timing diagram how and when a router refreshes its LSPs. Every
900 seconds an LSP with the same information content is created. Here, Router A always
reports that the router has links in the Up state to Router B and C. Please note that for
each refresh, the Sequence Number is incremented by one (bumped). Each time that LSP
is refreshed, the Lifetime gets prolonged for another N seconds, as described in the
Lifetime field (the default value is 1200 seconds).

Both Cisco IOS and JUNOS software do originate all LSPs with a default Lifetime of
1200 seconds, as suggested in the ISO 10589 specification. However, you can change
this to higher values to reduce the amount of refreshes in the network (the refresh timer
is seldom made a lower value). Often theses periodic LSP refreshes are called refresh
noise, and network administrators want to reduce this noise close to zero. Both Cisco
IOS and JUNOS software offer configuration knobs to change the maximum Lifetime of
their LSPs and at the same time the re-origination interval derived from this value. IOS
lets you define the Lifetime and refresh intervals independently from each other. All you
have to make sure of is that the max-lsp-lifetime be a few hundred seconds higher
than the lsp-refresh-interval. If you modify the max-lsp-lifetime do
not forget to set the lsp-refresh-interval accordingly (a few hundred seconds
lower than max-lsp-lifetime). If you forget to set the refresh interval, then the
LSPs will get refreshed according to the default timer, which is 900 seconds. This will
not break anything but it also does not help to reduce the refresh noise. The outcome
might be an LSP originated with the maximum Lifetime of 65,535 seconds which will
still be refreshed each 900 seconds.

In IOS you can set the LSPs Lifetime and refresh interval independently from each
other, as shown in the following (note the bolded sections in this code listing).

IOS configuration
In IOS the max-lsp-lifetime and lsp-refresh-interval parameters need to be at
least 300 s apart.

Amsterdam# show running-config

[…]

router isis

max-lsp-lifetime 65535

lsp-refresh-interval 65000

[…]

The JUNOS software only exposes the lsp-lifetime knob to the user interface.
The developers at Juniper Networks feared that inconsistent setting of Lifetime and
refresh interval might mess things up seriously. As an example, think about what might
happen if the Lifetime is set to be smaller than the refresh interval. The refresh interval
is calculated automatically. The refresh interval in a Juniper Networks router is the LSP
Lifetime minus 317 seconds.

150 6. Generating, Flooding and Ageing LSPs

151

L
S

P
R

o
u

te
r

 A
, S

eq
u

en
ce

 0
x4

L
if

et
im

e
12

00
s

L
S

P

L
in

k
U

p
 t

o
 R

o
u

te
r

C

L
in

k
U

p
 t

o
 R

o
u

te
r

B

R
o

u
te

r
A

, S
eq

u
en

ce

 0
x3

L
if

et
im

e
12

00
s

L
S

P

L
in

k
U

p
 t

o
 R

o
u

te
r

C

L
in

k
U

p
 t

o
 R

o
u

te
r

B

R
o

u
te

r
A

, S
eq

u
en

ce

0x
2

L
if

et
im

e
12

00
s

10
00

20
00

30
00

0

L
S

P

L
in

k
U

p
 t

o
 R

o
u

te
r

C
L

in
k

U
p

 t
o

 R
o

u
te

r
B

R
o

u
te

r
A

, S
eq

u
en

ce

0x
1

L
if

et
im

e
12

00
s

P
er

io
di

c
re

fr
es

he
s

bu
m

p
th

e
S

eq
ue

nc
e

N
um

be
r

ev
er

y
90

0
se

co
nd

s

t(
s)

m
ax

 L
S

P
 li

fe
tim

e
12

00
s

m
ax

 L
S

P
 li

fe
tim

e
12

00
s

m
ax

 L
S

P
 li

fe
tim

e
12

00
s

m
ax

 L
S

P
 li

fe
tim

e
12

00
s

L
in

k
U

p
 t

o
 R

o
u

te
r

C

L
in

k
U

p
 t

o
 R

o
u

te
r

B

FI
G

U
R

E
6.

5.
 P

er
io

di
c

re
fr

es
he

s

In the JUNOS software, the refresh interval is automatically calculated as the LSP refresh
interval equal to the Lifetime minus 317 seconds. In the following listing, the relevant
JUNOS software configuration is marked in bold:

JUNOS configuration
hannes@New-York> show configuration

[…]

protocols {

isis {

lsp-lifetime 65535;

interface lo0.0;

interface so-0/0/0;

}

}

[…]

As we can control how long an individual LSP will last (given that there is no change
in the network) we will unveil how an LSP actually looks and what particular informa-
tion it contains.

6.3.4 Link-state PDUs
Figure 6.6 shows the structure of a link-state PDU. In the common header, the Length
field is fixed to 27 bytes. The code points for the PDU type are 18 for Level 1 LSPs and
20 for Level 2 LSPs. The common LSP header contains the PDU length, which is the
aggregate length of the IS-IS PDU excluding Layer 2 information (such as PPP, Cisco-
HDLC, and MAC addresses). In the LSP header, the four most important elements are:

• Lifetime
• LSP-ID
• Sequence Number
• Checksum

The purpose of the Sequence Number and Lifetime fields was already discussed in the
previous sections. The 16-bit Checksum field contains an international standard X.233
Fletcher Checksum. The Fletcher Checksum is a simple checksum algorithm that, in add-
ition to protecting the payload of the LSP, ensures that there is no imbalance between zeros
and ones in the resulting checksum. Checksums generally help to make bit errors introduced
by WAN transmission more recognizable by the receiver. You can learn more about
checksums and what particular problems they solve in Chapter 13, which gives a good
overview of IS-IS checksumming, failure scenarios, and checksumming related defects.

The LSP-ID field determines the LSP type. Figure 6.7 shows the structure of the LSP-
ID field. The LSP-ID is a fixed 8-byte field. The first 6 bytes are set to the System-ID of
the LSP Originator. The System-ID has the purpose of uniquely identifying a router in
the IS-IS network. If you are familiar with OSPF, the System-ID can best be compared
with the Router-ID. The only difference is that OSPF Router IDs are 32-bits (4 bytes)

152 6. Generating, Flooding and Ageing LSPs

and IS-IS System-IDs are 48-bits wide. The only required property is that the System-ID
has to be unique. Assignment of System-IDs, conversion schemes from OSPF-based IP
Router-ID to IS-IS System-IDs, and further information about IS-IS addressing can be
found in Chapter 4. The next byte in the LSP-ID field is called the Pseudonode-ID. The
principle of pseudonodes are not easy to explain in a paragraph – that is why it takes an
entire chapter to explain them. As a quick explanation, to an IS-IS router, a LAN consists
of real routers (nodes) and one router that represents the whole LAN but does not really
exist – the pseudonode. If the pseudonode byte is set to zero, we can be sure that this is

LSPs and Revision Control 153

Intra-domain Routing Protocol Discriminator

Header Length Indicator

Version/Protocol ID Extension

0x83

Bytes

1

1

1

1

1

1

1

1

1

ID Length

 PDU TypeR

0
R

0
R

0

PDU Version

Reserved

Maximum Area Addresses

6 (0)

1

3 (0)

0

TLV section 0–1465

18, 20

27

Remaining Lifetime

LSP-ID

PDU Length

Sequence Number

2

2

ID Length (6) � 2

4

Checksum 2

P 1ATT ATT ATT ATT OL IS Type

FIGURE 6.6. The format of a link-state PDU

1921.6820.4003.02-00
System-ID Pseudonode-

ID
Fragment-ID

FIGURE 6.7. The elements of a LSP-ID

a real router. If the pseudonode byte is non-zero then it represents the whole LAN . In
IS-IS LANs are represented in the link-state database with a unique identifier. More
information about pseudonodes and why they make sense is presented in Chapter 7.

The last byte in the LSP-ID field is called the Fragment ID. IS-IS runs directly on top
of OSI-RM Layer 2, which does not have a built-in fragmentation function for larger-
than-MTU-sized packets. IP-based routing protocols, such as OSPF, rely on IP to pro-
vide this fragmentation service, but IS-IS is not IP-based. So IS-IS needs to support
fragmentation through the application itself: IS-IS. Once again, IS-IS fragmentation is
worth a chapter on its own, because there are lots of interesting issues surrounding IS-IS
fragmentation such as “What should be done if a fragment of an LSP is missing”, “Is
there a special meaning to fragment zero”, and “What should be done if the fragment
space itself is exhausted?” Chapter 9 is dedicated to giving answers to these and other
questions surrounding fragmentation.

LSP-IDs are not displayed as a string of 8 consecutive bytes. In modern routing soft-
ware LSP-IDs follow certain conventions. In the next paragraphs the notation of LSP-
IDs will briefly be discussed. Furthermore we spot on more detailed what bits the
Attribute Type Block contains and what particular Application of the Overload Bit
may be.

6.3.4.1 LSP Notation

Typically the LSP-ID is displayed in the following format:

xxxx.xxxx.xxxx.yy-zz

Here, an x stands for the System-ID digits, y stands for the Pseudonode-ID, and z rep-
resents the fragment number. Let’s have a look at a tcpdump showing an LSP header and
its contents. The following shows a real-world LSP. Look especially at the notation used
for the LSP. The fields of the LSP header are shown in bold:

Tcpdump output
11:36:45.587565 OSI, IS-IS, length: 405

L2 LSP, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

lsp-id: 1921.6800.0012.00-00, seq: 0x000002fd, lifetime: 1198s

chksum: 0xe984 (correct), PDU length: 405, Flags: [L1L2 IS]

Authentication TLV #10, length: 7

simple text password: !$xyz00

Area address(es) TLV #1, length: 4

Area address (3): 49.0001

Protocols supported TLV #129, length: 1

NLPID(s): IPv4 (0xcc)

Hostname TLV #137, length: 6

Hostname: London

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 172.16.1.33

154 6. Generating, Flooding and Ageing LSPs

IPv4 Internal Reachability TLV #128, length: 84

IPv4 prefix: 10.254.47.8/30, Distribution: up, Metric: 5, Internal

IPv4 prefix: 10.252.1.0/30, Distribution: up, Metric: 5, Internal

IPv4 prefix: 10.254.1.48/30, Distribution: up, Metric: 1, Internal

IPv4 prefix: 10.254.1.20/30, Distribution: up, Metric: 5, Internal

IPv4 prefix: 10.254.3.4/30, Distribution: up, Metric: 25, Internal

IPv4 prefix: 10.254.1.72/30, Distribution: up, Metric: 2, Internal

IPv4 prefix: 10.254.1.28/30, Distribution: up, Metric: 5, Internal

Extended IS Reachability TLV #22, length: 75

IS Neighbor: 1921.6800.1001.00, Metric: 5, sub-TLVs present (64)

IPv4 interface address subTLV #6, length: 4, 10.154.1.6

IPv4 neighbor address subTLV #8, length: 4, 10.154.1.5

Unreserved bandwidth subTLV #11, length: 32

The first output of the second line shows us an LSP-ID. We recognize that this is an
LSP-ID because it follows the xxxx.xxxx.xxx.yy-zz style. Only LSP-IDs follow that
style. The last bold argument in the tcpdump output shows the so-called Attribute Type
Block, which has in the example two bits set.

6.3.4.2 Attribute Block

What are the Flags [L1L2 IS] following the checksum? What are they used for? The last
byte in the LSP header is often referred to as the attribute block. These 8 bits tell the
receiver crucial information about the nature of the LSP. These 8 bits are:

• Bit 8 – P (Partition Repair) Bit
• Bit 7 – ATT-Error Bit
• Bit 6 – ATT-Expense Bit
• Bit 5 – ATT-Delay Bit
• Bit 4 – ATT-Default Bit
• Bit 3 – OL (Overload) Bit
• Bit 2 and 1 – IS Type Bits

The P (Partition Repair) Bit is what is known as a capability indicator that shows if the
issuing router supports the partition repair functionality (that is, this bit indicates that
capability). Partition repair means that a broken Level 1 area can be healed through the
Level 2 IS-IS routers. It is not possible to be very specific here because Partition Repair
is barely deployed and sometimes even not supported in certain IS-IS implementations
such as JUNOS. Partition repair is left as an option to the implementer of the protocol,
so this is not a major issue. Typically, if a specification says that something is optional,
and if it is complicated to implement or does not solve a specific problem, this is enough
justification to ignore that function entirely. So if you take the time and crawl through
protocol specification, such as RFCs and Internet drafts or – even worse – ISO papers
and documents, then you almost always can replace the word “should” with “can-be-
ignored” in your mind.

LSPs and Revision Control 155

The next four bits in the Attribute block, Bits 7 to 4, determine if the issuing
Intermediate System is attached to another area or not. Only L1L2 routers may set this
bit in their Level-1 LSPs. But why are there 4 bits denoted to this functionality, and not
just one? Because at the time when ISO 10589 was specified (in the late 1980s) many
people believed that routing protocols should support multiple topology databases, each
set up for a particular purpose. The original idea was that IS-IS should calculate one
topology database that would have the lowest bit error rate, one topology database for
the least expensive paths in the network, one that reflects the lowest delay topology,
and finally one that would be used if the sender of the packet were undecided which
of the topologies to pick. This is an early form of Class-of-Service (CoS) enabled
routing, which ultimately did not get deployed because network engineers felt uncom-
fortable (rightly so at the time) about supporting such multidimensional networks. Bits
5, 6 and 7 therefore got deprecated (not quite obsolete, but not promoted at all) over time.
Today, as far as IP routing is concerned both JUNOS and IOS only support the default-
metric, and hence just the bit 4 default topology, which only demands a single instance
of SPF calculation. There are more places in the IS-IS specification where this
CoS-based routing legacy pops up; however, in modern routing it has been entirely
deprecated.

The Overload Bit is used (not surprisingly) to indicate that a router is in an overloaded
condition. Initially, this was envisioned to serve as an indicator that a router had run
out of memory. Running out of memory in a router is never good, but the impact of
memory shortage is especially dramatic for link-state protocols: if a router cannot store
all LSPs in its link-state database the router will not be able to calculate loop-free
paths through the network. The idea behind the Overload Bit is that once the router
notices that it is running short of memory, the router will simply refuse to play SPF with
neighbours and pull itself out of the game. A router holding half of the information
needed for proper SPF calculations, and disturbing the other routers by advertising
this half-knowledge does more harm than a router that reliably takes itself off the net-
work topology. The effect of a router originating its LSPs with the Overload Bit set
is that during the SPF calculation, the router will be disregarded for delivery of transit
traffic. The nice thing here is that the local sub-nets that the router still advertises in its
LSPs are still reachable. You can read more about the advertisement of IP sub-nets in
IS-IS in Chapter 12. So although the router is pruned from the network topology, the
router is still reachable by non-transit packets. Figure 6.8 shows you the network impact
of a router that has the Overload Bit set. New York has the Overload Bit set in its
most recent LSP. Therefore, the routers in the network re-calculate their paths and
re-route around New York. For instance, Washington to Pennsauken traffic is moved
through the Frankfurt path. However, the local prefixes (and the loopback) IP address
of the New York router are still reachable. Local traffic therefore still goes directly to
New York.

The remaining two bits are the IS bits which indicate the topologies that the sender is in.
Each router is always in a Level-1 topology even if the router software lets turn you off
the Level-1 entirely off a Router. This is admitted a bit odd. So Bit 1 must always be set.
However, Bit 2 is variable. If it is set the router is also present in the Level 2 topology.

156 6. Generating, Flooding and Ageing LSPs

You can examine the contents of the Attribute block by issuing a show isis
database. This command is supported on both IOS and JUNOS routers, as shown in
the following:

IOS command output
Amsterdam# show isis database

[…]

IS-IS Level-1 Link State Database:

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

LSPs and Revision Control 157

172.16.1/24

Pennsauken

LSP
New-York, Seq 0x2fc
Lifetime 1200 s, OL
Link Up to Pennsauken
Link Up to Wash D.C.

Pennsauken

Frankfurt

London

Washington

NewYork

Paris

FIGURE 6.8. The overloaded routers’ local prefixes are still reachable while transit-traffic is
kept away

New-York.00-00 0x00002fac 0xC24F 60128 1/0/0

[…]

IS-IS Level-2 Link State Database:

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

LINX-gw.00-00 0x00000128 0xB8EF 36163 0/0/1

LINX-gw.01-00 0x00000128 0x455A 42001 0/0/0

VIX-gw.00-00 0x00000123 0xEFC1 5023 0/0/0

[…]

In JUNOS, you can get a quick overview of the status of some of the bits by issuing
the show isis database command. If you want to see the Attribute block for
one LSP specifically, then you can request a specific LSP’s extensive output by
issuing a show isis <LSP> extensive. There are various levels of output for the
show isis database command. You can see the default and how the extensive
modifier changes the output in the following:

JUNOS command output
hannes@New-York> show isis database

IS-IS level 1 link-state database:

LSP ID Sequence Checksum Lifetime Attributes

New-York.00-00 0x2fac 0xc24f 62063 L1 Attached

[…]

4 LSPs

IS-IS level 2 link-state database:

LSP ID Sequence Checksum Lifetime Attributes

LINX-gw.00-00 0x128 0xb8ef 36063 L1 L2 Overload

LINX-gw.01-00 0x128 0x455a 41901 L1 L2

VIX-gw.00-00 0x123 0xefc1 4922 L1 L2

[…]

12 LSPs

hannes@New-York> show isis database LINX-gw extensive

LINX-gw.00-00 Sequence: 0x128, Checksum: 0xb8ef, Lifetime:

36063 secs

IS neighbor: London.01 Metric: 2000

IP prefix: 2.168.9.225/32 Metric: 0 Internal

IP prefix: 172.16.6.0/28 Metric: 2000 Internal

[…]

Packet: LSP id: Vienna-ts1.00-00, Length: 98 bytes, Lifetime:

36063 secs

Checksum: 0xb8ef, Sequence: 0x128, Attributes: 0x7 <L1 L2 Overload>

NLPID: 0x83, Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes

Packet type: 20, Packet version: 1, Max area: 0

158 6. Generating, Flooding and Ageing LSPs

The use of the Overload Bit is one of the more interesting stories of IS-IS. The reason
why and when this bit is set has changed dramatically over the years. At first, the use was
straightforward: there were many router memory constraints. Memory in the late 1980s
compared to today was expensive, and the chips had little capacity. In the late 1980s,
most routers were running with 512 KB of memory. So memory was definitely a con-
straint, and the Overload Bit was used as intended.

But what about today? Memory isn’t really an issue for IS-IS now. All modern Internet
core routers have at least 256 MB of memory, and in many cases, they have even more
memory. For example, the Juniper Networks T640 router has a route-processor that has
a massive 2 GB for storing routing information. And IS-IS is not a particularly memory-
intensive protocol. Massive amounts of memory are typically needed for storing BGP
routes and paths. Even in the largest networks in the world, IS-IS does not consume more
than 1.5 to 2.0 MB of memory. To give an idea how big these modern IS-IS networks are,
think of an L1L2 router that is on the IS-IS Level 2 backbone with 1200 or more other
routers. In addition, consider 200 or more routers at IS-IS Level 1. Thus, the link-state
database is quite large. True enough, and yet it still does not consume more than between
0.1% and 1% of a modern route processor’s memory. So what is it that drives the setting
of the Overload Bit today? The answer to this is addressed in the next section.

6.3.4.3 Applications of the Overload Bit

In an Internet core router there are always two routing protocols running. One is for gather-
ing topological knowledge and one carries a bulk amount of reachability information.
The Interior Gateway Protocol (IGP) discovers the topological knowledge of the internal
core network of an ISP. IS-IS is a member of the large family of IGPs. For the reachabil-
ity information about bulk routes (Internet routes and customer routes), there is the
Border Gateway Protocol (BGP), the interdomain routing protocol of the Internet. Each
protocol does what it can do best. IS-IS quickly discovers, and then re-routes the internal
network. Unfortunately, IS-IS is not very good in transporting a bulk amount of routing
information across the internal network. IS-IS is in good company in being unsuited for
this task with the rest of the IGPs (RIP, OSPF, EIGRP etc.).

All of the IGPs suffer from the same protocol defect, in that all of the IGPs do not have
any flow-control mechanisms built into the protocol. This is the reason that they fail
when a large number of routes have to be carried across the internal network. As long as
the IGP routers are loaded moderately, there is not much of a problem. However, as with
human beings, everything is different under stress. Once the network is exposed to
protocol-related stress (a large amount of re-routing, heavy LSP processing, many flap-
ping links, and so on), plus a large amount of BGP reachability information, the network
starts to churn. Churning IGPs was the typical reason in the 1990s when people like the
NOC-team managers and the Chief Technology Officer got paged out of bed in the middle
of the night.

These lessons were learned and the implementations of the routing protocols did get
better. There has also been more experience gained in network design. The pragmatic
design rule today is that there must not be any other IP reachability information in the

LSPs and Revision Control 159

IGP other than /30, /31 (point-to-point link IP sub-nets) and /32 routes (loopback addresses).
No customer routes, no server farm routes, nothing except the IP sub-nets needed to run
the internal infrastructure is put into the IGP’s database. Common practice is that all of
the IP reachability information is injected into BGP, which, because BGP runs on top of
TCP, is very good in terms of flow-control. So if a BGP peer wants to throttle down a
neighbouring speaker that is too fast, the router simply delays the TCP acknowledgements.
Delayed TCP ACKs emulate a small bandwidth link. The fast speaker will back off and
reduce the pacing of the route transmission.

But if BGP is so good, then why do we need IGPs like IS-IS? To answer this, you have
to understand that there is some mutual dependency between the IGP and BGP. First of
all, BGP runs on top of TCP, and in order for TCP to work, you need valid internal routes
to get your BGP session up and running. Furthermore BGP needs some information
about how far a BGP speaker is away to determine the best route – it is the IGP that sup-
plies that information. On the downside BGP converges (produces consistent informa-
tion in all BGP routers) very slowly particularly because it is not very good in detecting
that a neighbour is down as it has very slow paced keep-alive timers. Once the BGP
neighbour is determined to be down in the worst case, it can take up to 2 minutes for a
BGP router to declare a neighbour down. IS-IS is much quicker (orders of 10–30 sec-
onds) to detect absent peers. It is the slowness of BGP, more precisely the slowness of
iBGP (BGP distributing information to the internal network), that mandates the use the
Overload Bit today.

Consider the scenario shown in Figure 6.9. It shows a transit provider providing ser-
vice to the customer ASs 2 and 3. The iBGP connections as they should be in the
converged state are represented in the diagram as dotted curves. However, the internal
BGP sessions to Core Router #2 are down because we had to reboot Core Router #2 (the
reason for this reboot is unimportant, but happens occasionally). The router reboots,
starts its routing processes (IS-IS and BGP), and tries to get the iBGP sessions up, but it
can’t! This is because IS-IS has not yet learned about the internal topology to acquire the
necessary routing information in order to get the internal BGP sessions, which rely on
TCP, up. IS-IS starts to discover its directly connected neighbours (Core Router #1, #3,
Border Router A, B) and starts to synchronize its link-state databases. Database synchro-
nization is discussed in more detail in Chapter 8.

After database synchronization, the IS-IS routing process schedules an SPF calcula-
tion and feeds the routing information resulting from that calculation into its local
routing table. This is the beginning of the black hole state where packets flowing into a
router have no place to go. Border Routers A and B immediately send Core Router
#2 traffic targeted to local AS 2 and 3. The problem is that Core Router #2 does not
yet have the transit BGP routes to know where to forward that traffic, as the iBGP
sessions are not established yet. After a while, the sessions to the iBGP speakers are
established (this can last up to several minutes) and Core Router #2 will have built up
accurate forwarding states to pass on the traffic and so as not to black hole the packets
any longer.

What can be done in IS-IS to help avoid entering a black-hole scenario? Consider what
would happen if Core Router #2 sets the Overload Bit when sending its first LSP. During
the subsequent SPF calculation, the Border Routers A and B will detect the Overload Bit

160 6. Generating, Flooding and Ageing LSPs

during processing Core Router #2’s LSP and will therefore eliminate Core Router #2 as
a possible way to send transit traffic. The transit traffic will be routed around Core Router
#2 over Core Routers #1 and #3. The good news is that Core Router #2’s local sub-nets
will still be reachable even if the router sets the Overload Bit, so the iBGP sessions to all
the internal routers can be established successfully during the overload condition.

Most IS-IS implementations, including IOS and JUNOS software, support static set-
ting of the Overload Bit. The following configuration statements show how to set the
Overload Bit statically. The set-overload-bit command sets the Overload Bit for
both levels of the IS-IS instance, as shown in the following:

IOS configuration
The IOS set-overload-bit command sets the Overload Bit persistent static and does
not remove it after some time.

Amsterdam# show running-config

[…]

router isis

set-overload-bit

[…]

LSPs and Revision Control 161

FIGURE 6.9. IS-IS and BGP routing is mutually dependent on each other; if both do not converge at
the same time, traffic is black holed

140K Internet
Routes

Core Router #1

Core Router #3

Border Router B

Border Router A

Core Router #2

iBGP
eBGP

140K Internet
Routes

JUNOS software configuration
In the JUNOS software, the configurations statement is very similar to the IOS one. In the
JUNOS software the Overload Bit can be set statically by adding the overload configura-
tion directive under the protocols isis configuration hierarchy.

hannes@New-York> show configuration

[…]

protocols {

isis {

overload;

interface lo0.0;

interface so-0/0/0;

}

}

[…]

It is important to stress the static nature of the configuration directives. If you set the
Overload Bit by using any of the two commands described, your router will not carry any
transit traffic with this configuration. There are places where this can be helpful. One
appropriate application for the static setting for the Overload Bit is dedicated devices
such as BGP route reflectors, which are intentionally not meant to carry any transit traf-
fic. Thus, do not start to panic if you see the Overload Bit set in your network – it is most
likely set by the BGP route reflectors, which you do not want to carry any transit traffic.
The static setting of the Overload Bit is also useful when doing hardware/software main-
tenance work on a router. Set the Overload Bit to get rid of all the transit traffic for the
time being. Finish the maintenance work and clear the Overload Bit to carry on forwarding
transit traffic. Manual clearing of the Overload Bit is not always possible; what is needed
is an automated way of clearing the Overload Bit after some amount of time. There are
two strategies for the timed clearing of the Overload Bit:

• Unconditional. Clear the Overload Bit after some (configurable) amount of time
• Conditional. Clear the Overload Bit once all of the iBGP sessions are in the Up state

The Unconditional option just requires that you know your network and how long it
takes to collect BGP routes and populate the router with the correct forwarding state. The
network administrator has to estimate a realistic value here. The Conditional option sim-
ply waits until all the internal BGP connections are in the Up state. Architecturally, this
approach lacks some robustness in practice: just ask yourself what will happen if one or
more of the iBGP sessions do not come up. The Overload Bit is never cleared at all. It is
relatively easy to come up with scenarios where the Overload Bit will never clear if one
of the iBGP peers is under constant up-down-up flux. So most networks do not use the
conditional approach and use an unconditional fixed time value of 300 seconds. This
five-minute value is a good balance allowing time to bring up even large internal iBGP
meshes, while still relatively quick to clear the Overload Bit.

This dynamic setting and clearance of the Overload Bit is supported in both IOS and
JUNOS software. IOS supports clearance of the Overload Bit according to both strat-
egies (conditional wait-for-iBGP and the unconditional timer) during router startup.

162 6. Generating, Flooding and Ageing LSPs

The Overload Bit can be dynamically set and cleared during startup using the set-
overload-bit on-startup [<timeout> | wait-for-bgp] configuration
command in router-configuration mode, as shown in the following:

IOS configuration
Amsterdam# show running-config

[…]

router isis

set-overload-bit on-startup 300

[…]

London# show running-config

[…]

router isis

set-overload-bit on-startup wait-for-bgp

[…]

Juniper Networks engineers were a bit cautious about the dependency on both another
protocol and on the all-or-nothing approach of waiting for all iBGP connections to come
up. JUNOS, therefore, just supports unconditional clearance of the Overload Bit (Timer
method).

JUNOS software configuration
In the JUNOS software, arbitrary timers between 60 and 1800 seconds can be specified
that the router will wait until clearing the Overload Bit. Set the overload timeout
<timeout> configuration directive under the protocols isis configuration hierarchy, as
shown in the following:

hannes@New-York> show configuration

[…]

protocols {

isis {

overload timeout 300;

interface lo0.0;

interface so-0/0/0;

}

}

[…]

Setting the Overload Bit during startup and dynamically clearing it with a timer is a
useful tool to avoid black hole scenarios during transient network conditions. It is highly
recommended that you configure the Overload timer on all the transit core routers.

A lot has been said about the individual bits in the LSP header and the scenarios in
which they are used. Next, the way that LSPs are distributed through the network will
be examined in more detail. The mechanism used in IS-IS to distribute LSPs is called
flooding.

LSPs and Revision Control 163

6.4 Flooding

Once a router has acquired its directly connected neighbours and built up adjacencies,
it will tell other routers about its local adjacencies. To get the information across the
whole network as quickly as possible, this information is flooded. But just what does
flooding mean?

First of all, the flooding algorithm is slightly different depending on if a router originates
the information or if the router just receives the information and relays it further. Figure 6.10
and Figure 6.11 show the differences between the two approaches.

In Figure 6.11, you can see that the router is originating an LSP. The router then sim-
ply sends this LSP out on all interfaces that have an adjacency in the Up state. If a router
is receiving an LSP that the router has not originated, as shown in Figure 6.11, the router
will simply send the LSP out on all interfaces except the one where the router got the
LSP. The name flooding is derived from the fact that a received LSP will be sent out
almost unconditionally on all other interfaces.

The basic flooding algorithm needs to be refined a little bit. One thing to make sure of
is that the flooding stops at a certain point. If flooding does not stop, we would have an

164 6. Generating, Flooding and Ageing LSPs

LSP

Link Up to Router B
Link Up to Router C

Link Up to Router F

Router A, Sequence 0x9
Lifetime 1200 s

Router A

FIGURE 6.10. Self-originated LSPs are flooded on links with an adjacency in the Up state

endless, raging “LSP storm” circulating through the network. For example, consider a
ring-like topology, as shown in Figure 6.12. Each router in the sample topology would
just send the LSP farther on all interfaces, except on the one where the router received the
LSP. So what controls the flooding and helps to prevent LSP distribution from exploding?
Once again, it is the Sequence Number that controls the flooding. So let’s refine the flood-
ing algorithm to use the Sequence Number to prevent endless flooding.

First, a router must verify if a received LSP is newer (has a higher Sequence Number)
than the one installed in the local database. If it is newer, then install the LSP in the data-
base and send it out on all interfaces where there is an adjacency in the Up state. If the
Sequence Number is less than or equal to the LSP in the database, then the router should
simply discard the LSP. Going back to our example in Figure 6.12, where the update was
circling endlessly, the difference can be seen. Once the update process is completed
(after Step 6), then the flooding stops at Frankfurt because this router already knows
about the LSP with Sequence Number 0x12.

6.4.1 Is Flooding Harmful?
The refined basic flooding algorithm is a quite robust information distribution scheme. It
is robust because the algorithm relies very little on other routers and thereby makes sure

Flooding 165

LSP

Link Up to Router A
Link Up to Router J

Link Up to Router K

Router F, Sequence 0x4
Lifetime 1199 s

Router A

FIGURE 6.11. Relayed LSPs are flooded on links with an adjacency in the Up state, except on the
one that originated the link

that the message gets to the very last corner in an autonomous system. However, there is
also a dark side to this robust scheme. This scheme is very inefficient in a densely
meshed environment. Consider Figure 6.13. Here, four ATM switches interconnect a col-
lection of routers. The physical connections are the black lines. The gray lines represent
the connections at the logical level. Each gray line is a virtual circuit (VC) at the ATM
level. This kind of networking setup was popular in the mid-1990s for various reasons,
such as ATM interface speed, the absent traffic engineering capabilities of IP routers, and
the limited processing power of software-based routers (ATM switches were hardware-
based). You can learn more about these historical networking setups and why they are
deployed in Chapter 14. For now, it is enough to note that ATM switches once connected
IP routers, and sometimes they still do.

166 6. Generating, Flooding and Ageing LSPs

LSP

Link Up to Router C
Link Up to Router B

Router Frankfurt,
Sequence 0x12
Lifetime 1200s

LSP

Link Up to Router C
Link Up to Router B

Router Frankfurt,
Sequence 0x12
Lifetime 1200 s

LSP

Link Up to Router C
Link Up to Router B

Router Frankfurt,
Sequence 0x12
Lifetime 1200s

LSP

Link Up to Router C
Link Up to Router B

Router Frankfurt,
Sequence 0x12
Lifetime 1200 s

LSP

Link Up to Router C
Link Up to Router B

Router Frankfurt,
Sequence 0x12
Lifetime 1200s

LSP

Link Up to Router C
Link Up to Router B

Router Frankfurt,
Sequence 0x12
Lifetime 1200 s

LSP

Link Up to Router C
Link Up to Router B

Router Frankfurt,
Sequence 0x12
Lifetime 1200s

LSP

Link Up to Router C
Link Up to Router B

Router Frankfurt,
Sequence 0x12
Lifetime 1200 s

LSP

Link Up to Router C
Link Up to Router B

Router Frankfurt,
Sequence 0x12
Lifetime 1200s

LSP

Link Up to Router C
Link Up to Router B

Router Frankfurt,
Sequence 0x12
Lifetime 1200 s

LSP

Link Up to Router C
Link Up to Router B

Router Frankfurt,
Sequence 0x12
Lifetime 1200s

LSP

Link Up to Router C
Link Up to Router B

Router Frankfurt,
Sequence 0x12
Lifetime 1200 s

6

5

4

3

2

1

Pennsauken

Frankfurt

London

Washington

New York

Paris

FIGURE 6.12. The Sequence Number causes the flooding to stop

Each router in the Figure 6.13 setup forms an adjacency with the other routers, effectively
forming a full-mesh. So far, so good. Now, consider the following scenario: the ATM vir-
tual circuit between Seattle and Los Angeles breaks for some reason, as indicated by the
dotted gray line. Both Seattle and LA notice the break and therefore generate a new LSP
(incrementing the Sequence Number and removing the adjacency between Seattle and
LA). The new LSP is sent according to the flooding rule on all interfaces where there are
adjacencies in the Up state. Thus, both Seattle and LA send four copies (gray arrows) of
their new LSPs into the network. Next, the four other routers will receive the two LSPs
(white arrows). Here is where the trouble starts: because the flooding algorithm is so sim-
ple, the algorithm does not yet know that all the other routers already been have updated
and know that the adjacency between Seattle and LA is down. What follows is a multi-
plication of LSPs due to the simplicity of the flooding algorithm. All of the routers
receive the two new LSPs and re-send the LSP to all the logical interfaces except on the
ones on which they got the LSP (gray arrows). What results is that 32 LSPs are sent for
a single broken ATM VC. This does not sound too stressful for a modern router’s control
plane; however, just think if there are not six routers, but 100 routers in the network. The
problem is that the number of LSPs grows by the square of the number of routers, or in
mathematical speak O(N 2). Thus, a single failing VC in the network may generate up to
10,000 LSP updates, all flying around in a relatively short amount of time. This is an
awful lot of stress for the control plane of a router, no matter how powerful.

Flooding 167

tx LSP

rx LSP

Seattle

Los Angeles

San Francisco New York

Atlanta

Chicago

FIGURE 6.13. ATM overlay networks and flooding stress

Things get even worse with another failure scenario: what if not a single VC, but an
entire router is going down (due to a reboot, for example)? The amount of LSPs grows
by O(N3). In a network of 100 routers spanning a full-mesh, this means that a single fail-
ing router generates up to 1,000,000 LSPs in a short amount of time. Ironically, 99 per
cent of the LSPs hold information that is already known by some other neighbour. So
what can be done to mitigate the dark side of flooding? The answer to this is discussed in
the next section.

6.4.2 Mesh-Groups
Let’s go back to the basic flooding algorithm and change it a little bit. Now the rule
is: Do not send out a received LSP on all the links where we have an adjacency in the Up
state. Rather, send out the LSP on some of these links. Figure 6.14 shows a router that
is not sending out an LSP on all of the possible links. Instead, some links have been pruned
off the flooding topology. The result is that all routers still see LSP updates, but the exces-
sive multiplication of LSPs is avoided. The official name for this kind of functionality is
known as Mesh-Groups and has been documented in RFC 2973. The Mesh-Group pruning
is done based on the topology of the network and is not automatic.

There are two basic concepts behind Mesh-Groups. The first concept is blocking an
interface entirely, as shown in Figure 6.14. Here, one or a set of interfaces is removed
from the flooding list. It is also very straightforward to configure on IOS and JUNOS
software, as shown in the following two configuration snippets. Both vendors share the
same spirit in their implementation of the Mesh-Group functionality. The LSP flooding
in both vendors’ implementations is an interface property. In IOS, you configure everything
at the physical/logical interfaces prepended by the keyword isis. In JUNOS software,
all the logical interfaces can be referenced directly under the protocols isis
interface configuration branch, which is very practical, as the relevant information
is then at one place.

168 6. Generating, Flooding and Ageing LSPs

tx LSP

rx LSP

Pruned "flooding" links

FIGURE 6.14. Mesh-Group blocks remove certain links from the flooding topology

IOS configuration
In IOS, LSP flooding can be reduced using the isis mesh-group blocked configuration
command in interface-configuration mode, as shown in the following:

London# show running-config

[…]

interface atm 1/2.1

ip router isis

isis mesh-group blocked

[…]

In JUNOS the configurations statement is very similar. The first flavour of Mesh-
Groups can be enabled by use of the mesh-group blocked config-uration directive
under the protocols isis interface <interface-name> configuration
hierarchy, as shown in the following:

JUNOS software configuration
hannes@Frankfurt> show configuration

[…]

protocols {

isis {

interface at-4/0/0.200 {

mesh-group blocked;

}

}

}

[…]

You may ask why the word Group is contained in Mesh-Group. So far we have not con-
figured a Group number. What is the Group number related to? This number is related to the
refined version of Mesh-Groups where the flooding is not turned off entirely for an interface.
Some LSPs are still sent. How is this second flavour of Mesh-Groups configured? First, all
the logical interfaces on an IS-IS router have to be organized in groups of interfaces. In
Figure 6.15 you can see that the first three interfaces have been grouped together in Mesh-
Group #11 and the second three interfaces have been grouped together in Mesh-Group #47.
Once an LSP is received over a logical interface (white arrow), the IS-IS router first deter-
mines the Mesh-Group number that the receiving interface belongs to. In our example the
receiving interface belongs to Mesh-Group #11. When this LSP is now flooded to all neigh-
bours, the router does flood the LSP on interfaces belonging to that specific group (Mesh-
Group #11 with the gray arrows). This solves the multiplicative effect of basic flooding.

The second flavour of Mesh-Groups that has just been described can be configured in
a similar way on IOS and in the JUNOS software. The only difference here is that a
Mesh-Group Number replaces the keyword blocked. Similar to the mesh-group
blocked command, this is configured under interface configuration mode.

Flooding 169

In IOS, LSP flooding can be reduced according to the second flavour of Mesh-groups
using the isis mesh-group <group-number> configuration command in interface-
configuration mode, as shown in the following:

IOS configuration
London# show running-config

[…]

interface atm 1/2.1

ip router isis

isis mesh-group 11

interface atm 1/2.2

ip router isis

isis mesh-group 11

interface atm 1/2.3

ip router isis

isis mesh-group 11

[…]

In JUNOS, the Mesh-Group Number replaces the blocked statement. The
second flavour of Mesh-Groups can be enabled by use of the mesh-group <group-
number> configuration directive under the protocols isis interface
<interface-name> configuration hierarchy, as shown in the following:

JUNOS software configuration
hannes@Frankfurt> show configuration

[…]

protocols {

isis {

interface at-4/0/0.100 {

mesh-group 11;

}

170 6. Generating, Flooding and Ageing LSPs

Mesh group #11

Mesh group #47

tx LSP

rx LSP

FIGURE 6.15. Mesh-Groups relay an LSP only to interfaces inside the same Mesh-Group

Flooding 171

interface at-4/0/0.101 {

mesh-group 11;

}

interface at-4/0/0.102 {

mesh-group 11;

}

}

}

[…]

Mesh-Groups help to reduce the flooding explosion in densely meshed environments.
However, keep in mind that flooding is a necessity to get information across the internal
network. In a sense, it is “too-much” flooding that causes harm. However, a “too-little”
flooding strategy can cause harm in a different way. Thus, be very careful when setting
up Mesh-Groups. Mesh-Groups cannot be so “tight” that they result in desynchronized
link-state databases. In Chapter 8 you will learn about the impact of desynchronized
link-state databases and what can be done to avoid them. At the end of the chapter, a
refinement of ISO 10589 is presented to make sure that routers that have been acciden-
tally pruned off the flooding topology (due to a wrong Mesh-Group configuration, for
example) still receive good information for synchronization.

Although Mesh-Groups must be hand-configured by a network administrator, it is
easy to determine if Mesh-Groups are needed by looking at the statistics that IOS and the
JUNOS software can provide. For example, the relevant IS-IS statistics can be displayed
using the show clns traffic command, as shown in the following:

IOS command output
Amsterdam# show clns traffic

[…]

IS-IS: Time since last clear: never

IS-IS: Level-1 Hellos (sent/rcvd): 115/19

IS-IS: Level-2 Hellos (sent/rcvd): 120/14

IS-IS: PTP Hellos (sent/rcvd): 0/0

IS-IS: Level-1 LSPs sourced (new/refresh): 10/0

IS-IS: Level-2 LSPs sourced (new/refresh): 14/0

IS-IS: Level-1 LSPs flooded (sent/rcvd): 2/2

IS-IS: Level-2 LSPs flooded (sent/rcvd): 3/2

IS-IS: LSP Retransmissions: 0

IS-IS: Level-1 CSNPs (sent/rcvd): 0/2

IS-IS: Level-2 CSNPs (sent/rcvd): 3/0

IS-IS: Level-1 PSNPs (sent/rcvd): 0/0

IS-IS: Level-2 PSNPs (sent/rcvd): 0/0

IS-IS: Level-1 DR Elections: 3

IS-IS: Level-2 DR Elections: 2

IS-IS: Level-1 SPF Calculations: 7

IS-IS: Level-2 SPF Calculations: 7

172 6. Generating, Flooding and Ageing LSPs

IS-IS: Level-1 Partial Route Calculations: 0

IS-IS: Level-2 Partial Route Calculations: 0

IS-IS: LSP checksum errors received: 0

IS-IS: Update process queue depth: 0/200

IS-IS: Update process packets dropped: 0

[…]

In every case, a big disparity between the LSPs being sent and the LSPs being received
is an indication that there is excess flooding in the network that needs to be controlled via
Mesh-Groups.

In the JUNOS software, you can display the global lS-IS statistics using the show isis
statistics command. Watch for a disparity between LSPs being sent and received:

JUNOS software command output
hannes@Frankfurt> show isis statistics

IS-IS statistics for Frankfurt:

PDU type Received Processed Drops Sent Rexmit

LSP 220201 220201 0 152846 381

IIH 5640823 5640823 0 3762071 0

CSNP 5486953 5486953 0 9893412 0

PSNP 32766 32766 0 192857 0

Unknown 0 0 0 0 0

Totals 11380743 11380743 0 14001186 381

Total packets received: 11380743 Sent: 14001567

SNP queue length: 0 Drops: 0

LSP queue length: 0 Drops: 0

SPF runs: 121371

Fragments rebuilt: 336

LSP regenerations: 151

Purges initiated: 0

Mesh-Groups solved a big problem in ATM or Frame-Relay overlay networks of the
mid-1990s. However, today Mesh-Groups are of limited use because ATM and FR trans-
port networks connecting routers have gone away for the most part. Today, routers are
typically interconnected by packet-over-SONET/SDH links in a sparse-meshed fashion.
A typical core router these days has on average no more than four or five interfaces facing
other core routers. In these environments, Mesh-Groups are a nice tuning capability, but
not the necessity they were only a few years ago when networks were melting down in
the absence of a sound LSP flooding scheme.

6.5 Network-wide Purging of LSPs

The flooding of LSP updates the network with the most accurate state information. The
link-state database is therefore continually increasing as new or updated information is

added to it. If a link is down, issue a new LSP. When it comes back up, issue another new
LSP. So far there have been no negative LSPs that make the database shrink in size. But
what if IS-IS wants to remove a router from the distributed link-state database in all of
the other routers in the network? There is always the option to wait until the LSP ages
out, but that can take up to 65,535 seconds (18 hours, 12 minutes). For certain events,
such as router removal, IS-IS needs to have the capability to issue a negative LSP update.
This negative LSP, or purge LSP, exists and is a “crippled” version of the original LSP.
All the purge LSP contains is the LSP header without any further information. The
Header and the Checksum fields of the purge LSP header are set to zero to indicate that
this is a purge. This negative LSP update, which is called a network-wide purge, is used
for a variety of events. One of these events is DIS election.

6.5.1 DIS Election
On IS-IS broadcast links there is at least one router performing a special function. This
IS-IS router is called the Designated Intermediate System (DIS). The role of the DIS
was first discussed in Chapter 5. Each DIS borrows an ID that is unique across the net-
work from the LAN on which it is the DIS. The DIS floods that LAN-ID throughout
the network to tell other routers that there is connectivity to the LAN. Now, if the DIS is
changed (re-elected) due to changes, such as a higher DIS election priority or the
time-out of the old DIS, then the new DIS must generate a new LAN-ID and flood this
throughout the network. The has-been DIS needs to remove the old LAN-ID from
the network in order to ensure that it does not lead to corrupt network information.
Figure 6.16 shows the chain of LSPs that are generated to accomplish this. In order
to remove the stale LSP from the former DIS, the old DIS generates an LSP with the
sequence number incremented by one, but with the Checksum and Lifetime set to
zero. Each router that receives this purge LSP will remove the referenced LSP-ID from
its link-state database.

Network-wide Purging of LSPs 173

Local LAN

Old
pseudonode

Old DIS

New
pseudonode

Old DIS

FIGURE 6.16. At DIS re-election the old pseudo node LSP gets purged

6.5.2 Expiration of LSPs
Whenever a router ages-out an LSP whose Lifetime has become zero, it needs to tell the
other routers that the LSP has been aged out. Recall that each router has an internal clock
and those clocks are subject to clock drifts. At the same time, all the routers in a given IS-
IS level fundamentally rely on the fact that its link-state database is synchronized with all
others. So for further robustness in the face of clock drift, the first router that detects that
an LSP’s Lifetime has gone to zero, initiates a network-wide purge of that expired LSP.
Lifetime expiration of LSPs is common for routers that have been removed from the net-
work for one reason or another. Recall that under normal conditions, each LSP gets
refreshed by the Originator before it expires and therefore should never countdown the
Lifetime field to zero. This should only happen during the purge of an LSP.

If a router purges an LSP from the link-state database, the LSP is not removed imme-
diately. Instead, the LSP is retained for a ZeroAgeLifetime of 60 seconds. Keeping the
purged LSP for 60 seconds ensures that an LSP is not re-learned (for instance) through
an adjacency that has been Down and is now transitioning to Up again.

You can recognize a purged LSP that is still in the database if its Lifetime value is in
brackets. This is similar to the accounting world, where red numbers are in brackets as
well. And this is exactly what the User Interfaces do as well: they essentially show you a
zombie – an LSP that is already dead but we keep it alive for visibility, helping us in the
troubleshooting case.

IOS command output
Amsterdam# show isis database

[…]

IS-IS Level-1 Link State Database:

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

New-York.02-00 0x00002fb1 0x6f71 (23) 1/0/0

[…]

JUNOS software command output
hannes@New-York> show isis database

IS-IS level 1 link-state database:

LSP ID Sequence Checksum Lifetime Attributes

New-York.02-00 0x2fb1 0x6f71 (48) L1 Attached

[…]

4 LSPs

Typically you do not see much purged LSPs in your database as this is a very rare case
(DIS routers do not change very often). However, if you see a lot of bracketed LPSs or
one LSP always containing a bracketed Lifetime then probably a malicious event like a
flood-purge storm is raging because of duplicate System-IDs.

174 6. Generating, Flooding and Ageing LSPs

6.5.3 Duplicate System-IDs
Whenever a router receives an LSP that contains its own System-ID as Originator, and
the router is sure that it did not generate this LSP, the router must assume that there is
another router on the network that is configured with a duplicate System-ID. All the
receiving router can do is to log this event and generate a purge LSP. The other router will
most likely try to re-originate this LSP with a higher Sequence Number. Of course, this
purge process needs to be carefully paced. Otherwise a flood-purge-storm will start to
rage as the two routers continually try to update and purge each other’s wrong LSP. You
will see in the next section how these storms can be prevented. Actually, the LSP will be
purged because duplicate System-IDs are also an obstacle for a clean SPF calculation.
This ensures that the network itself stays clean.

6.6 Flow Control and Throttling of LSPs

In link-state routing protocols, the implementer needs to make an effort not to over-
whelm neighbours with excessive LSP updates. Excessive LSPs might churn the net-
work. In typical transport protocols such as TCP there is a built-in feedback mechanism
that makes the sender slow down if the receiver feels overwhelmed. This is called flow
control. However, virtually all IGPs (including IS-IS) have no way to tell a neighbour
that the IS-IS router is busy and make the other neighbouring routers throttle down LSP
transmissions. It is beyond the scope of this book as to why the protocol designers did not
address flow control in the IS-IS specification. But this lack of flow control means that
an IS-IS router has to carefully pace (spread out in time) LSPs toward a neighbour. In
good IS-IS implementations there are a lot of built-in throttles that make the IS-IS router
well behaved, even when the network is in a transient stage and several LSP updates are
flying around. Additionally, there are also limits for how frequently a router can originate
LSP updates. A router not only has to take care that it does not overwhelm its directly
connected neighbours, but the router needs to take care that it does not overwhelm all the
routers that are beyond the immediately adjacent neighbouring routers. Recall that all
routers in a given IS-IS level need to dedicate some resources (such as CPU cycles,
bandwidth and so on) to process and relay LSPs farther across the network. So let’s be
nice to these routers and not overload them, as we need them to distribute reachability
information of all types.

Most modern implementations of the IS-IS protocol support a variety of control knobs
that makes an IS-IS router slower instead of faster. Realize that going slower when there
are transient conditions or LSP storms is the only option that a router has left if the router
is to continue running. There are a couple of big “Must-Not’s” that an implementation of
IS-IS should never do.

We must not trash our neighbours. IS-IS Hellos must always be sent. If a router does
not send IS-IS Hellos in time, the adjacency times out. Losing an adjacency in transient
situations will additionally contribute more LSPs to a network that is already shaky to
begin with.

Flow Control and Throttling of LSPs 175

We must not forget to acknowledge LSPs of a neighbour. Even when a router is under
pressure in the form of extreme packet loads, not acknowledging an LSP update means
that after five seconds the LSP will be retransmitted. So it is much better to acknowledge
the LSP the first time before the LSP gets retransmitted. A retransmission consumes the
resources of the neighbouring router as well as the receiving router because an LSP has
to be retransmitted by the neighbour and re-processed on the receiving side as well.

So if making things slower is the only thing a router can do, exactly what kind of
events need to be made slower or throttled? The important events to throttle are in the
areas of:

• The LSPs on an interface
• Frequency of originating (generating) LSPs per router
• Retransmissions on a interface

Each of these is discussed in the following sections.

6.6.1 LSP-transmit-interval
The LSP transmit interval is one form of pacing that was originally mentioned in ISO
10589. The specification says that an implementation of IS-IS should make sure not to send
more than 30 LSPs per second on a given broadcast link. Both IOS and JUNOS software
extended this requirement that LSPs are paced on every IS-IS interface type (broadcast and
point-to-point). You can tweak that throttling timer in both JUNOS software and IOS.

In IOS, LSP throttling can be enabled using the isis lsp-interval <time>
configuration command in interface-configuration mode. The time is a constant
expressed in milliseconds (ms). The default value is 33 ms. This example sets the
LSP pacing so as not to exceed 20 LSPs per second (pacing of 50 ms means 20 LSPs
per second).

IOS configuration
London# show running-config

[…]

interface atm 1/2.1

ip router isis

isis lsp-interval 50

[…]

In JUNOS software, the throttling of LSPs can be enabled by use of the isis lsp-
interval <time> configuration directive under the protocols isis interface
<interface-name> configuration hierarchy. The default value is 20 ms and gener-
ates 50 LSPs per second, which means that JUNOS software is contrary to the original
20 LSP-per-second specification, but this limit is fairly old in that respect. Modern routers
should easily handle 50 LSPs per second. This example sets the JUNOS software value to
the specification limit of 50 ms (20 LSPs per second).

176 6. Generating, Flooding and Ageing LSPs

JUNOS software configuration
hannes@Frankfurt> show configuration

[…]

protocols {

isis {

interface at-4/0/0.100 {

lsp-interval 50;

}

}

}

[…]

LSP throttling by use of the lsp-interval command is a powerful mechanism to
control the flooding pace to neighbouring routers in order to not overload them. There is
another issue that has not yet been discussed: control traffic (LSP and related packets)
may “push back” the user traffic (information packets) because control traffic always has
precedence in terms of scheduling on the router interface cards. Unfortunately, the con-
trol traffic transmission rate does not get lower on low-bandwidth interfaces such as DS0
or fractional T1/E1 line – control traffic stays the same. You can easily imagine that on a
low-bandwidth circuit transmitting 30 full-MTU sized packets does not leave much
room for other types of packets. So it would be nice if there were a way to tell the router
just to utilize a certain percentage of the interface bandwidth for control traffic. In IOS,
you can configure the bandwidth <bw> statement on a (sub)-interface so that the
router makes sure that there is not more than 50 per cent (for instance) of the interface
bandwidth utilized for LSP transmission. This is the recommended option to use for low-
bandwidth circuits.

IOS configuration
In IOS, LSP throttling is calculated automatically by setting the bandwidth parameter
in interface configuration mode – this makes sure that not more than 50 per cent (for
example) of the configured interface Bandwidth is dedicated to the routing protocol. This
example sets the total bandwidth available for IS-IS traffic to 256 Kbps, which might be
only a fraction of the total bandwidth available on the link (perhaps 2 Mbps):

London# show running-config

[…]

interface Serial1/2

ip router isisu

bandwidth 256

[…]

JUNOS software does not support automated calculation of LSP throttling because the
lowest-speed interface cards on a Juniper Networks router starts at T1/E1 speeds (1.5 and
2 Mbps) and it is assumed that even with an LSP pacing of 20 ms this will not consume
more than 50 per cent of the interface bandwidth. However, there may be fractional

Flow Control and Throttling of LSPs 177

T1/E1 circuits (less than the full bandwidth) configured as well, where LSP pacing might
have to be adjusted.

However, the JUNOS software lsp-interval knob really helps to solve two prob-
lems: regulating the control-traffic-to-user-traffic ratio, and protecting neighbours during
transient situations. So the lack of direct bandwidth control is not really an issue: the
same knob can be used to solve both problems.

Note that the traffic subject to this pacing was non-self-originated traffic, which is traf-
fic that has been originated by other routers, not the local router. In the next section, you
learn about pacing of self-originated LSPs that come from the local router.

6.6.2 LSP-generation-interval
Routers need to limit how fast they announce changes to the network. A router does not just
send an LSP and move on. Sending an LSP to the network essentially requests a replication
service from the network to flood the LSP. So any LSP sent consumes tremendous resources
from the network. The LSP sent may be replicated by hundreds of routers over thousands
of links. By inserting pacing rules on the individual routers, you can make sure that the net-
work does not melt down once more than one router has to say something. The ISO 10589
specification describes an architectural constant called minimumLSPGenerationInterval
that serves this purpose. In vendor’s documentation this is sometimes referred to as LSP
holddown. The IS-IS specification recommends setting this value to 30 seconds. Higher
intervals may lead to routers that are not responsive to changes in the network, whereas
lower values may generate too much churn in the network.

For a long time, IOS has implemented a 5 second holddown interval to keep a
good balance between the two extremes. Today, the frequency of LSP origination can
be controlled using the lsp-gen-interval <holddown> [<initial-wait>
<minimum-holddown>] configuration command. The first argument specifies the
time between LSP builds. This is the timer that ISO 10589 mentions and is discussed pre-
viously. The interesting thing about LSP build holddown is that this is not enforced
statically today. Modern implementations have a dynamic approach and try to strike
a balance between responsiveness and stability. So there are two LSP holddown timers:
a fast holddown and a slow holddown timer. Depending on how busy the network is, a
router switches from fast behaviour to slow behaviour. The first couple of LSP builds are
scheduled very quickly without LSP build holddown consideration. However, if more
LSP builds are requested, then the router is probably in trouble and the router backs off
to the normal slow LSP origination behaviour. The initial-wait timer specifies
how fast the router fires off an LSP after first building it. In transient situations a router
probably needs to update its LSP a few times and this initial-wait timer helps by
accumulating a few builds. Minimum-wait controls the LSP build holddown in the
fast phase.

How many LSPs need to be built until IOS switches from fast to slow behaviour? IOS
uses a technique called exponential back off to toggle gradually between the two modes.
Consider the IOS configuration snippet shown here. In IOS, there are three timers to con-
trol LSP holddown. The first timer specifies the LSP holddown in the slow phase
expressed in units of seconds. The second timer specifies how many milliseconds to wait

178 6. Generating, Flooding and Ageing LSPs

before sending the LSP. The third timer specifies the LSP holddown in the fast phase
expressed in milliseconds.

IOS configuration
London# show running-config

[…]

router isis

lsp-gen-interval 5 200 1000

[…]

Figure 6.17 shows the timing behaviour of the exponential back off algorithm. After
the first LSP is built it is delayed for 200 ms (second value given) until it gets sent. Next,
the holddown timer kicks in, therefore the second LSP originated will be delayed for at
least 1000 ms (a full second) as specified in the third argument of the lsp-gen-
interval configuration command. All subsequent LSP builds will be delayed by
twice the previous holddown time: 2 seconds for the third LSP, 4 seconds for the fourth,
and so on. The holddown time is limited to the first argument (5 seconds) of the lsp-
gen-interval command as a precaution that the interval does not grow to an infinite
value. So for every fast-build the LSP-Origination-Interval gets larger until it hits the
ceiling of 5 seconds. After a particular router has stopped issuing LSPs for 20 seconds,
the LSP holddown will be reset. This means that from here on any further LSP origin-
ations will receive fast holddowns again, but only for the first couple of LSPs.

The JUNOS software scheme has a two-step rate limit. First, there is a global LSP
throttling similar to the one specified in ISO 10589. All the LSPs are paced using a 20 ms
timer. Additionally, there is additional logic that damps adjacency and makes sure that
the adjacency is reliably up for some time before advertising the adjacency. The global
LSP gating is hard-coded; there is no user interface knob to change the value. The slow
LSP holddown value is a base value 10 seconds with 25 per cent jitter (timing variation)
applied. That means that subsequent LSP builds will be randomly delayed between 7.5
and 10 seconds. Jittering a timer makes the Event always happening earlier but never
later than the original base value. This variation is useful to avoid global synchronization
and the associated LSP storms and router churn. Recall that a new LSP makes all routers
do several things at the same time (flooding, SPF calculation, and more), which in turn
synchronizes the CPU peaks in a network. Smearing the CPU peaks across routers by
adding some timer jitter helps to avoid churn across all routers.

In JUNOS software, there are also a number of fast builds, which are currently hard-
coded to three fast builds of LSPs. The initial wait timer is hard-coded to 20 ms before
the LSP is sent. The reason why there are no configuration knobs is the JUNOS software
has adjacency holddown logic to make sure that the root cause of dynamic LSP changes
(adjacency changes), will be damped (suppressed). Exactly how does this adjacency
holddown logic work? After a successful three-way handshake, the router does not
declare the adjacency Up immediately. The router will wait to see if it can sustain the
LSP stress generated from the new adjacency. Each new adjacency can generate a lot of
LSPs. Just think of a partitioned network that starts to heal. The healing router brings up

Flow Control and Throttling of LSPs 179

180

FI
G

U
R

E
6.

17
. E

xp
on

en
tia

l h
ol

dd
ow

n
gr

ad
ua

lly
 s

up
re

ss
es

 L
SP

s,
ge

ne
ra

tio
n

20
00

40
00

60
00

80
00

10
00

0
12

00
0

t (
m

s)

0

F
irs

t
LS

P
bu

ild

S
ec

on
d

LS
P

bu
ild

 a
nd

 s
en

d

F
irs

t L
S

P
se

nt
 2

00
m

s
af

te
r

bu
ild

10
00

m
s

ho
ld

do
w

n
20

00
m

s
ho

ld
do

w
n

T
hi

rd
 L

S
P

bu
ild

 a
nd

 s
en

d

40
00

m
s

ho
ld

do
w

n

F
ou

rt
h

LS
P

bu
ild

 a
nd

 s
en

d

32
00

0

50
00

m
s

ho
ld

do
w

n
(m

ax
 h

ol
dd

ow
n)

A
fte

r
20

s
fa

llb
ac

k
to

 f
as

t
be

ha
vi

ou
r

the adjacency and is exposed to a massive amount of new LSPs sent to it from the new
peer. In Chapter 8 you will acquire more insight as to just how IS-IS exchanges LSPs and
the mechanisms that synchronize link-state databases.

Can the router sustain the stress generated from all the new LSPs hammering at it? The
router does not know yet. Does it make sense to advertise a new LSP if the network is in
flux? Probably not – so the router delays its own LSPs until the network is quieter. Just
to be safe, the JUNOS software waits at least 20 seconds after an adjacency is declared
Up before doing anything further with the to-be-generated LSP. Next, the router starts to
measure the arrival rate of LSPs to see if things have become more stabilized. JUNOS
software still holds the adjacency down until the LSP reception rate has gone down to 5
LSPs/per 5 seconds. After the maximum holddown period of 60 seconds, which begins
after the IS-IS 3-way handshake, the adjacency will finally be advertised in the LSP.

That two-level approach (LSP gating plus adjacency holddowns) has proven to be a good
mechanism that works in a variety of networking environements. The Juniper Networks
development engineers felt that it was not necessary to expose a knob to change this behav-
iour to the user. (Knobs are good – but the knobs that I do not need are even better.)

6.6.3 Retransmission Interval
According to ISO 10589, each IS-IS router has to acknowledge LSPs within a five-
second window or else the neighbouring router will re-transmit that new LSP. A router
that is in trouble may not be able to respond within the five seconds. Therefore it makes
sense to increase that retransmission timer to higher values for lower-powered, CPU-
based routers. In JUNOS software, the five-second retransmission interval is hard coded
and cannot be changed. In Cisco IOS the retransmission interval is configurable and can
be controlled on a per-interface basis.

IOS configuration
In IOS, the retransmission timer is configurable. Setting the isis retransmit-interval
<interval> command in interface configuration mode controls this timer, as shown in the
following:

London# show running-config

[…]

router isis

isis retransmit-interval 5

[…]

In Cisco IOS, you can also control how fast LSPs are sent once a router is in the
retransmission window. This is another mechanism that helps a busy neighbour and
makes sure that a sender does not overwhelm the receiving router with LSPs once the
sender starts retransmitting LSPs. Here the router takes a non-acknowledgement of an
LSP previously sent as a sign of trouble and therefore throttles down the LSP transmis-
sion rate. Recall that the default LSP transmission rate in Cisco IOS is 33 ms between
LSPs. The default retransmission-throttling interval increases that value by a factor of 3,

Flow Control and Throttling of LSPs 181

up to 100 ms. That should be sufficient to back off a troubled router. It is not recom-
mended to go beyond 333 ms because the LSP pacing gets so slow that the network
becomes unresponsive in terms of reaction to changes.

In IOS, the retransmission-throttling timer is configurable. Setting the isis
retransmit-throttle-interval <interval> command in interface con-
figuration mode controls this timer.

IOS configuration
London# show running-config

[…]

router isis

isis isis retransmit-throttle-interval 200

[…]

6.7 Conclusion

The way in which an IS-IS implementation handles LSP dynamics separates amateur
enthusiast code from professional developer’s routing code. LSP dynamics is perhaps the
most important feature to focus on when evaluating IS-IS vendors. Interestingly, there is
almost nothing in the ISO 10589 specification that tells you how to implement IS-IS in
a scalable and robust manner. For many router startups, the lack of experience in how to
do this right has been a barrier to entrance in the high-end router market and it probably
still is. Ironically, in the world of open specifications, there are still barely a dozen routing
protocol software engineers who have the necessary experience to get the IS-IS code
right the first time. Do not be misled. I am not asserting that no other engineers but these
few can ever get IS-IS right. With enough time, and with customers willing to take the
pain to obtain that operational experience with regard to what works and what does not,
sooner or later every implementation of IS-IS can get to a level of what is called Carrier-
Class-Code. There are a number of interesting routing software approaches used by
other vendors, but these are not discussed in this book. Time and operational experience
will tell what implementation of IS-IS will finally prevail in the Internet.

182 6. Generating, Flooding and Ageing LSPs

7

Pseudonodes and Designated Routers

183

Historically routers were used to network local sub-nets to each other. Routing protocols
are optimized to run in a wide area network (WAN) environment which are typically point-
to-point links like Serial Lines, Frame Relay or ATM. Due to the popularity of Ethernet
since the mid-1980s routing protocols are required to operate and scale on broadcast cir-
cuits like Ethernet.

Broadcast networks allow multiple devices to see each other. For link-state routing
protocols like IS-IS multipoint capability means additional forms of stress in the domains
of Hello processing, database storage size dynamics like link-state database churn.

In this chapter you will learn how LAN circuits are different from p2p circuits, and
what scaling challenges there are on p2p circuits. You will learn about the pseudonode
concept, its nodal representation in the IS-IS link-state database and implications in the
SPF algorithm. Finally the purpose of a Designated Intermediate System (DIS) and its
election, pre-emption and timing details will be highlighted.

7.1 Scaling Adjacencies on Large LANs

Whenever there is a large number of routers on a LAN, lots of care must be taken. There
are several aspects of the protocol to worry about: first, if there is a large number of
speakers on the LAN there is a lot amount of Hellos to process. Just imagine a LAN with
100 IS-IS speakers generating in total 300 Hellos per second. If those 300 Hellos are
evenly spread at one Hello each 3 milliseconds, as illustrated in Figure 7.1, no problem –
this won’t stress the internal scheduling of the Router OS too much.

However, the environment, especially once it comes down to routing protocols is not
nice and far from being ideal. Therefore we may never assume ideal working conditions.

7.1.1 The Self-synchronization Problem
Murphy’s Law dictates “If things can go wrong they will go wrong”. The worst case
scenario is that 99 Hellos hit the control plane of the receiving router at once as shown
in Figure 7.2. Although the average CPU stress remains moderate if all the Hellos are
evenly spread, there could be a short time shortage of resources (buffer memory and
CPU) if a large number of Hellos arrives at once. The last line of defence in a peak load
situation is to drop incoming Hellos. Arguably the buffers should be made big enough to
absorb any peak load condition. So how big is big enough? One needs to make a trade-
off here as well. Due to stability reasons a router should not buffer an almost infinite queue
of incoming protocol packets. Processing very large queues may keep the router busy with

updates that are a few packets later withdrawn. On the other side there should be some
minimum buffer to absorb short time bursts.

The worst case was previously described as “one Router hit by all Hellos of 99 Routers
at once” and on first sight this might seem as unrealistic, artificial scenario. The reality is
that without precautions in the routing code generates Hellos there will be a resulting
effect called self-synchronization. Self-synchronization means that a router is immediately
answering with a Hello to network events like adjacency changes and new neighbours.
This behaviour tends to add up by all the speakers on the LAN and as a side-effect all the
Hellos are scheduled at the same point, which is artificially generating an unwanted form
of peak-stress followed by seconds of silence, as illustrated in Figure 7.2.

184 7. Pseudonodes and Designated Routers

Hello Received
from 1921.6800.1005

t (ms)3 96 12 150

Hello Received
from 1921.6800.1002

Hello Received
from 1921.6800.1001

Hello Received
from 1921.6800.1003

Hello Received
from 1921.6800.1004

15

Hello Received
from 1921.6800.1006

FIGURE 7.1. Even spread Hello arrival times are an ideal, desired environment

t (ms)3 60

Hello Received
from 1921.6800.1004

Hello Received
from 1921.6800.1003

Hello Received
from 1921.6800.1001

Hello Received
from 1921.6800.1002

Hello Received
from 1921.6800.1005

Hello Received
from 1921.6800.1006

FIGURE 7.2. A lot of Hellos hitting the control plane CPU at the same time may exhaust resources

7.1.2 Scheduling Hellos
How is the Hello scheduled? This depends on the Hold timer which controls adjacency
expiration. In order to avoid adjacency expiration each neighbouring router sends Hellos
to reset the Hold timer before it expires. In every implementation of IS-IS there is an internal
constant called the Hello-Multiplier. The Hello Interval is calculated by dividing the
Hold timer by the Hello-Multiplier. The Hold timer reset by receipt of an Hello is illus-
trated in Figure 5.3 in Chapter 5 “Neighbour Discovery and Handshaking”.

For example, a Hold timer of 30 s and a Hello-Multiplier of 3 results in a Hello Interval
of 10 s. If the system dispatches exactly each 10 s a Hello then there may be risk that the
system is starting to self-synchronize and after some local network events all routers on
the LAN will generate their Hellos at the same point in time.

To avoid the effect of self-synchronization ISO 10589 mandates to jitter timers for
scheduling Hellos.

7.1.3 Applying Jitter to Timers
What does applying a jitter to timers mean and how does it attempt to solve the self-
synchronization problem?

Applying a jitter means scheduling a Hello before it must be sent. The trick is that each
router on a LAN deducts a random time off the original Hello timer. Because each router
computes its own independent random number it is made sure that routers never send
Hellos at the same point in time.

ISO 10589 mandates to apply a 25 per cent jitter on Hellos. The 25 per cent mean that
a random number between the 0 and 25 per cent mark of the original timer is computed.
The random number should be truly random in the sense that the numbers the random-
generator produces have a uniform distribution over the entire space that it covers. For
example, a 25 per cent jitter of an underlying 10 s Hello timer would result in a random
time between 0 and 2.5 seconds. Finally the jitter is subtracted from the original timer. In
Figure 7.3 the jitter calculation is illustrated.

Both IOS and JUNOS do apply a 25 per cent jitter to their Hello timer before scheduling
the Hello for transmission. In the following tcpdump output you can see that the Timestamps
are not spaced in discrete 10 s intervals – it is always varying a little less than 10 s.

Tcpdump output
00:11:39.391338 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002,

lan-id 0000.0000.0001.02, prio 65, length 74

00:11:48.951503 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002,

lan-id 0000.0000.0001.02, prio 65, length 74

00:11:57.061652 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002,

lan-id 0000.0000.0001.02, prio 65, length 74

00:12:05.451811 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002,

lan-id 0000.0000.0001.02, prio 65, length 74

00:12:14.671953 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002,

lan-id 0000.0000.0001.02, prio 65, length 74

Scaling Adjacencies on Large LANs 185

Applying a jitter on the timers offers a good distribution of the scheduled Hellos among the
LAN routers over time. It is used in many other places as well. IOS and JUNOS go much fur-
ther as required by ISO 10589. For almost every one-time and periodic event the system
applies jitter. Virtually all IS-IS packet dispatching routines apply between 5 per cent and 25
per cent jitter for Hellos (IIHs), Sequence Number PDUs (SNPs) and link-state PDUs (LSPs).

As soon as the router maintains a high number of adjacencies on the LAN circuit it needs
to advertise them in its link-state PDU. A large number of LAN adjacencies raises the ques-
tion of how to represent all the router-to-router relationships in the link-state database.

7.2 Pseudonodes

See Figure 7.4 for an illustration of six routers that are located on the same LAN. The LAN
is transitive; this means that all the routers can see each other. Each of the routers gener-
ates an LSP and tells the world that it has five neighbours on the LAN by explicitly list-
ing them inside the IS Reachability TLV #2 or #22.

Any-to-any connectivity lets grow the size of the link-state database by an order of
O(N 2). This is often referred to as the N2 problem.

7.2.1 The N2 Problem
Figure 7.5 illustrates the relationship between the size of IS-reach information in the
link-state database and the number of routers on a LAN. Arguably the absolute size of the
link-state database is a moderate problem compared to the dynamic effects of a full-mesh
advertisement. Every time a new router N gets on the LAN, all the other routers (N � 1)
that have been on the LAN previously need to update their LSPs to list the adjacency to
the new router. This results in a massive LSP update storm because all the routers on the
LAN need to tell the network that there has been a change in adjacencies. The same
update storm happens if a router is disconnected from the LAN.

The dynamic component (routers joining or leaving the sub-net) is a more important
problem than database storage size.

186 7. Pseudonodes and Designated Routers

10s

Hello Timer

t (s)2 100 4 6 8

Random
jitter

1 3 5 7 9

2.5s

FIGURE 7.3. A 25 per cent jitter on the basis of a 10 s timer results in a random Hello between
7.5 and 10 s

L
o

n
d

o
n

 P
O

P

Lo
nd

on
-1

Lo
nd

on
-2

pe
er

-g
w

vp
n-

gw
cu

st
om

er
-g

w
B

R
A

S

IS
 R

ea
ch

ab
ili

ty
 T

L
V

Lo
nd

on
-1

.0
0

L
S

P

co
st

 1
0

co
st

 1
0

co
st

 1
0

co
st

 1
0

co
st

 1
0

Lo
nd

on
-2

.0
0

pe
er

-g
w

.0
0

vp
n-

gw
.0

0
cu

st
om

er
-g

w
.0

0
B

R
A

S
.0

0

IS
 R

ea
ch

ab
ili

ty
 T

L
V

pe
er

-g
w

.0
0

L
S

P

co
st

 1
0

co
st

 1
0

co
st

 1
0

co
st

 1
0

co
st

 1
0

Lo
nd

on
-1

.0
0

Lo
nd

on
-2

.0
0

vp
n-

gw
.0

0
cu

st
om

er
-g

w
.0

0
B

R
A

S
.0

0

IS
 R

ea
ch

ab
ili

ty
 T

L
V

Lo
nd

on
-2

.0
0

L
S

P co
st

 1
0

co
st

 1
0

co
st

 1
0

co
st

 1
0

co
st

 1
0

Lo
nd

on
-1

.0
0

pe
er

-g
w

.0
0

vp
n-

gw
.0

0
cu

st
om

er
-g

w
.0

0
B

R
A

S
.0

0

IS
 R

ea
ch

ab
ili

ty
 T

L
V

vp
n-

gw
.0

0
L

S
P co

st
 1

0
co

st
 1

0
co

st
 1

0
co

st
 1

0
co

st
 1

0

Lo
nd

on
-1

.0
0

Lo
nd

on
-2

.0
0

pe
er

-g
w

.0
0

cu
st

om
er

-g
w

.0
0

B
R

A
S

.0
0

IS
 R

ea
ch

ab
ili

ty
 T

L
V

cu
st

om
er

-g
w

.0
0

L
S

P

co
st

 1
0

co
st

 1
0

co
st

 1
0

co
st

 1
0

co
st

 1
0

Lo
nd

on
-1

.0
0

Lo
nd

on
-2

.0
0

pe
er

-g
w

.0
0

vp
n-

gw
.0

0
B

R
A

S
.0

0

IS
 R

ea
ch

ab
ili

ty
 T

L
V

B
R

A
S

.0
0

L
S

P co
st

 1
0

co
st

 1
0

co
st

 1
0

co
st

 1
0

co
st

 1
0

Lo
nd

on
-1

.0
0

Lo
nd

on
-2

.0
0

pe
er

-g
w

.0
0

vp
n-

gw
.0

0
cu

st
om

er
-g

w
.0

0

FI
G

U
R

E
7.

4.
Fi

ve
 r

ou
te

rs
 o

n
th

e
L

A
N

 r
eq

ui
re

 O
(N

2)
 s

to
ra

ge
 s

pa
ce

 to
 a

cc
om

m
od

at
e

al
l a

dj
ac

en
ci

es

187

The IS-IS protocol design team was challenged to turn this N2 problem into a linear
problem in order to scale more nicely. The solution to this problem is changing the rep-
resentation of the LAN in the link-state database. The LAN is represented by so-called
pseudonodes. Pseudonodes are comparable to the Network LSA Type #2 in OSPF and
are a very common concept in link-state routing protocols.

7.2.2 Pseudonode Representation
The solution the IS-IS design team came up with is quite straightforward: the router-to-
router relationship is modelled in the link-state database just like the real physical con-
nection relationship:

• Each router is connected to the LAN
• The LAN is connected to all the routers

So the idea of giving the LAN a nodal representation in the link-state database was
born. Figure 7.6 shows how the LAN is represented in the link-state database as a node
similar to a router.

The question is now who inserts the LAN node in the link-state database? How can we
make the LAN node speak and perform all the necessary tasks that a real IS-IS router has
to do, like generating, refreshing and if necessary removing LSPs?

One thing is clear: a LAN is a dumb piece of wire and has no logic to perform said tasks.
Therefore some router on the LAN has to represent the LAN in the link-state database. It
is almost like lending the LAN its voice. On each LAN circuit a Designated Intermediate
System (DIS) is elected. The DIS is a router among the IS-IS routers on the LAN, which
has, additionally to its normal duties, the purpose of representing the LAN in the link-state
database. Because the node that the DIS generates in addition to its very own node is not
a real routing node it is called a pseudonode.

Changing the representation from an any-to-any IS-reach mesh to a star topology with
the pseudonode in the middle, greatly reduces the amount of adjacencies that routers on

188 7. Pseudonodes and Designated Routers

IS-IS adjacencies on broadcast LANs

0
100
200
300
400
500
600
700
800
900

1 5 9 13 17 21 25 29 33 37

Speakers

A
d

ca
ce

n
ci

es p2p adjacencies to
keep on a LAN

p2p adjacencies to
keep on a LAN with a
pseudonode

FIGURE 7.5. The number of required IS relationships grows by N2

P
O

P
 p

h
ys

ic
al

 r
ep

re
se

n
ta

ti
o

n

Lo
nd

on
-1

Lo
nd

on
-2

pe
er

-g
w

vp
n-

gw
cu

st
om

er
-g

w
B

R
A

S

L
S

D
B

 n
o

d
al

 r
ep

re
se

n
ta

ti
o

n

Lo
nd

on
-1

Lo
nd

on
-2

pe
er

-g
w

vp
n-

gw
cu

st
om

er
-g

w
B

R
A

S

LA
N

FI
G

U
R

E
7.

6.
 I

n
th

e
no

da
l r

ep
re

se
nt

at
io

n
of

 th
e

lin
k-

st
at

e
da

ta
ba

se
 th

e
L

A
N

 b
ec

om
es

 a
 n

od
e

si
m

ila
r

to
 a

 r
ou

te
r

189

the LAN have to report. The original O(N2) scaling property turns into a O(N) scaling
behaviour. The LSP dynamics are improved as well. Once a new router comes online and
declares the adjacency with the DIS up only two new LSPs will be generated.

In the tcpdump output you can see that after processing the adjacency only two new
LSPs are generated. The first LSP is the pseudonode and contains the LAN to Router #3
IS Reachability. The second LSP describes the Router #3 to LAN Reachability.

Tcpdump output
On this LAN there is an established adjacency between Router #1 and #2. Next, Router
#3 comes online and after processing all the 3-way handshake and padding procedures
two new LSPs are generated.

17:37:45.769638 OSI, IS-IS, L1 CSNP, src-id 0000.0000.0001, length 99

17:37:45.799403 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0001.02, prio 120, length 56

17:37:48.619494 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0001.02, prio 120, length 56

17:37:50.204522 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002, lan-id

0000.0000.0001.02, prio 65, length 74

17:37:51.089607 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0001.02, prio 120, length 56

17:37:51.273316 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0003, lan-id

0000.0000.0003.02, prio 64, length 78

17:37:51.276579 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0001.02, prio 120, length 1492

17:37:51.278286 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002, lan-id

0000.0000.0001.02, prio 65, length 1492

17:37:51.282142 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0003, lan-id

0000.0000.0003.02, prio 64, length 1492

[…]

17:37:51.364655 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002, lan-id

0000.0000.0001.02, prio 65, length 1492

17:37:51.365221 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0001.02, prio 120, length 1492

17:37:51.367212 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0003, lan-id

0000.0000.0001.02, prio 64, length 1492

17:37:51.370734 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0001.02, prio 120, length 62

17:37:51.374205 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002, lan-id

0000.0000.0001.02, prio 65, length 80

17:37:51.374484 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0003, lan-id

0000.0000.0001.02, prio 64, length 92

17:37:51.376143 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0001.02, prio 120, length 62

17:37:51.379266 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002, lan-id

0000.0000.0001.02, prio 65, length 80

190 7. Pseudonodes and Designated Routers

17:37:51.390010 OSI, IS-IS, L1 LSP, lsp-id 0000.0000.0001.02-00,

seq 0x00000065, lifetime 65533s, length 62

17:37:51.455648 OSI, IS-IS, L1 LSP, lsp-id 0000.0000.0003.00-00,

seq 0x0000000c, lifetime 65533s, length 205

17:37:53.789837 OSI, IS-IS, L1 CSNP, src-id 0000.0000.0001, length 99

Using pseudonodes a single adjacency change triggers only two new LSPs which
greatly reduces LSP churn. Also the original N2 problem has been reduced to a linear
problem. In the next section you will learn how the DIS allocates a unique Node-ID in
order to represent the LAN in the link-state database.

7.2.3 Pseudonode ID Selection
Based upon Figure 7.4 we will explore how the pseudonode gets its Node-ID. Figure 7.4
shows a small LAN in the POP which connects six routers: two core facing routers
(London-1 and London-2) and four customer facing access routers. Assume the London-1
core router is already the elected DIS. We will shortly explore how the DIS is elected:
assume for now that London-1 is the DIS.

Each of the six routers gets its 6-byte System-ID from the NET that was configured on all
the six routers. Figure 7.7 shows the structure of a link-state PDU ID (LSP-ID). Each LSP
in the network carries an LSP-ID in its packet header. The first 6 bytes are set to the
System-ID of the originating node. The last byte is used for Fragmentation. Fragmentation
and the notion of the Fragment-ID will be explained in Chapter 9 “Fragmentation”. The
seventh byte is called the Pseudonode-ID and it is used for Pseudonode incarnations of
the originating system. The first seven bytes is often referred to as the Node-ID.

The Pseudonode-ID number 0 has a special meaning. A zero indicates that this is the
real instance of the router. A non-zero value represents a pseudonode. Figure 7.8 shows
the nodal representation of the POP routers in the link-state database. Each square box
represents an LSP. In the header you can see the Node-ID of the originating router in two
representations. The upper line show the more convenient representation where the
6-byte System-ID gets replaced with a name. The lower line of the header also shows the
Node-ID in digit representation. The System-ID name translation service will not be dis-
cussed further because it is described in Chapter 13 “IS-IS Extensions”.

Note that all routing nodes have their pseudonode byte (7th) set to zero. Except the
London-1 (1921.6804.4001.02) Node-ID carries a non-zero pseudonode byte. This

Pseudonodes 191

System-ID Pseudonode-
ID

Fragment-
ID

1921.6820.4003.02-00

Node-ID

LSP-ID

FIGURE 7.7. The LSP-ID dedicates one byte for pseudonode incarnations

L
o

n
d

o
n

 P
O

P

Lo
nd

on
-1

Lo
nd

on
-2

pe
er

-g
w

vp
n-

gw
cu

st
om

er
-g

w
B

R
A

S

IS
 R

ea
ch

ab
ili

ty
 T

L
V

Lo
nd

on
-1

.0
0

L
S

P
19

21
.6

80
4.

40
01

.0
0

co
st

 1
0

Lo
nd

on
-1

.0
2

pe
er

-g
w

.0
0

L
S

P
19

21
.6

80
4.

40
12

.0
0

Lo
nd

on
-2

.0
0

L
S

P
19

21
.6

80
4.

40
02

.0
0

vp
n-

gw
.0

0
L

S
P

19
21

.6
80

4.
40

10
.0

0

cu
st

om
er

-g
w

.0
0

L
S

P
19

21
.6

80
4.

40
10

.0
0

B
R

A
S

.0
0

L
S

P
19

21
.6

80
4.

40
11

.0
0

IS
 R

ea
ch

ab
ili

ty
 T

L
V

Lo
nd

on
-1

.0
2

L
S

P
19

21
.6

80
4.

40
01

.0
2

co
st

 0
co

st
 0

co
st

 0
co

st
 0

co
st

 0
co

st
 0

Lo
nd

on
-1

.0
0

Lo
nd

on
-2

.0
0

pe
er

-g
w

.0
0

vp
n-

gw
.0

0
cu

st
om

er
-g

w
.0

0
B

R
A

S
.0

0

IS
 R

ea
ch

ab
ili

ty
 T

L
V co

st
 1

0
Lo

nd
on

-1
.0

2

IS
 R

ea
ch

ab
ili

ty
 T

L
V co

st
 1

0
Lo

nd
on

-1
.0

2
IS

 R
ea

ch
ab

ili
ty

 T
L

V co
st

 1
0

Lo
nd

on
-1

.0
2

IS
 R

ea
ch

ab
ili

ty
 T

L
V co

st
 1

0
Lo

nd
on

-1
.0

2
IS

 R
ea

ch
ab

ili
ty

 T
L

V co
st

 1
0

Lo
nd

on
-1

.0
2

FI
G

U
R

E
7.

8.
 T

he
 p

se
ud

on
od

e
bo

rr
ow

s
th

e
Sy

st
em

-I
D

 f
ro

m
 th

e
D

IS

192

Node-ID represents the pseudonode for the LAN. The pseudonode borrows the System-
ID from the DIS on that LAN. London-1 is the DIS in our example and therefore the
Pseudonode-ID is composed using the DIS System-ID plus an extra byte that makes it
distinguishable from the DIS itself. There is no problem if several LSPs with the same
System-ID are floating around as long the pseudonode byte makes the incarnation (DIS
non DIS) clear.

The 8-bit wide Pseudonode field supports theoretically 255 pseudonodes. For most
IS-IS implementations this is also the upper boundary of supported broad circuits. Most
IS-IS implementations do allocate a Pseudonode-ID per broadcast circuit. Arguably the
system would only need to allocate a unique Pseudonode-ID once it becomes the DIS
on a LAN – however, there is yet no clear procedure how the system should behave when
it runs out of Pseudonode-IDs. The most likely behaviour would be to set the LAN
priority to 0 thereby indicating that the system does not wish to participate in the DIS
election.

7.2.4 Link-state Database Modelling
Each adjacency on a LAN has a certain cost. Once a DIS generates pseudonodes it must
make sure that the overall cost of the path through the LAN is not fudged. IS-IS does this
by assigning asymmetrical cost to the pseudonode. Asymmetrical cost means that the
cost from a router to reach the pseudonode is different than the cost from the pseudonode
to reach a router. Figure 7.9 shows, for example, how a LAN cost of 10 is represented in
the link-state database. Note that the cost to reach the pseudonode is the local configured
IS-IS metric. In Figure 7.9 all IS-IS metrics are set to 10. The reverse direction from the
pseudonode to the router has always a cost of zero. For real nodes an adjacency cost of 0

Pseudonodes 193

Pseudonode costs

London-1 London-2

peer-gw

vpn-gw customer-gw

BRAS

LAN

10
10

10

10
10

10 0

0
0

0

0
0

FIGURE 7.9. The cost to reach the pseudonode equals the link cost – the cost from the
pseudonode to the real node is always zero

is an illegal value, accept for pseudonodes. You will see later in Chapter 10 “SPF and
Route Calculation” that the pseudonode needs a special treatment during the SPF calcu-
lation because of those zero cost adjacencies.

The cost of adjacencies can be checked on the router’s command line interface. You
can check the cost between the Nodes using the show isis database detail
command:

JUNOS command output
The JUNOS show isis database detail command displays how the routers are linked
to the pseudonodes. The IOS command show isis database detail provides a sim-
ilar output.

hannes@Stockholm> show isis database detail

IS-IS level 1 link-state database:

Amsterdam.00-00 Sequence: 0x187, Checksum: 0xbda7,

Lifetime: 59556 secs

IS neighbor: Stockholm.02 Metric: 10

IP prefix: 172.16.1.0/24 Metric: 0 Internal Up

IP prefix: 192.168.1.1/32 Metric: 0 Internal Up

The first node is a real router carrying the Amsterdam.00 Node-ID. The router is
linked to a Pseudonode Stockholm.02. Note the cost of 10 to reach the pseudonode.

Stockholm.00-00 Sequence: 0x2e, Checksum: 0x7157,

Lifetime: 59554 secs

IS neighbor: Stockholm.02 Metric: 10

IP prefix: 172.16.0.4/24 Metric: 0 Internal Up

IP prefix: 192.168.1.2/32 Metric: 0 Internal Up

The second node is a real router carrying the Stockholm.00 Node-ID. The router is
also linked to the Stockholm.02 Pseudonode. Note the cost of 10 to reach the pseudonode.

Stockholm.02-00 Sequence: 0x69, Checksum: 0x2d26,

Lifetime: 59556 secs

IS neighbor: Amsterdam.00 Metric: 0

IS neighbor: Stockholm.00 Metric: 0

The third node is a pseudonode carrying the Stockholm.02 Node-ID. Note the zero
cost which connects the pseudonode back to the two real routers. The pseudonode also
does not carry any higher-level protocol information like IP addresses. The pseudonode
can be seen as a protocol independent node which only carries IS-Reach and optional
authentication information. Arguably the notion of protocol independence matches also
the physical setup: the pseudonode represents a LAN and a LAN can carry any Layer-3
protocol.

194 7. Pseudonodes and Designated Routers

E
th

er
n

et
A

m
st

er
d

am
.0

0
S

to
ck

h
o

lm
.0

0

S
to

ck
h

o
lm

.0
0

A
m

st
er

d
am

.0
0

L
A

N

S
to

ck
h

o
lm

.0
0

A
m

st
er

d
am

.0
0

S
to

ck
h

o
lm

.0
2

FI
G

U
R

E
7.

10
.

Tw
o

ro
ut

er
s

co
nn

ec
te

d
by

 a
n

E
th

er
ne

t l
in

k
ca

n
be

 r
ep

re
se

nt
ed

 in
 tw

o
w

ay
s

in
 th

e
IS

-I
S

lin
k

st
ak

e
da

ta
ba

se

195

196 7. Pseudonodes and Designated Routers

Pseudonodes were intended to relieve routers from additional processing overhead.
However, there are deployment scenarios where the generation and maintenance of a
pseudonode generates more overhead than the original point-to-point behaviour.

7.2.5 Pseudonode Suppression on p2p LANs
With the rise of Gigabit Ethernet (GE) the once for-access-only media has become a
cheap and fast router-to-router pipe. The overall cost of transmission for a Gigabit Ethernet
pipe is lower than for a pipe which was the major driver that GE is being deployed in p2p
fashion. Historically, transmission of the odd sized (in the sense that it does not fit
exactly in the SONET/SDH digital hierarchy) Gigabit Frames turned out to be an expen-
sive operation. Today there are affordable DWDM systems available that allow a service
provider to multiplex dozens of GE pipes on a single fibre.

The mandate to generate a pseudonode on the LAN circuit even if there are just
two speakers on a LAN seems to be a useless exercise. Consider Figure 7.10 which illus-
trates how two routers connected by a p2p broadcast circuit need to generate a third node
in order to represent the LAN in the link-state database. The nodal graph is shown in the
top left corner. It is evident that for just two routers pseudonode generation is more than
a overhead than a contribution to scaling LAN adjacencies, which was the original goal
of pseudonodes. In the IETF the idea of pseudonode suppression has been born. Internet
draft draft-ietf-isis-igp-p2p-over-lan-03 gives describes a method to avoid sending the
pseudonode generation.

How can a system avoid generating a pseudonode by not breaking things? The idea of
the draft is simple: Just send a p2p Hello encapsulated in an Ethernet frame. Recall the
p2p PDU type is only used on p2p media like ATM, POS or Frame Relay. If a p2p-IIH is
encapsulated in an Ethernet frame and both sides agree to suppress the pseudonode then
no DIS election and subsequently no pseudonode generation needs to be executed.

The tcpdump output shows the odd frame. First the frame is sent to the MAC address
All-IS (09.00:2b:00:00:05). Normally this MAC address is never used as the L1-LAN-
IIH and L2-LAN-IIH is sent to the ALL-L1-IS (01:80:C2:00:00:14) and All-L2-IS
(01:80:C2:00:00:15) functional MAC address. Next the PDU type is the p2p IIH which
is otherwise never used on LAN circuits. Finally there is the p2p Adjacency State TLV
which is also sent on p2p circuits only. Recall on LAN media the IS Neighbour TLV #6
is typically used for the 3-way handshake.

Tcpdump output
If an isis interface is marked as point-to-point then the router will pack a p2p
Hello containing p2p relevant TLVs on the Ethernet frame and ship it to the All-IS LAN
multicast Address.

23:41:19.490748 00:90:69:b2:58:2d > 09:00:2b:00:00:05, OSI, IS-IS, length: 58

p2p IIH, hlen: 20, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 0000.0000.0002, holding time: 27s, Flags: [Level 1, Level 2]

circuit-id: 0x01, PDU length: 58

Point-to-point Adjacency State TLV #240, length: 15

Adjacency State: Up (0)

Extended Local circuit-ID: 0x00000041

Neighbor System-ID: 0000.0000.0003

Neighbor Extended Local circuit-ID: 0x0000005e

Protocols supported TLV #129, length: 2

NLPID(s): IPv4 (0xcc), IPv6 (0x8e)

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 172.16.0.5

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Restart Signaling TLV #211, length: 3

Flags [none], Remaining holding time 0s

Both IOS and JUNOS support pseudonode suppression. In JUNOS you need to
configure the point-to-point keyword inside the protocol isis interface
{} stanza.

JUNOS configuration
In JUNOS pseudonode suppression is activated by adding the point-to-point keyword
inside the protocols isis interface {} stanza.

hannes@Stockholm> show configuration

[…]

protocols {

isis {

[…]

interface ge-2/2/0.0 {

point-to-point;

}

interface lo0.0;

}

}

You can verify if the circuit was assigned to be a p2p media using the show isis
interface command.

JUNOS command output
Once a broadcast circuit is configured for pseudonode suppression the Point to Point
flag is listed instead of the DIS.

hannes@Stockholm> show isis interface

IS-IS interface database:

Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric

[…]

ge-2/2/0.0 3 0x1 Point to Point Point to Point 10000/10000

lo0.0 0 0x1 Passive Passive 0/0

Pseudonodes 197

The IOS configuration is similar to JUNOS. Pseudonode suppression is once again an
interface property and can be configured using the isis network point-to-
point configuration statement.

IOS configuration
The IOS configuration requires the isis network point-to-point statement to sup-
press pseudonodes.

Amsterdam# show running-config

[…]

!

interface GigabitEthernet0/0

ip address 172.16.26.170 255.255.255.0

ip router isis

[…]

isis network point-to-point

!

Unfortunately there is no explicit hint in IOS to display if the interface is actually run-
ning in p2p mode. The only difference to a regular broadcast interface is that the DR ID
line is missing in the output.

IOS command output
On a point-to-point network configuration the output of the show clns interface com-
mand does omit the DR IDs.

Amsterdam#show clns interface GigabitEthernet0/0

GigabitEthernet0/0 is up, line protocol is up

Checksums enabled, MTU 1497, Encapsulation SAP

ERPDUs enabled, min. interval 10 msec.

CLNS fast switching disabled

CLNS SSE switching disabled

DEC compatibility mode OFF for this interface

Next ESH/ISH in 30 seconds

Routing Protocol: IS-IS

Circuit Type: level-1-2

Interface number 0x6, local circuit ID 0x2

Neighbor System-ID: Stockholm

Level-1 Metric: 10, Priority: 64, Circuit ID: Amsterdam.02

Number of active level-1 adjacencies: 1

Neighbor System-ID: Stockholm

Level-2 Metric: 10, Priority: 64, Circuit ID: Amsterdam.02

Number of active level-2 adjacencies: 1

Next IS-IS LAN Level-1 Hello in 2 seconds

Next IS-IS LAN Level-2 Hello in 1 seconds

Another possibility is actually looking at the link-state database if one of the two
routers on the LAN generates a pseudonode.

198 7. Pseudonodes and Designated Routers

IOS command output
The database output shows that there is no pseudonode generated by either the
Stockholm or Amsterdam router in the database. Additional evidence is that the two
routers did link their adjacencies directly (targeting the .00 incarnation) to each other.

Amsterdam#show isis database detail

IS-IS Level-1 Link State Database

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

Amsterdam.00-00 * 0x0000019A 0xF613 818 0/0/0

Area Address: 49.0001

NLPID: 0xCC

Router ID: 192.168.1.17

IP Address: 192.168.1.17

Hostname: Amsterdam

Metric: 10 IS-Extended Stockholm.00

Metric: 10 IP 172.16.1.0/24

Metric: 0 IP 192.168.1.17/32

Stockholm.00-00 0x0000c1E9 0xE448 414 0/0/0

Area Address: 49.0001

NLPID: 0xCC

Hostname: Stockholm

Router ID: 192.168.1.8

IP Address: 192.168.1.8

Metric: 10 IS-Extended Amsterdam.00

Metric: 10 IP 172.16.1.0/24

Metric: 0 IP 192.168.1.8/32

The output reveals that no pseudonode is in the database and two routers are linked
directly to each other as shown in the top right corner of Figure 7.10.

If we allow pseudonode generation then we have silently assumed so far that there is
a DIS on the LAN that generates the pseudonode on behalf of the LAN. Before that hap-
pens a DIS needs to get elected. The following paragraph describes DIS election proced-
ures and timing.

7.3 DIS and DIS Election Procedure

The good news is that the DIS election procedure is a very simple process. Due to its state-
less nature a receiving router can immediately determine the DIS on the LAN. For DIS
elections there are two fields in the LAN IIH header (see Figure 5.2) that are relevant:

• Priority field in the LAN-IIH
• The Source SNPA (�MAC address) of the sender

The Priority field is 7-bits wide and therefore Priority values between 0 and 127 can
be configured. A Priority value of zero means that this system does not wish to become
a DIS at all. In case there are many routers with the same Priority competing for the DIS

DIS and DIS Election Procedure 199

then the Source SNPA (� the MAC address) tie breaks. The system with the numerically
highest source MAC address then wins the beauty contest.

Each router computes the DIS locally after receipt of IIH messages by comparing it
against its current DIS Priority and SNPA. For debugging purposes there is also a field in
the LAN-IIH where each router on a LAN writes its current DIS belief.

7.3.1 Pre-emption
The DIS is pre-emptive. That means, if a router with a higher Priority comes online it
immediately resigns from DIS ownership. To document that it has resigned it puts the
winning router’s Node-ID in its LAN-ID field. The following tcpdump output shows an
example of how a router changes its LAN Priority and commences DIS ownership.

Tcpdump output
21:51:17.716553 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002, lan-id

0000.0000.0002.02, prio 65, length 74

21:51:19.813231 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0002.02, prio 64, length 56

21:51:20.583435 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002, lan-id

0000.0000.0002.02, prio 65, length 74

21:51:22.557163 OSI, IS-IS, L1 CSNP, src-id 0000.0000.0002, length 83

21:51:23.516664 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002, lan-id

0000.0000.0002.02, prio 65, length 74

21:51:24.193870 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0001.02, prio 120, length 56

Router #1 changes the LAN priority from 64 to 120, and becomes the highest
Priority router on the LAN

21:51:24.196787 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002, lan-id

0000.0000.0001.02, prio 65, length 74

21:51:24.197468 OSI, IS-IS, L1 LSP, lsp-id 0000.0000.0002.02-00, seq

0x00000017, lifetime 0s, length 43

Router #2 resigns and purges the old pseudonode

21:51:24.220793 OSI, IS-IS, L1 LSP, lsp-id 0000.0000.0002.00-00, seq

0x0000001b, lifetime 1199s, length 158

21:51:24.444682 OSI, IS-IS, L1 LSP, lsp-id 0000.0000.0001.00-00, seq

0x00000120, lifetime 1198s, length 210

21:51:24.473860 OSI, IS-IS, L1 LSP, lsp-id 0000.0000.0001.02-00, seq

0x00000004, lifetime 1198s, length 76

Router #1 & #2 re-link their LSPs to the new pseudonode

21:51:24.484541 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0001.02, prio 120, length 56

21:51:26.773307 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0001.02, prio 120, length 56

200 7. Pseudonodes and Designated Routers

21:51:29.373384 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0001.02, prio 120, length 56

21:51:30.963776 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002, lan-id

0000.0000.0001.02, prio 65, length 74

21:51:31.773442 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001, lan-id

0000.0000.0001.02, prio 120, length 56

21:51:32.893696 OSI, IS-IS, L1 CSNP, src-id 0000.0000.0001, length 83

The new DIS (Router #1) sends a full CSNP report

7.3.2 Purging
After Router #2 resigns from ownership it purges its pseudonode. Purging means remov-
ing from the database. A new DIS has been elected and therefore the DIS wants to clean
up its remnants.

A purged LSP contains nothing but the LSP header (and optionally authentication
information if configured). Both the Lifetime and Checksum fields are set to zero. Both
are illegal values. The Fletcher Checksumming Algorithm and the Lifetime can never
become zero for a regular LSP packet.

Tcpdump output
A purged pseudonode LSP contains nothing but the LSP header and the Checksum and
Lifetime fields are set to zero.

01:34:01.544481 OSI, IS-IS, length: 43

L1 LSP, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

lsp-id: 0000.0000.0002.02-00, seq: 0x00000001, lifetime: 0s

chksum: 0x0000 (purged), PDU length: 27, L1L2 IS

Purging is described in more detail in Chapter 6 “Generating, Flooding and Ageing
LSPs”.

The DIS ID can be easily spotted on JUNOS routers using the show isis inter-
face detail command.

JUNOS command output
The last column of the show isis interface detail output lists the designated routers
for each level on that LAN circuit.

hannes@Stockholm> show isis interface detail

IS-IS interface database:

ge-2/2/0.0

Index: 64, State: 0x6, Circuit id: 0x2, Circuit type: 3

LSP interval: 100 ms, CSNP interval: 10 s

DIS and DIS Election Procedure 201

Level Adjacencies Priority Metric Hello (s) Hold (s) Designated Router

1 2 120 10 3.000 9 Stockholm.02 (us)

2 2 64 10 9.000 27 Amsterdam.02 (not us)

[…]

On IOS the DIS is revealed using the show clns interface command.

IOS command output
If the interface is not configured in p2p mode then for each active broadcast circuit a DIS
is listed in the DR ID line.

Amsterdam#show clns interface GigabitEthernet0/0

GigabitEthernet0/0 is up, line protocol is up

Checksums enabled, MTU 1497, Encapsulation SAP

ERPDUs enabled, min. interval 10 msec.

CLNS fast switching disabled

CLNS SSE switching disabled

DEC compatibility mode OFF for this interface

Next ESH/ISH in 30 seconds

Routing Protocol: IS-IS

Circuit Type: level-1-2

Interface number 0x6, local circuit ID 0x2

Neighbor System-ID: Stockholm

Level-1 Metric: 10, Priority: 64, Circuit ID: Amsterdam.02

DR ID: Stockholm.02

Number of active level-1 adjacencies: 1

Neighbor System-ID: Stockholm

Level-2 Metric: 10, Priority: 64, Circuit ID: Amsterdam.02

DR ID: Amsterdam.02

Number of active level-2 adjacencies: 1

Next IS-IS LAN Level-1 Hello in 2 seconds

Next IS-IS LAN Level-2 Hello in 1 seconds

Unlike OSPF there is just one DIS per LAN. This is often perceived as a disadvan-
tage. However, the IS-IS protocol allows some clever trickery to become at the end
more resilient than a OSPF Designated Router (DR) / Backup Designated Router
(BDR) pair.

7.3.3 DIS Redundancy
In IS-IS there is no DIS redundancy. If the Adjacency to the DIS times out then a new
DIS needs to be elected. The re-election can be done immediately as zero state is involved.
So the upper bound is detection that the DIS went down. A JUNOS router does a nice trick
once it becomes the DIS: it reduces its hold time by a factor of three. The default Hold
timer in JUNOS is 27 s. Once the router commences as DIS the hold-time becomes 9 s.

202 7. Pseudonodes and Designated Routers

Because of the hard-coded Hello-Multiplier of 3 the Hellos are scheduled at 3-second
intervals. There is no similar function in the IOS Implementation of IS-IS.

Tcpdump output
The DIS (0000.0000.0001.02) sends its Hellos three times as fast as the other router.

02:40:10.009492 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001,

lan-id 0000.0000.0001.02, prio 120, length 62

02:40:12.879672 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001,

lan-id 0000.0000.0001.02, prio 120, length 62

02:40:15.509631 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001,

lan-id 0000.0000.0001.02, prio 120, length 62

02:40:16.227864 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002,

lan-id 0000.0000.0001.02, prio 65, length 80

02:40:17.789689 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001,

lan-id 0000.0000.0001.02, prio 120, length 62

02:40:20.239755 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001,

lan-id 0000.0000.0001.02, prio 120, length 62

02:40:22.619829 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001,

lan-id 0000.0000.0001.02, prio 120, length 62

02:40:23.847965 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002,

lan-id 0000.0000.0001.02, prio 65, length 80

02:40:24.889888 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001,

lan-id 0000.0000.0001.02, prio 120, length 62

02:40:27.429931 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001,

lan-id 0000.0000.0001.02, prio 120, length 62

02:40:29.690077 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0001,

lan-id 0000.0000.0001.02, prio 120, length 62

02:40:31.828099 OSI, IS-IS, L1 Lan IIH, src-id 0000.0000.0002,

lan-id 0000.0000.0001.02, prio 65, length 80

The DIS is tuning itself to provide faster resiliency. With 9 seconds of detecting that
the DIS is broken and no state for the re-election IS-IS is far more superior than OSPF
even without a Backup Designated Router. The DIS convergence is only dependend of the
dead interval (hold-timer) of the old DIS. Unlike IS-IS, OSPF cannot set its dead-interval
to an arbitrary value because all those values need to match on a given LAN. Arguably
one could tune down all the OSPF Hello and Dead timers but that would increase the
stress on the LAN by a factor of three to get comparable results.

7.4 Summary

Broadcast interfaces like Ethernet are becoming increasingly popular as router-to-router
link technology. Both multipoint and point-to-point setups have unique requirements to
the IS-IS protocol. In a multipoint environment careful Hello scheduling and applying of
jitter needs to be performed to avoid peak-stress through self-synchronization. Because

DIS and DIS Election Procedure 203

of storage requirements and LSP churn avoidance the LAN needs to get nodal represen-
tation as a pseudonode. The pseudonode is deterministically elected and generates the
pseudonode on behalf the LAN circuit which cannot speak for itself.

In multipoint setups the pseudonode functionality generates more overhead than gain
and is often required to be turned off. A recent Internet draft describes how to build point-
to-point adjacency on a 2-party LAN circuit without pseudonode generation.

204 7. Pseudonodes and Designated Routers

8

Synchronizing Databases

Link-state protocols rely fundamentally on the fact that each router in a given area has
the same view of the topology. Sharing the same view is the foundation for computing
converged routes. Convergence means that each router computes routes in a way that moves
packets one hop closer to the destination. If routes are not convergent, packets can take
extra hops in the network to reach the final destination. The worst case for misaligned
routes is a forwarding loop where packets are bounced back and forth between a pair of
routers. In a changing network it is therefore paramount to get to a synchronized view
of the topology as quickly as possible. New routers connected to the network need to
query their neighbour’s link-state databases to get on the same page as quickly as pos-
sible. This chapter discusses the IS-IS mechanisms to initially synchronize link-state
databases between routers and periodically update the databases.

This chapter starts with a detailed discussion of the consequences of link-state data-
base misalignments. It continues with a detailed explanation of database synchronization
on point-to-point and broadcast links. Finally, refinements to ISO 10589 for increasing
the robustness of the link-state database synchronization process are presented.

8.1 Why Synchronize Link-state Databases?

Unlike distance vector or path vector protocols, such as RIP or BGP, which compute their
routes by travelling through the network, link-state protocols make a local computation
based on shared and identical topological information. To contrast this difference better,
let’s consider the following example: Figure 8.1 shows how RIP calculates the distance to a
network. Router A is locally connected to the sub-net 192.168.1/24. The router is distribut-
ing its reachability information to the prefix 192.168.1/24 by sending a RIP update to all of
its neighbours (Router B and Router C) with a metric of 1. Routers B and C distribute the
information further to other neighbouring routers by incrementing the metric field by one.
Routers D and E, which receive the update, install the prefix 192.168.1/24 with a metric of
2 in their routing and forwarding tables. Observe that the actual calculation of the metric
happens in a distributed fashion: Routers D and E do not know where the prefix origin-
ated. All they know is that it is two routers away and that Routers B and C have received
the prefix. So Routers D and E do not have any topological visibility with regard to the pre-
fix. Each router modifies the original advertisement by incrementing the metric field.

Link-state protocols, like IS-IS, work differently. Each IS-IS router in a given routing
domain has to generate its own view of the local network to its neighbours. Next, all these

205

individual, local views are passed on to the other routers. No router is allowed to change the
original information. Ultimately, each router has the view of all other routers’ neighbours.
Based on all topological information that is available, the router can now independently
construct a network topology graph and extract IP reachability information.

If the link-state databases are not synchronized, routers do not calculate routes that bring
packets to their ultimate destination. Figure 8.2 shows the effect of desynchronized link-
state databases.

The link between Washington and Frankfurt is broken. The Washington router knows
immediately that the link is broken because it is directly connected and therefore senses
a link loss in the following three ways:

• Missing IIHs
• Missing Layer-2 keep-alive packets
• Loss of carrier or loss of framing (on SONET/SDH circuits only)

In the first case, routers exchange IIHs to verify at the Network Layer that the exchange
of control traffic works. The neighbour router is declared down after the hold time period.
The hold time period is not a fixed value and may vary. An adjacent router will indicate
the hold time period inside IIH packets.

The second indicator concerns the fact that routers periodically exchange Layer 2
(Data Link Layer) keep-alive messages to verify the integrity of the link. Virtually all

206 8. Synchronizing Databases

Router B Router C

Router D Router E

Router A

192.168.1/24
via Router A
Metric 1

192.168.1/24
via Router C
Metric 2

192.168.1/24
via Router A
Metric 1

192.168.1/24
via Router B
Metric 2

192.168.1/24
via ETH 0/0
Metric 0

192.168.1/24

FIGURE 8.1. RIP sends out information about local networks plus remote networks by incrementing
the metric field

(but Ethernet) OSI RM Layer 2 Protocols have embedded live-ness protocols that exchange
keep-alive messages). If there is no response from the remote end for a certain amount of
time (typically less than 30 seconds), then the link is declared down because of the inabil-
ity to maintain a valid two-way connection. Loss of Layer 2 keep-alives triggers a so-called
interface-down event that is propagated to the routing protocol stack.

Finally, modern routers often have optical interfaces. Here the carrier is the light. If you
pull the optical fibre out of a router, then a loss-of-light (LOL) error is generated, which

Why Synchronize Link-state Databases? 207

Pennsauken

Frankfurt

LondonNew York

Paris

22000

31500026000

250000

87000600000

22000

Routing Loop
between New York
and Washington!

Washington

315000

FIGURE 8.2. The link-state database of New York is not in sync, which causes a forwarding loop

triggers an interface-down event. Serial interfaces, such as T1/E1, E3/T3, and Packet-over-
SONET (POS) links, have strict framing requirements where even idle link data (no live
packets) have to be framed in a certain format. The advantage is that a receiver can detect
problems with the transmission framing even during idle periods without packet traffic. This
is in contrast (for example) to Ethernet framing where idle periods (that is, where there is no
transmission of packets) do not generate any signal. In addition, a loss-of-framing (LOF)
error generates an interface-down event, which is propagated to the routing protocol stack.

Next, Washington schedules an SPF run based on the new topology information. The
Washington router re-calculates the new best paths to reach all IP sub-nets in the network.
Both Washington and Frankfurt (working on the same task in parallel) on the other side will
disseminate their new view towards their neighbours. In the meantime, strange things begin
to happen. Consider the traffic that flows from Washington to Amsterdam. Before the link
break, the traffic was routed over the intact link by way of Frankfurt. After the SPF recalcu-
lation, the best path to Amsterdam is through New York and London. The problem is that the
network has not yet converged. So New York does not know about the changed topology.
Based on New York’s latest SPF calculation (which still assumes that the link between
Washington and Frankfurt is working), the best path to Amsterdam is through Washington.
So traffic to Amsterdam is sent to New York, then it is sent back to Washington, then the traf-
fic is sent again to New York and so on – a temporary or transient forwarding loop has
formed and the forwarding loop will persist until the updated topology view has arrived at
New York and New York can then recalculate its routing table. Based on the new routing
table, packets will be forwarded to London instead of being bounced back to Washington.

Synchronized link-state databases and the resulting routing tables are crucial for
bringing packets closer to their final destination. IS-IS has two PDU types for synchron-
izing databases: the CSNP (Complete Sequence Number Packet) and the PSNP (Partial
Sequence Number Packet). The following section illustrates how these packet types are
used for synchronizing link-state databases over LAN and point-to-point circuits.
Unfortunately the mechanisms and the use of CSNPs and PSNPs are different depending
on the media-type, which can be broadcast LAN or point-to-point.

8.2 Synchronizing Databases on Broadcast LAN Circuits

When IS-IS is activated on a router’s interface, the router first sends some IIHs to its neigh-
bours to find out whether the circuit is capable of transporting packets in both directions. In
each of its IIHs the router embeds what it believes to be the Designated Intermediate System
(DIS). In Figure 8.3 you can see the structure of a LAN IIH and the DIS field at the end.

The DIS has a special role on an IS-IS broadcast circuit. Besides the modelling of the
LAN as a topology graph (as you saw in Chapter 7 “Pseudonodes and Designated Routers”,
the DIS has another function relevant to proper synchronization of link-state databases
on LANs. Periodically (typically every 10 seconds), the DIS has to send a directory of its
link-state database, which is received by all the routers on a LAN. Figure 8.4 shows the
structure of a CSNP PDU.

The CSNP Interval is not a hard coded value and can be changed accordingly. Both
IOS and JUNOS permit to set the csnp-interval to an arbitrary value between

208 8. Synchronizing Databases

1–65535 seconds. Low values indicate a high load of generating and receiving CSNPs.
The general recommendation on both platforms is to stick with the default values or
increase the csnp-interval if there are lots of broadcast circuits on the router which
need to be supplied with fresh CSNPs. Note that in IOS you can set the csnp-interval
per level while JUNOS does not permit you to do that.

IOS configuration
interface GigabitEthernet0/2

isis csnp-interval 30 level-1

isis csnp-interval 40 level-2

!

JUNOS configuration
protocols {

isis {

Synchronizing Databases on Broadcast LAN Circuits 209

Intra-domain Touting Protocol Discriminator

Header Length Indicator

Version/Protocol ID Extension

0x83

Bytes

1

1

1

1

1

1

1

1

1

ID Length

PDU Type
R

0
R

0
R

0

PDU Version

Reserved

Maximum Area Addresses

6 (0)

1

3 (0)

0

Reserved

TLV section 0–1467

15, 16

27

circuit
type 1, 2, 3

Source ID

Holding Time

PDU Length

PriorityR

Designated IS LAN-ID

1

ID Length (6)

2

2

1

ID Length (6) � 1

FIGURE 8.3. Each IS-IS router sends what it believes is the Designated Intermediate System at a
given time

interface ge-2/0/0.0 {

csnp-interval 30;

interface lo0.0;

}

}

You can verify the settings by issuing a show isis interface <ifname>
detail command on JUNOS.

hannes@London> show isis interface ge-0/2/0.0 detail

IS-IS interface database:

ge-0/2/0.0

Index: 1, State: 0x6, Circuit id: 0x2, Circuit type: 3

LSP interval: 100ms, CSNP interval: 10s

Level Adjacencies Priority Metric Hello (s) Hold (s) Designated Router

1 2 64 1200 9.000 40 Amsterdam.02 (not us)

2 1 64 22000 3.000 40 London.02 (us)

210 8. Synchronizing Databases

Intra-domain Routing Protocol Discriminator

Header Length Indicator

Version/Protocol ID extension

0x83

Bytes

1

1

1

1

1

1

1

1

1

ID Length

PDU TypeR
0

R
0

PDU Version

Reserved

Maximum Area Addresses

6 (0)

1

3 (0)

0

TLV section 34–1459

24, 25

33

Source ID

Start LSP-ID

PDU Length

End LSP-ID

2

ID Length (6) � 1

ID Length (6) � 2

ID Length (6) � 2

R
0

1, 2, 3

FIGURE 8.4. CSNP PDUs are used for conveying the headlines of the link-state database

You cannot verify the csnp-interval settings on an IOS router because the csnp-
interval is not displayed under the show clns interface <ifname> command.

The CSNP on LAN circuits is sent using the well-known functional address AllL1ISs
(0180:c200:0014) or to the well-known functional address AllL2ISs (0180:c200:0015)
depending on the IS-IS level. The IS-IS common header that provides the receiver with
the following information starts the CSNP PDU:

• Header length (this is always 33 bytes for the CSNP header)
• IS-IS protocol version that is used (always 1)
• Length of the System-ID (0 means the standard 6 bytes)
• Level (L1 CSNPs use PDU type 24, L2 PSNPs use PDU type 25)
• CSNP protocol version that is used (always 1)
• Number of area addresses that this IS supports (0 means support for 3 addresses)

The CSNP header holds the following information:

• PDU length (this is the length of the entire PDU including the common header, the
CSNP header, and the payload)

• Source-ID (the System-ID plus a trailing zero byte)
• The Start LSP-ID plus the End LSP-ID (The LSP-ID describe Elements in the link-

state database of the router)

After the CSNP header the rest of the PDU is filled using TLVs. You can learn more
about TLVs in Chapter 11. In CSNP PDUs only two TLVs are used. The LSP-ID TLV #9
is used for link-state database synchronization and the Authentication TLV #10 are used
for integrity checking.

If the entire LSP database fits into a single CSNP PDU, meaning there are no more
than 90 LSP-IDs in the CSNP PDU, then the Start LSP-ID is set to 0000.0000.0000.00-00
and the End-LSP-ID is set to FFFF.FFFF.FFFF.FF-FF (the entire range possible). This is
how the sender tells the receiver that this CSNP contains the full range of LSP-IDs that are
present in the sender’s database. Where does the maximum number of 90 LSP-IDs per
CSNP PDU come from? Recall that 15 LSP-entries fill an LSP-entry TLV with 240 bytes.
Add 2 bytes for TLV overhead to come up with 242 bytes. The LSP-entry TLV can repeat
up to 6 times until the packet is completely full. Now, 6 * 242 � 1452 bytes plus 33 bytes
of header length � 1485 bytes. Therefore, 6 LSP-entry TLVs per packet * 15 LSP-IDs
per LSP-entry TLV, comes out to 90 LSP-IDs per packet:

Link-state databases that contain more than 90 entries send more than one CSNP PDU.
The first CSNP PDU, Start LSP-ID, is set to 0000.0000.0000.00-00 and the End LSP-ID
of the last CSNP PDU is set to FFFF.FFFF.FFFF.FF-FF. This all ones ending tells the
receiver that this CSNP is the last one to describe the link-state database, and the trans-
mission of LSP-IDs is completed. Between the first PDU and the last, other CSNP-PDUs
insert the LSP-ID of the first and the last LSP-ID reported using the LSP-entry-TLV #9
in the CSNP header in the Start LSP-ID and End LSP-ID fields. It is assumed that the
LSP-IDs are ordered by LSP-ID and they arrive in sequence.

6
LSP-Entry TLVs

packet
 * 15

LSP-IDs

LSP-Entry TLV
 90

LSP-IDs

packet
�

Synchronizing Databases on Broadcast LAN Circuits 211

C
S

N
P

T
L

V
s

19
21

.6
80

1.
40

01
.0

0-
00

S
eq

u
en

ce
 0

x2
89

L
if

et
im

e

32
4

C
h

ec
ks

u
m

 0
xf

c1
1

19
21

.6
80

2.
71

52
.0

0-
00

S
eq

u
en

ce

0x
2b

L
if

et
im

e
 1

20
58

C
h

ec
ks

u
m

 0
x6

2a
1

C
S

N
P

 H
ea

d
er

:
S

ta
rt

 L
S

P
-I

D
00

00
.0

00
0.

00
00

.0
0-

00
E

n
d

 L
S

P
-I

D
19

21
.6

80
2.

71
52

.0
0-

00

C
S

N
P

T
L

V
s

19
21

.6
81

7.
71

39
.0

0-
00

S
eq

u
en

ce
 0

x1
35

L
if

et
im

e
 4

96
53

C
h

ec
ks

u
m

 0
xc

c1
6

19
21

.6
81

7.
82

22
.0

0-
00

S
eq

u
en

ce
 0

x2
c4

L
if

et
im

e
 3

88
94

C
h

ec
ks

u
m

 0
x7

80
c

C
S

N
P

 H
ea

d
er

:
S

ta
rt

 L
S

P
-I

D
19

21
.6

81
7.

71
39

.0
0-

00
E

n
d

 L
S

P
-I

D
19

21
.6

81
7.

82
22

.0
0-

00

C
S

N
P

T
L

V
s

19
21

.6
81

7.
82

23
.0

0-
00

S
eq

u
en

ce
 0

xc
f6

L
if

et
im

e
 6

34
49

C

h
ec

ks
u

m
 0

x9
48

f

19
21

.6
81

7.
90

58
.0

0-
00

S
eq

u
en

ce
 0

x2
a0

9
L

if
et

im
e

 6
34

49
C

h
ec

ks
u

m
 0

xb
91

8

C
S

N
P

 H
ea

d
er

:
S

ta
rt

 L
S

P
-I

D
19

21
.6

81
7.

82
23

.0
0-

00
E

n
d

 L
S

P
-I

D
19

21
.6

81
7.

90
58

.0
0-

00

C
S

N
P

C
S

N
P

 H
ea

d
er

:
S

ta
rt

 L
S

P
-I

D
19

21
.6

81
8.

12
11

.0
0-

00
E

n
d

 L
S

P
-I

D
ff

ff
.f

ff
f.

ff
ff

.f
f-

ff

T
L

V
s

19
21

.6
81

8.
12

11
.0

0-
00

S
eq

u
en

ce
 0

x3
57

L

if
et

im
e

 3
33

84
C

h
ec

ks
u

m
 0

xb
69

4

19
21

.6
81

8.
12

55
.0

0-
00

S
eq

u
en

ce
 0

x3
8a

L

if
et

im
e

 2
52

25
C

h
ec

ks
u

m
 0

xc
ab

a

t

C
S

N
P

 #
1

(f
irs

t)

C
S

N
P

 #
2

C
S

N
P

 #
3

C
S

N
P

 #
4

(la
st

)

FI
G

U
R

E
8.

5.
 L

in
k-

st
at

e
da

ta
ba

se
s

bi
gg

er
 th

an
 9

0
L

SP
s

ne
ed

 m
ul

tip
le

 C
SN

P
PD

U
s

fo
r

a
fu

ll
re

po
rt

212

Synchronizing Databases on Broadcast LAN Circuits 213

Figure 8.5 shows an example of a multi-packet CSNP, which is sent as a sequence of
four frames. The first CSNP has the Start LSP-ID set to all zeros. The End LSP-ID is set to
the last LSP-ID that is reported in the first CSNP (1921.6802.7152.00-00). The inter-
mediate CSNPs set their Start and LSP-ID fields according to the first and last LSP-ID
that is reported in the PDU. Finally, the last CSNP of the full update sets the End-LSP ID
to all ones (FFFF.FFFF.FFFF.FF-FF) indicating that the full-report of all LSP-IDs is now
completed.

The payload section of the CSNP PDU is filled with an information element called the
LSP Entry. The LSP Entry is placed in the CSNP PDU by use of TLV encoding. You can
find more information about TLV encoding in Chapter 11 “TLVs and sub-TLVs”. Figure 8.6
shows the structure of the LSP Entry TLV. The TLV header consists of two bytes – the
Type and the Length value. The Type value is #9 and the Length value is always a mul-
tiple of 16. The LSP Entry is a structure of 16 bytes that can be repeated up to 15 times
in a TLV. The LSP Entry holds the header information of an LSP in the link-state data-
base. This information is:

• LSP-ID (6 byte System-IDs plus 1 byte node-ID plus 1 byte fragment number)
• Sequence number (4 bytes)
• Remaining lifetime (2 bytes)
• Checksum of the corresponding LSP (2 bytes, standard Fletcher checksum)

By using these four parameters, an LSP can uniquely be identified in a link-state database.
Additionally, for each LSP, two informative flags are kept for each circuit in order to con-
trol flooding, re-flooding, and acknowledging LSP updates. These two flags are called

TLV Type

TLV Length

Remaining Lifetime

9

Bytes

1

1

ID Length (6) � 2

2

4

2

LSP-ID

Sequence Number

Checksum

N * 16

Remaining Lifetime

ID Length (6) � 2

2

4

2

LSP-ID

Sequence Number

Checksum

FIGURE 8.6. The LSP Entry TLV is a container for LSP headline figures like Sequence Number,
Lifetime and Checksum

the SRM (Send Routing Message) and the SSN (Send Sequence Numbers) flag and are
defined in ISO 10589. If the SRM is set on a link, this means that the corresponding LSP
has to be sent out on that link. If the SSN flag is set, the corresponding LSP should be
included in the next PSNP PDU. Note that these two flags are kept strictly internal to the
router. They do not show up in any PDU that the router generates. However, what the
flags do is influence the link on which LSPs and PSNPs are being sent.

Getting back to the header fields proper, the DIS extracts this header information from
its link-state database and packages up to 15 LSP-IDs in a single TLV. Given an IS-IS
MTU of 1497 bytes over Ethernet LANs, a DIS can package up to 6 times an LSP Entry
TLV #9, resulting in up to 90 LSP-IDs in a single CSNP. So even in the largest networks
in the world there are just a few CSNP packets going over the wire every 10 seconds. Next,
each router on the LAN compares its own link-state database to the CSNP received from
the DIS. If the DIS reports the same sequence number for an LSP-ID, then everything is
fine. If not, then there are three basic mismatch conditions that can occur:

• The CSNP reporting an older version of a LSP
• The CSNP reporting a more recent version of a LSP
• The CSNP reporting an unknown LSP

If the CSNP received is an older version, then the action is simple. Because it appears that
the DIS is not up to date, just tell the DIS about the new version of the LSP by re-flooding
the most recent version of the LSP onto the LAN. Figure 8.7 illustrates the chain of events.
Router B notices that Router A is still carrying an older version of the LSP RouterX.00-00
in its link-state database. So Router B floods the LSP RouterX.00-00 with the most recent
sequence number (0x7a). Note, however, that no receiver acknowledges the re-flooded LSP.
This principle is sometimes referred to as implicit acknowledgement. So how can the update
be made more reliable? Just wait for a maximum of 10 seconds, which is the regular CSNP
interval. If the LSP RouterX.00-00 is mentioned in the CSNP with the sequence number
(0x7a) and the checksum is correct as well, then the update is successful. IS-IS is very
unique in that respect, in that IS-IS tries to keep state-related information very low. The
periodic transmission of CSNPs is fundamental to well-synchronized databases.

If the CSNP reported is a more recent version of the LSP, the receiving router needs to
tell the DIS that it is out of sync by internally setting the SRM flag for this LSP. Setting
the SRM flag triggers the sending of a PSNP to the DIS. Figure 8.8 shows the basic struc-
ture discussed earlier in this section. The only difference from the CSNP PDU is that the
PSNP PDUs are using different code points than the CSNP. IS-IS PDU type 24 indicates
a Level-1 PSNP and IS-IS PDU type 25 is used for a Level-2 PSNP. Once the PSNP PDU
is formed, all the LSP-IDs that are more recent are packaged again in TLV #9s. Once the
PSNP PDU is received at the DIS, the DIS re-floods the most recent version of the requested
LSP back onto the LAN. Figure 8.9 illustrates the chain of events. Router A reports an
LSP (RouterX-00.00) that is unknown to Router B. So Router B sends a PSNP mentioning
RouterX-00.00, but with a Sequence Number 0, Checksum 0, and Lifetime 0. Sequence
Number 0 is specially reserved for the case where a router wants to get its database synchron-
ized. By setting Sequence Number, Lifetime, and Checksum to zero, a router on a LAN is
indicating that it wants to get a copy of that LSP. Therefore Router A re-floods the latest
copy of the LSP RouterX.00-00 onto the LAN. Once again, this re-flooding is done using

214 8. Synchronizing Databases

Synchronizing Databases on Broadcast LAN Circuits 215

Router A
(DIS)

Router B

tt

CSNP
RouterX.00-00

Sequence # 0x79
Lifetime 974

Checksum 0x64fa

LSP
RouterX.00-00

Sequence # 0x7a
Lifetime 1146

Checksum 0x3cce

CSNP
RouterX.00-00

Sequence # 0x7a
Lifetime 1136

Checksum 0x3cce

10s

FIGURE 8.7. Router A reports an outdated LSP in its CSNP, which causes a re-flood of Router B and
finally Router A reports that it is in sync again by reporting the latest sequence number

Intra-domain Routing Protocol Discriminator

Header Length Indicator

Version/Protocol ID Extension

0x83

Bytes

1

1

1

1

1

1

1

1

1

ID length

PDU TypeR
0

R
0

R
0

PDU Version

Reserved

Maximum Area Addresses

6 (0)

1

3 (0)

0

TLV section 18–1475

26,27

17

Source ID

PDU Length 2

ID Length (6) � 1

FIGURE 8.8. The PSNP PDU reports just a subset of the LSP in the link-state database

“implicit acknowledgments”. What might happen is that the LSP does not arrive at Router
B, but this is not a problem: Router B would simply resend the PSNP after 5 seconds.

If the DIS reports a new or unknown LSP-ID in its CSNP PDU, then the router that
detects the mismatch sends a PSNP requesting the missing LSP-ID by setting the three
fields of Sequence Number, Lifetime and Checksum to zero, indicating to the receiver that
the sender does not know anything specific about this LSP. The DIS will again re-flood the
missing LSP. This procedure is typically executed when a new router becomes online.

Synchronization of LSPs on LAN segments is both simple and lean. Contrary to
OSPF, which needs to keep a lot of state information for synchronizing link-state data-
bases, IS-IS uses only two flags for each link: the SRM and the SSN flag.

Next, IS-IS synchronization on point-to-point circuits is discussed. Point-to-point
links make different use of PSNPs and CSNPs than broadcast links, such as LANs.

8.3 Synchronizing Databases on p2p Links

All link-state routing protocols start their first synchronization after one common event:
once an adjacency is declared up. Once an adjacency is up on a point-to-point link, the router

216 8. Synchronizing Databases

Router A
(DIS) Router B

tt

CSNP
RouterX.00-00

Sequence # 0x79
Lifetime 974

Checksum 0x64fa

PSNP
RouterX.00-00

Sequence # 0x0
Lifetime 0

Checksum 0x0000

CSNP
RouterX.00-00

Sequence # 0x7a
Lifetime 1136

Checksum 0x3cce

10s

LSP
RouterX.00-00

Sequence # 0x7a
Lifetime 1146

Checksum 0x3cce

FIGURE 8.9. Router B requests a re-flood of new or unknown LSPs by sending a PSNP with
Sequence Number and Checksum set to zero

will jitter a 5-second timer by 25 per cent before sending a CSNP from its own database.
Jittering by 25 per cent means that the router computes a random number between 75–100
per cent of the underlying timer; 75 per cent of 5 seconds equals 3.75 seconds. The result
is a random timer between 3.75 and 5 seconds. The other router does the same thing.
Jittering timers decouple any kind of synchronization effects causing traffic spikes between
the two routers. See Figure 8.10 with a hub router and many spoke routers for an illustration
of how immediate dispatch of PDUs might harm IS-IS peak load performance. If all
spoke routers immediately generate a CSNP after the adjacency is up, then the hub router
has to process a large number of CSNPs in a relatively short timeframe. This leads to a
short-term peak-load on the hub router. Also, sending all this control traffic at once might
harm other user traffic that runs on the physical link. Just imagine if the spoke links were
not physical links but logical Frame Relay circuits (DLCIs) all on one physical link. This
result might be short-term congestion or an abrupt increase in delay for user traffic.
However, if routers jitter the timer before the CSNP is sent after the adjacency-up event,
this reduces the short-term congestion and peak CPU utilization. After routers have sent
the CSNP it will hang around for a few seconds until routers get the CSNP from the other

Synchronizing Databases on p2p Links 217

Hub Router

Spoke Router #1

Spoke Router #2

Spoke Router #3

Spoke Router #4

Spoke Router #N

t

CSNP

0 Adj-UP

t

CSNP

0 Adj-UP

t

CSNP

0 Adj-UP

Spoke Router #1

Spoke Router #2

Spoke Router #N

t

CSNP

0 Adj-UP

t

CSNP

0 Adj-UP

t

CSNP

0 Adj-UP

Spoke Router #1

Spoke Router #2

Spoke Router #N

All CSNPs hit the Hub Router
at the same time

CSNPs are spread
over a time window

FIGURE 8.10. Jittering timers helps to spread the processing load over a broader time window

neighbour. If the router does not wait for the other CSNP, then another CSNP is sched-
uled after 5 seconds (minus jitter) and so on.

However, if the sending router does receive the remote end’s CSNP, then the router can
compute the differences between the two link-state databases. For any LSPs that are miss-
ing with respect to the sender’s link-state database, no action is taken. Just sending the
CSNP is enough because the other router will see the sender’s CSNP and realize that in
the sender’s link-state database there are a couple of LSPs missing. What does the other
router do once detecting a database mismatch? – It re-floods the missing LSPs, of course.

On point-to-point links, the LSP updates are required to be reliable and therefore must
be acknowledged. This is achieved by setting the SRM flag internally for the LSP being
sent. Setting the SRM flag translates into a waiting for an acknowledgement state. As
soon as an acknowledgement for the LSP arrives (by a listing in a PSNP or CSNP), the
SRM flag is cleared, or it is removed from the retransmission list. If no acknowledgement
arrives, then the IS-IS router will periodically check the SRM flags on all links and
retransmit LSPs that have not yet been acknowledged.

See Figure 8.11 for the detailed chain of events that happen once the LSP-IDs in the
CSNPs do not match. Router A sends its CSNP. Router B sends its CSNP. Next, Router A
re-floods LSP 0000.0000.0005.00-00. Router B re-floods LSP 0000.0000.0006.00-00
and LSP 0000.0000.0006.00-01. Then, Router B sends a PSNP containing LSP-ID
0000.0000.0005.00-00 formatted in the LSP Entry TLV #9 as an acknowledgement for
the LSP. Finally, Router A sends a PSNP containing the LSP-IDs 0000.0000.0006.00-00
and 0000.0000.0006.00-01 packaged in the LSP Entry TLV #9 as an acknowledgement
for the two LSP fragments.

ISO 10589 does not mandate sending CSNPs except for the initial synchronization
procedure on point-to-point links. However, sending CSNPs periodically after the startup
event results in better synchronization of the link-state database. The following section
explains how IS-IS link-state database synchronization is improved by sending periodic
CSNPs.

8.4 Periodic Synchronization on p2p Circuits

In the IS-IS world of ISO 10589, there is an assumption that each link that can carry
IS-IS Hellos can also carry IS-IS LSPs. At first sight, the previous sentence might sound
odd and you may think, “Sure, why should a link that can carry a certain IS-IS packet
type, not carry arbitrary IS-IS packet types?” But as demonstrated in Chapter 6
“Generating, Flooding and Ageing LSPs”, there can be situations where the IS-IS flood-
ing topology may get pruned. Mesh-groups are a good example of this situation. Certain
redundant links are removed from the flooding topology in mesh-groups. As a result,
there might be situations where parts of the network may get de-synchronized because
the LSPs do not get through. In this environment especially, it might be a good idea to
send some additional CSNPs to make sure that the neighbours are well synchronized. Of
the two implementations of IS-IS from Cisco Systems and Juniper Networks that are the
subject of this book, only Juniper Networks implements a more robust synchronization
scheme.

218 8. Synchronizing Databases

P
2p

 c
ir

cu
it

t
t

C
S

N
P

A
dj

-U
P

5
s

d
el

ay
25

%
 ji

tt
er

00
00

.0
00

0.
00

06
.0

0-
00

S
eq

u
en

ce
 0

x1
01

L
if

et
im

e
10

22
C

h
ec

ks
u

m
 0

x9
9f

e

C
S

N
P

L
S

P

P
S

N
P

P
S

N
P

5
s

d
el

ay
25

%
 ji

tt
er

00
00

.0
00

0.
00

05
.0

0-
00

S
eq

u
en

ce
 0

x1
42

L
if

et
im

e
10

99
C

h
ec

ks
u

m
 0

xa
b

d
4

00
00

.0
00

0.
00

05
.0

0-
00

S
eq

u
en

ce
 0

x1
43

L
if

et
im

e
11

88
C

h
ec

ks
u

m
 0

x3
18

b

00
00

.0
00

0.
00

06
.0

0-
00

S
eq

u
en

ce
 0

x1
02

L
if

et
im

e
11

78
C

h
ec

ks
u

m
 0

x8
81

2

00
00

.0
00

0.
00

05
.0

0-
00

S
eq

u
en

ce
 0

x1
43

L
if

et
im

e
11

88
C

h
ec

ks
u

m
 0

x3
18

b

L
S

P

00
00

.0
00

0.
00

06
.0

0-
00

S
eq

u
en

ce
 0

x1
02

L
if

et
im

e
 1

17
8

C
h

ec
ks

u
m

 0
x8

81
2

M
is

m
at

ch
 in

 C
S

N
P

 !
O

ur
 v

er
si

on
 o

f
00

00
.0

00
0.

00
06

.0
0-

00
is

 n
ew

er

O
k

–
go

t i
t !

 s
en

d
a

P
S

N
P

 a
s

A
C

K

O
k

–
go

t i
t !

 s
en

d
a

P
S

N
P

 a
s

A
C

K

M
is

m
at

ch
 in

 C
S

N
P

 !
O

ur
 v

er
si

on
 o

f
00

00
.0

00
0.

00
05

.0
0-

00
is

 n
ew

er

A
dj

-U
P

FI
G

U
R

E
8.

11
. A

ft
er

 t
he

 3
-w

ay
 h

an
ds

ha
ke

 e
ac

h
ro

ut
er

 s
en

ds
 a

 C
SN

P.
 I

f
th

e
tw

o
ro

ut
er

s’
L

SD
B

s
ar

e
de

-s
yn

ce
d

bo
th

 r
ou

te
rs

 w
ill

L

SP
-r

e-
flo

od
 th

e
m

is
si

ng
 L

SP
s

an
d

se
nd

 s
ub

se
qu

en
t P

SN
Ps

 f
or

 a
ck

no
w

le
dg

in
g

th
os

e

219

220 8. Synchronizing Databases

JUNOS software periodically transmits CSNPs at both IS-IS levels on all (including
p2p) circuits. The time base is not fixed, that is, the JUNOS software does not transmit
its CSNP at a hard-coded rate. What JUNOS software does is take a base value of 5 sec-
onds and multiplies that number by the number of interfaces that have adjacencies in the
Up state. This technique is called smearing because one timer is smeared over several
interfaces. For an illustration of this technique, look at Figure 8.12. The router has seven
adjacencies, four interfaces (two broadcast links and two point-to-point circuits). Each
interface carries one or more adjacencies in the Up state. Therefore, 5 seconds times 4
interfaces � a 20-second timer started on each of the interfaces. On average, every 5 sec-
onds, a CSNP is sent, resulting in good synchronization. Even if a link is pruned from the
flooding topology, for example by use of mesh-groups, periodical CSNPs ensure good
synchronization.

Fortunately ISO 10589 neither mandates the sending of periodic CSNPs nor does it
strictly discourage sending them. This hole in the specification is utilized by the smearing
hack described previously. There are no known interoperability issues between Cisco IOS
and JUNOS software. Except for the support calls that are generated by NOC teams that find
the amount of CSNPs being generated suspiciously high, there are no relevant issues.

A typical show isis statistics output resulting from hooking up a JUNOS to
an IOS router looks like this on the JUNOS side.

JUNOS command output
juniper@London> show isis statistics

IS-IS statistics for London:

PDU type Received Processed Drops Sent Rexmit

LSP 41034 41034 0 95 0

IIH 36 36 0 34 0

CSNP 1 1 0 420859 0

PSNP 87 87 0 5125 0

Unknown 0 0 0 0 0

Totals 41159 41159 0 426113 0

Total packets received: 41158 Sent: 426079

SNP queue length: 0 Drops: 0

LSP queue length: 0 Drops: 0

SPF runs: 10772

Fragments rebuilt: 104

LSP regenerations: 27

Purges initiated: 0

London only received a single CSNP and sent hundreds of thousands of CSNPs. By
looking at this output you can easily see that there must be lots of Cisco routers on the
other end, which typically just generate a single CSNP, once an adjacency comes up.

Finally, it should be noted that generating CSNPs comes at almost no cost because they
are not difficult to build. CSNPs can be constructed by traversing internal tables in a single
pass, and require no complex multi-field operations like checksum calculations. In addition,

C
S

N
P

20
s

t
t

C
S

N
P

t
t

C
S

N
P

C
S

N
P

C
S

N
P

C
S

N
P

C
S

N
P

C
S

N
P

0
20

0
5

2 5
0

10
30

0
15

35

20
s

20
s

20
s

FI
G

U
R

E
8.

12
. J

U
N

O
S

se
nd

s
a

pe
ri

od
ic

al
 C

SN
P

ea
ch

 5
s

pe
r

ro
ut

in
g

pr
oc

es
s

an
d

di
st

ri
b u

te
s

th
e

lo
ad

 a
cr

os
s

al
l a

ct
iv

e
in

te
rf

ac
es

221

the content of the CSNP does not change frequently. Therefore the CSNP frame can be
pre-computed and when the CSNP timer fires, the pre-computed frames are just transmitted
over the wire. The pre-computed PDU needs only to change if there is an update in the
link-state database. To be completely honest, CSNP construction is not that simple: the LSP
lifetimes need to be adjusted as well, because all the LSPs age every second – however,
once again inserting of lifetimes values is just a simple copy operation.

8.5 Conclusion

CSNPs and PSNPs are very simple and powerful mechanisms to synchronize IS-IS link-
state databases. In contrast to OSPF, almost no state information needs to be kept for
synchronizing link-state databases. Just two bits per LSP/per interface are required. The
openness of the base IS-IS spec ensures that more robust synchronization mechanisms
can be implemented and all surrounding routers can cooperate and interoperate.

Because of the inherent simplicity of the IS-IS protocol there are practically no inter-
operability issues for database synchronization. Ultimately, a robust synchronization
scheme is the main prerequisite for loop-free forwarding paths through the network.

222 8. Synchronizing Databases

9

Fragmentation

Modern communication relies on packet networks. On each layer in the OSI reference
model a message from higher layers needs to get packetized by lower layers. The under-
lying packet switching hardware that finally transports the frames across the Internet has
most certain packet size constraints. Ethernet is a good example for these constraints, by
not allowing individual packets to be bigger than 1518 bytes. Each layer in the OSI
Reference Model needs to deal with the fundamental question: how will messages that do
not fit the transport circuit packet be transported? In this chapter you will see some exam-
ples how IP and the IS-IS routing protocol solves the underlying problem by chopping
messages into pieces and reassembling them at the receiver. Additionally the side effects of
such chopping and reassembly techniques, which have been observed in big operational
networks, will be highlighted.

9.1 Fragmentation and the OSI Reference Model

The OSI Reference Model relies on a layering technique. The purpose of the layering
architecture is to hide the actual packet transport infrastructure from the driving application.
The result is that the application does not need to care what packet-switching hardware, even
what network protocol is used to convey the applications message as long as the receiver
on the other end can de-multiplex the layering of message. The Transmission Control
Protocol (TCP) is a good example for this. Figure 9.1 shows an example application like
the Simple Mail Transfer Protocol (SMTP). SMTP relies on TCP for doing end-to-end
flow control, re-sequencing and retransmission. TCP is dependent on a networking pro-
tocol like IPv4 or IPv6 to get packets finally relayed from Client A to Server B. During
its journey from Client A to Client B the packet will be transported using various layers
of Layer-2 transport networks such as (but not limited to) Ethernet, SONET/SDH, Frame
Relay, ATM.

If you take a look how the original message (the email) is packaged into finally Ethernet,
or SONET/SDH frames, you will notice that the message first is split by the transport pro-
tocol. Splitting the original application stream is necessary to get packets from streams
which finally get packaged and repackaged several times. Think of it like putting a letter in
an envelope, which is then put in a larger envelope, which is put in a larger envelope until
the packet finally gets delivered. The envelope analogy works also when it comes down to
frame sizes. When you want to put a message in an envelope then the envelope has to be
larger for the message to fit into.

223

O
S

I R
ef

er
en

ce
 M

od
el

 L
ay

er
 2

N
et

w
or

k
La

ye
r

(I
P

v4
, I

P
v6

)

T
ra

ns
po

rt
�

 S
es

si
on

 L
ay

er
 (

T
C

P
)

M
A

C
 L

ay
er

 (
80

2.
3,

 F
ra

m
e

R
el

ay
, A

T
M

, P
P

P
)

P
hy

si
ca

l L
ay

er
 (

G
ig

ab
it

E
th

er
ne

t,
S

O
N

E
T

/S
D

H
)

O
S

I R
ef

er
en

ce
 M

od
el

 L
ay

er
 1

A
pp

lic
at

io
n

�
 R

ep
re

se
nt

at
io

n
La

ye
r

(S
M

T
P

)

O
S

I R
ef

er
en

ce
 M

od
el

 L
ay

er
 3

O
S

I R
ef

er
en

ce
 M

od
el

 L
ay

er
 4

�
5

O
S

I R
ef

er
en

ce
 M

od
el

 L
ay

er
 6

�
7

E
m

ai
l m

es
sa

ge
 (

36
.5

 K
B

)

C
ho

p
in

to
 2

5
se

gm
en

ts
 a

nd
pr

ep
en

d
20

 b
yt

es
 T

C
P

 h
ea

de
r

P
re

pe
nd

 2
0

by
te

s
IP

 h
ea

de
r

P
re

pe
nd

 1
4

by
te

s
E

th
er

ne
t h

ea
de

r
�

C
R

C
32

P
re

pe
nd

 8
 b

yt
es

 E
th

er
ne

t P
re

am
bl

e

IP
 P

ac
ke

t (
15

00
 b

yt
es

)

T
C

P
 S

eg
m

en
t (

14
80

 b
yt

es
)

E
th

er
ne

t P
ac

ke
t (

15
18

 b
yt

es
)

E
th

er
ne

t F
ra

m
e

(1
52

6
by

te
s)

FI
G

U
R

E
9.

1.
 A

n
SM

T
P

ch
ar

ac
te

r
st

re
am

 o
f

da
ta

 g
et

s
pr

ep
en

de
d

by
 h

ea
de

r
in

fo
rm

at
io

n
at

 a
ll

la
ye

rs
 to

 p
ro

pe
rl

y
tr

an
sp

or
t i

t a
cr

os
s

th
e

IP
 in

fr
as

tr
uc

tu
re

.
Fo

r
pr

op
er

 c
ho

pp
in

g
th

e
tr

an
sp

or
t p

ro
to

co
l n

ee
ds

 to
 k

no
w

 th
e

M
T

U
 o

f
th

e
un

de
rl

yi
ng

 p
ac

k e
t t

ra
ns

po
rt

 in
fr

as
tr

uc
tu

re

224

In the example the original 36.5 KB stream is first split into 25 application segments
that are 1460 bytes in size. Next the TCP header that holds the applications port numbers
and other information is prepended which adds 20 bytes resulting in a frame that is called
a TCP segment, which is 1480 bytes in size. The TCP segment gets prepended by an IP
header, which gets prepended again by the Ethernet 802.3 headers. Ultimately the Ethernet
preamble and the CRC32 checksum gets added to the frame resulting in 1526 byte physi-
cal frame that is ready for transmission.

How does the TCP stack know that it has to split the original email stream into chops
of 1460 bytes?

Each layer in the OSI Reference Model has a constant called the maximum transmis-
sion unit (MTU). There is an MTU for TCP, there is one for IP and there is of course one
for Ethernet, as well as for any other physical circuit. What most networking stacks do is
backtracking of the MTU from the underlying circuit. Going back to the example, the first
MTU that is determined is the one of the Ethernet circuit. The MTU here is defined as per
the Ethernet specifications and is set to 1518 bytes. Meanwhile most Ethernet chipsets
have support for frames larger than 1518 bytes up to 9 KB. 1518 bytes represents the low-
est common denominator that each Ethernet device has to understand. The higher layer
MTUs are derived from the Layer-2 MTU. They do vary dependend on the encoding size
of the Layer-2 protocol. The IP MTU is the Ethernet MTU minus 18 bytes. The 18 bytes
are necessary to store 6 bytes of source and destination MAC address, and 2 bytes for the
Ethernet type field plus 4 bytes for the CRC32 checksum that gets appended to the end of
the frame. The TCP MTU is the Ethernet MTU minus 18 minus 20. The typical IP header
(without IP options that would make it longer) is 20 bytes in size. The story goes on by
deducting 20 bytes of the TCP header size to figure out what the application segment size
is. 1518 – 18 – 20 – 20 � 1460. For each interface, host operating systems calculate the
MTU values to find out what is the maximum frame size that can be sent over a specific
circuit. The operating system tries to avoid breaking an already packaged frame into
pieces by looking at the MTU of the delivering circuit.

You can display the MTU size of a router by issuing the show interface
<interface-name> command at the command line interface (CLI). This command
is both available in IOS and JUNOS; however, on IOS it does not show you IS-IS-related
information. For IOS a more detailed output can be obtained issuing the show clns
interface <interface-name> command.

JUNOS command output
hannes@Amsterdam> show interfaces so-7/0/0

Physical interface: so-7/0/0, Enabled, Physical link is Up

Interface index: 20, SNMP ifIndex: 19

Description: STM-64 uplink -> Amsterdam-NewYork

Link-level type: PPP, MTU: 4474, Clocking: Internal, SDH mode, FCS: 32,

Payload scrambler: Enabled

Device flags : Present Running

Interface flags : Point-To-Point SNMP-Traps

Link flags : Keepalives

Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3

Fragmentation and the OSI Reference Model 225

Keepalive: Input: 96933 (00:00:04 ago), Output: 97571 (00:00:04 ago)

LCP state: Opened

NCP state: inet: Opened, inet6: Not-configured, iso: Opened, mpls: Not-

configured

Input rate : 268007728 bps (84371 pps)

Output rate : 376305576 bps (86296 pps)

SONET alarms : None

SONET defects: None

Logical interface so-7/0/0.0 (Index 14) (SNMP ifIndex 28)

Flags: Point-To-Point SNMP-Traps Encapsulation: PPP

Protocol inet, MTU: 4470, Flags: None

Addresses, Flags: Is-Preferred Is-Primary

Destination: 192.168.5.144/30, Local: 192.168.5.146

Protocol iso, MTU: 4470, Flags: None

You can see in the JUNOS output that there is a clear separation between the physical
interface and the logical interfaces and what kinds of protocols are spoken on the inter-
faces. The physical interface so-3/0/0.0 has got a Link-MTU of 4474 bytes. The logical
interface so-7/0/0.0 (not the trailing additional trailing zero) has two protocols configured
– ISO for running the complex of ISO protocols (but limited to IS-IS and ISHs in JUNOS)
and IPv4. The Protocol MTU is 4 bytes less (4470) the Link MTU due to the PPP overhead.

In IOS you can display the IS-IS MTU for a given interface using the show clns
interface command. Because the default encapsulation 802.3 LLC, which is in Cisco’s
terminology also called the SAP, is used, the MTU is being set to 1497 bytes.

IOS command output
London>show clns interface

Ethernet0 is up, line protocol is up

Checksums enabled, MTU 1497, Encapsulation SAP

ERPDUs enabled, min. interval 10 msec.

CLNS fast switching enabled

CLNS SSE switching disabled

DEC compatibility mode OFF for this interface

Next ESH/ISH in 32 seconds

Routing Protocol: IS-IS

Circuit Type: level-2

Interface number 0x2, local circuit ID 0x3

Level-2 Metric: 10, Priority: 64, Circuit ID: London.03

Number of active level-2 adjacencies: 3

Next IS-IS LAN Level-2 Hello in 79 milliseconds

[…]

As you have seen, JUNOS calculates the MTU on a per protocol basis as well. Generally
speaking, it is important to understand that the MTU is a property of both physical inter-
faces and protocols related interfaces – there is no single MTU value per router interface.
Whenever you hear somebody talking just about an MTU then you have to ask straight

226 9. Fragmentation

“what MTU are you talking about?” Ethernet, PPP, IP, MPLS, IPv6 MTU? An individual
circuit can hold up to five different MTU values – true multiprotocol enterprise routers
like the Cisco 7500 series calculate probably even more than five MTUs per circuit.
There is one MTU for each protocol for each physical interface.

9.2 The Too-small MTU Problem for IP

The sender of the email message in the example tries to package the frame in order to fit per-
fectly to the maximum frame sizes of the underlying physical interface. What will happen if
the sender is located on a physical circuit with a big physical MTU and one of the transit
routers does not support that big-sized MTU? Consider Figure 9.2. The sender is located at
a network segment that can transmit to a maximum packet size of 9172 packets. Typical
examples for such a circuit would be Gigabit Ethernet “Jumbograms” or an ATM circuit.
According to Figure 9.1 the operating system calculates the Maximum Segment Size (MSS)
that TCP can accept in order to avoid sending oversized frames. The MSS is calculated by
deducting the ATM overhead (SNAP frame size) and the IP plus TCP overhead resulting in
a 9127 byte original application segment. Finally the sender dispatches the frame and it
arrives at Router A. Next Router A determines the outgoing interface by doing an IP lookup.
Before Router A starts to transmit the frame it first checks if the outgoing interface
supports the frame size of the frame to be forwarded. The Interlink between Router AS and
Router B is a SONET/SDH link, which has an MTU of 4474 bytes. From the IP perspective,
the frame is 9167 bytes, does not fit on the outgoing circuit and cannot be transmitted.

There are three general ways of solving the varying-MTU problem:

1. Assume a minimum MTU that every circuit has to support
2. Design the carrying protocol to support fragmentation
3. Run an MTU discovery protocol

The TCP/IP family of protocols makes use of all three techniques. First of all it guar-
antees that each IP circuit can have at least an IP MTU of 576 bytes. If an application does
not want to probe the path for maximum MTU or avoid any complex fragmentation and
reassembly schemes then it simply does not send IP frames longer than 576 bytes over the
wire. All the networking media that IP runs on has to have a mandatory support of 576
bytes otherwise the physical media would not be standardized by IP standardization com-
mittees like the IETF. That is the simplest but also most effective way of fragmentation
avoidance. The drawback here is that there may be a lot of overhead: 45 bytes of transport
overhead (TCP, IP and ATM SNAP header) compared to a total frame size of 9172 bytes
means an overhead of 0.5 per cent. However, 45 bytes of transport overhead compared
to a “coward” MTU of 576 means an overhead of 7.8 per cent. Quite a difference if you

The Too-small MTU Problem for IP 227

MTU 9172 MTU 1518MTU 4474
Sender ReceiverRouter A Router B

FIGURE 9.2. How does the sender know the MTUs of all the intermediate network segments?

consider for instance file-sharing applications (such as Gnutella, Kazaa and Morpheus),
which are so common these days on the Internet.

The second way of dealing with too-small MTUs is that the underlying network pro-
tocol supports fragmentation methods that can be executed by intermediate routers.
Fragmentation means that even an Intermediate System in the transmission path like a
router may further chop the IP packet to transmit it over smaller MTU circuits. During
the fragmentation process the router figures out how many fragments it needs and then it
has to figure out the position of the fragment relative to the original packet. The IP pro-
tocol was designed from day one to have the capability of fragmentation. In the IP pro-
tocol there are several fields dedicated to fragmentation. See Figure 9.3 for an overview
of the IP header and which fields are dedicated to fragmentation.

The first field is the Fragment ID. Each frame that is fragmented gets a unique 16-bit
ID so that the receiver can correctly reassemble it. That is necessary, for instance, if you
have two flows between a pair of hosts and both flows get fragmented. This ID identifies
the two flows and helps the receiver to separate the fragments of the two flows. In hard-
ware-based routers this is typically a simple counter that is simply incremented. Is this a
perfect scheme? No – there may still be collisions – imagine a massive amount of flows
that need to get fragmented and by accident the first flow and the 65,536th flow (this is
when the 16-bit ID space overlaps) belongs to the same host. However, operational expe-
rience has proven that even such a simple scheme proved to be good enough. The right-
most 13 bits is called the Fragment-offset field. The Fragment-offset field is encoded in
units of 8 bytes. Using 3 bits, 2^13 � 8192 unique offsets can be represented. Each offset
is multiplied by 8 bytes which results in 65,536 bytes – the maximum size of an IP packet.
The Flags field consists of 3 bits. The MSB must be set to 0. The DF (Don’t Fragment) bit
is used to indicate if the sender of the packet does not want to have it fragmented. If one
of the circuits has too small an MTU and the DF bit is set then the router will respond

228 9. Fragmentation

Source IP Address

Destination IP Address

TTL

Identification

Total Length

Protocol Header Checksum

Fragment OffsetFlags

TOSVersion Header
Length

R

0
DF MF

FIGURE 9.3. The gray-shaded fields are used for fragmentation-related purposes

using an Internet Control Message Protocol (ICMP) to indicate that there has been a prob-
lem. The More Fragment (MF) bit is an indicator for the receiver to wait with reassem-
bling the frame. Typically all fragments except the last fragment do have this bit being set.

For a better understanding of the fragmentation related fields in the IP header, go back
to the example shown in Figure 9.2.

If the 9167 bytes size frame needs to get fragmented the router first has to figure out
how many fragments it will need. The PPP overhead of the link between Router A and
Router B is 4 bytes, therefore the IP MTU on a SONET/SDH PPP Link is 4474 – 4 � 4470
bytes. Chopping up 9167 bytes requires three fragments as 9167/2 is 4584 and this would
not fit. The router tries to figure out what the next 8-octet boundary is to chop the frame.
Recall in the IP header fragmentation in 8 byte chunks is allowed due to the encoding
scheme and encoding space of only 13 bits. The fragment offset is expressed in 8-byte
units. The first fragment will be 4464 bytes as the next 8-octet boundary below 4470 is
4464. Fragment #2 will also be sized at 4464 bytes. The last frame has the MF bit cleared
(as opposed to the first two fragments) and is sized to 239 bytes. The Fragment ID will be
identical in all three fragments. The Fragment offset will be 0 in the first fragment, 558
(558 * 8 � 4464) in the second fragment and 1116 (2 * 558 * 8) in the last fragment. That
is enough information for the receiver to reassemble the original packet. In the IP world
the reassembly is not done by routers, the hosts implement it – therefore each operating
system’s IP stack must support reassembly of fragments.

Even if these mechanisms sound convenient at first sight, the idea that fragmentation
is generally a thing to avoid only came after years of operating large networks. The TCP
stack does not think in terms of fragments, it only thinks in terms of TCP segments –
so if a fragment that has been generated by the IP Layer is lost, the entire frame is
re-transmitted (and fragmented again by intermediate routers). In congested networks
the “goodput” of fragmentation approaches zero depending on the overload level.

The third way is the most sophisticated. Before transmitting the message stream the
path to the receiver is probed for the maximum MTU. This is possible by using fields in
the IP header in a special way. The first packet that the application sends is sent using the
full MTU size. However, the sender also sets the DF bit in the IP header. This does mean
that, referencing our first example, Router A would send an ICMP back to the sender
telling it that a fragmentation attempt was refused due to a set DF bit in the header. There
is a dedicated ICMP message for this purpose which is defined in RFC 792.

Now the application tries to send the first segment using a lower MTU. If it gets an
ICMP message back it tries again with a lower MTU unless it does not get back an ICMP
error message. The exact algorithms for how the transport protocols estimate the MTU
for the next try are out of the scope of this book. If you are interested in these probing
techniques, RFC 1191 is a good place to start to learn about path MTU discovery. All
modern transport stacks make use of path MTU discovery.

You have seen in this section how the IP protocol deals with frames that are in certain
segments in a network too big to deliver. IP proved to be a quite flexible protocol as there
are three different ways of dealing with the too-small-MTU problem that are: avoid, frag-
ment or probe. In the next section you will learn about the messages in the IS-IS protocol
that can get larger than the MTU and how IS-IS deals with it. For better illustration we will
reference back to the three ways of how the IP protocol fixed the too-small-MTU problem.

The Too-small MTU Problem for IP 229

9.3 The Too-small MTU Problem for IS-IS

IS-IS may generate frames that are larger than a single-link MTU. Just think of a large
router that is injecting hundreds of IP prefixes. The space in (for example) an Ethernet
packet may not be sufficient to store that vast amount of data. How is IS-IS dealing with
link MTUs that are too small to convey a large amount of reachability information?
Reconsider the three ways that the IP family of protocols solved the small-MTU problem:

• Probing the path and finding out what the largest MTU is – this is by concept impos-
sible as IS-IS uses flooding for distributing its information. Flooding has no session
orientation. Session orientation is needed for probing a path. Flooding basically
means all paths. So path MTU discovery is not the tool of choice for finding out what
the smallest MTU in the network is.

• Fragmenting at the Network Layer – unlike the IP routing protocols (OSPF, BGP) IS-
IS runs directly on Layer-2 according to the OSI Reference Model. In the basic
Ethernet protocol there is no support for fragmenting Ethernet frames. There is no
support built into the Ethernet protocol that allows fragmenting packets like IP did,
using fields like Fragment ID, Fragment Offset and the DF, MF bits. So fragmentation
at the Ethernet level is not a choice either. What IS-IS implements is support to extend
large messages over several packets. Arguably such a thing could best be described as
Fragmentation built into the application IS-IS. The packet types and fields that IS-IS
uses for multi-packet messages will be described shortly.

• Assuming a minimum MTU – IS-IS assumes a minimum MTU of 1492 bytes
that every segment in the network must support. If there is a link MTU smaller than
1492 bytes then IS-IS simply refuses to build adjacencies. IS-IS checks the MTU during
the handshake phase once new adjacencies are brought up. Why 1492 bytes? The rec-
ommendation to use 1492 bytes was due to the Ethernet MTU of 1518 bytes. How are
1518 bytes and 1492 related? Reconsider the structure of the IS-IS standard encapsu-
lation in 802.3 LLC format in Figure 9.4. Subtract the following fields from the 1518
bytes maximum Ethernet Frame size:
– 4 bytes FCS
– 6 bytes source MAC address
– 6 bytes destination MAC address
– 2 bytes 802.3 Length field
– 3 bytes DSAP, SSAP and Control byte

The result is 1518 – 21 � 1497 bytes. So why then restrict all IS-IS frames to 1492 bytes?
Recall that the IS-IS designers had to accommodate the possibility that someone may encap-
sulate the IS-IS messages using SNAP encapsulation, which is also shown in Figure 9.4.

At the beginning of the 1980s the Ethernet designers were scared about the small
code-point space that LLC encapsulation had to offer. The Sub-network Access Protocol
(SNAP) was thought of as an extension for LLC Ethernet encapsulation to accommodate a
bigger code-point space. The first application of the bigger code-point space was support for
vendor-specific protocols. Using SNAP there is room for a 3-byte Organizational Unit
Identifier (OID) followed by a 2-byte Protocol ID. Think of a SNAP header as a 5-byte exten-
sion to the 3-byte LLC header. Such extension schemes are often used in the communications

230 9. Fragmentation

D
es

tin
at

io
n

M
A

C
 A

dd
re

ss
01

80
:c

20
0:

00
14

o
r

 0
18

0:
c2

00
:0

01
5

B
yt

es 6 6 2 1 1 1

m
in

.:

27

m
ax

.:
Li

nk
 M

T
U

-2
1

S
ou

rc
e

M
A

C
 A

dd
re

ss

IE
E

E
 8

02
.3

 L
en

gt
h

fie
ld

IE
E

E
 8

02
.3

 D
S

A
P

IE
E

E
 8

02
.3

 S
S

A
P

IE
E

E
 8

02
.3

 C
on

tr
ol

IS
-I

S
 c

om
m

on
 h

ea
de

r
&

 T
LV

s

F
C

S

0x
F

E

0x
F

E

0x
03

4

D
es

tin
at

io
n

M
A

C
 A

dd
re

ss
01

80
:c

20
0:

00
14

o
r

 0
18

0:
c2

00
:0

01
5

B
yt

es 6 6 2 1 1 1

m
in

.:

27

m
ax

.:
Li

nk
 M

T
U

-2
1

S
ou

rc
e

M
A

C
 A

dd
re

ss

IE
E

E
 8

02
.3

 L
en

gt
h

fie
ld

IE
E

E
 8

02
.3

 D
S

A
P

IE
E

E
 8

02
.3

 S
S

A
P

IE
E

E
 8

02
.3

 C
on

tr
ol

IS
-I

S
 c

om
m

on
 h

ea
de

r
&

 T
LV

s

F
C

S

0x
A

A

0x
A

A

0x
03

4

S
N

A
P

 h
ea

de
r

O
U

I
3

0

S
N

A
P

 h
ea

de
r

P
ID

0x
80

F
E

2

80
2.

3
S

N
A

P
 E

nc
ap

su
la

tio
n

80
2.

3
L

L
C

 E
nc

ap
su

la
tio

n

FI
G

U
R

E
9.

4.
 I

S-
IS

 f
or

m
al

ly
 s

pe
ci

fie
d

en
ca

ps
ul

at
io

n
ov

er
 8

02
.3

 L
L

C
 a

nd
 8

02
.3

 S
N

A
P

L
ay

er
-2

 e
nc

ap
su

la
tio

n;
 h

ow
ev

er
,a

ll
im

pl
em

en
ta

tio
ns

 to
da

y
us

e
80

2.
3

L
L

C
 e

nc
ap

su
la

tio
n

231

industry. Most protocols have a special code-point reserved for further extension. In the LLC
protocol, it is 0xAA that indicates that there is a 5-byte SNAP header to parse.

This is where the 5-byte difference between 1497 and 1492 comes from. The ironic
thing here is that although absolutely no vendor ever implemented IS-IS over SNAP
encapsulation, all implementations honour the 1492 bytes size of this “would-be-SNAP-
encapsulated” boundary. Virtually all IS-IS implementations support just the LLC encap-
sulation, which leaves room for 1497 bytes for an IS-IS frame over standard Ethernet
technology.

Figure 9.5 shows the output of a real-word IS-IS frame decoded by Ethereal, a public-
domain protocol analyzer (http://www.ethereal.com).

Frequently students in classes notice that a router sends out the first set of Hellos up to
the maximum size of an Ethernet frame to detect the MTU of the link, that the length of
the IS-IS frame is 1497 bytes. You can check that out using the following debug and
monitoring commands.

Tcpdump/JUNOS command output
hannes@London> monitor traffic Interface fe-0/0/0

00:01:36.850702 OSI, IS-IS, length: 1497

L1 Lan IIH, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 0000.0000.0002, holding time: 13s, Flags: [Level 1, Level 2]

lan-id: 0000.0000.0002.02, Priority: 64, PDU length: 1497

IS Neighbor(s) TLV #6, length: 6

IS Neighbor: 0002.b32b.0e52

Protocols supported TLV #129, length: 1

NLPID(s): IPv4

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 193.83.223.236

Area address(es) TLV #1, length: 4

Area address (3): 49.0001

Padding TLV #8, length: 255

Padding TLV #8, length: 255

Padding TLV #8, length: 255

Padding TLV #8, length: 255

Padding TLV #8, length: 255

Padding TLV #8, length: 160

On a router running IOS you can find out how big the packets that the router sends out
are by using the debug isis adj-packets command.

IOS command output
London#debug isis adj-packets

IS-IS Adjacency related packets debugging is on

Jun 9 20:25:14.319 UTC: ISIS-Adj: Sending L2 LAN IIH on Ethernet0, length 1497

Jun 9 20:25:14.575 UTC: ISIS-Adj: Rec L2 IIH from 00d0.ba58.7e4b (Ethernet0), cir

type L2, cir id 0010.0100.1005.03, length 1497

232 9. Fragmentation

FI
G

U
R

E
9.

5.
 A

n
IS

-I
S

Fr
am

e
re

co
rd

ed
 b

y
E

th
er

ea
l,

a
pu

bl
ic

 d
om

ai
n

Pr
ot

oc
ol

 A
na

ly
ze

r

233

It has already been mentioned that the official MTU that each circuit must support is
1492, as defined in the IS-IS base specification ISO 10589. However, as all vendors only
implement LLC encapsulation, the unofficial MTU (don’t quote us on that) that each
IS-IS may use is 1497 bytes.

The next section takes a closer look to the term application level fragmentation and
what it means. All the different IS-IS packets and how they are prepared for multi-packet
messaging will be discussed.

9.4 IS-IS Application Level Fragmentation

IS-IS uses three different packet types for various purposes:

1. Hellos (IIHs) for neighbour discovery and MTU check
2. Sequence number packets (SNPs) for synchronization and reliable updates
3. Link-state packets (LSPs) for conveying reachability information

9.4.1 Hellos (IIHs)
The Intermediate System to Intermediate System Hello PDU, or IIH, is used for neigh-
bour and MTU discovery. The purpose of neighbour discovery was explained in Chapter
5, “Neighbour Discovery and Handshaking”. There is also an MTU check that verifies if
both ends of an IS-IS adjacency comply with the minimum MTU of 1492 bytes. IS-IS
achieves that check by using a technique called padding. Using padding, the Hello mes-
sage is artificially pumped up to the MTU size of the link, or 1492 bytes. Whether the
update gets pumped up to just 1492 bytes or the full MTU size is a decision that is solely
dependent on the implementation of the IS-IS protocol. For instance, JUNOS only pads
up to 1492 bytes but IOS always tries to pad to the maximum MTU size. A typical IIH
(Hello message) is between 40–70 bytes these days. The size of the Hello message may
vary as all new capabilities are added to the base IS-IS protocol are indicated in the Hello
message, and it therefore gets bigger through the years as capabilities are added to IS-IS.
There has been a trend in the past that the IS-IS Hello message gets bigger on average by
5 bytes each year. Ultimately, this is not an issue as there is quite a lot of headroom to
grow until the max IIH packet size of (worst-case) 1497 bytes is reached. Some imple-
mentations like IOS can even utilize the full-link MTU for Hellos, which is nice because
it postpones worries like these even more. Changing the Hello size is a purely link-local
decision and as long as both parties do not complain about the large Hellos, everything
will be fine and the adjacency goes into Up state.

However, even when an IS-IS Hello is 70 bytes in size, it is still far off the minimum
MTU size of 1492 bytes that every IS-IS circuit has to support. How does IS-IS pad from
70 bytes of content to 1492 bytes? There is a special Padding TLV that helps to add
nonsense data in a structured way just to make the frame bigger. In Figure 9.6 you can
see the structure of the Padding TLV.

There is more about TLV encoding in Chapter 11 “TLVs and Sub-TLVs”. The Padding
TLV may contain an arbitrary set of data. The Padding TLV can also occur several times

234 9. Fragmentation

in the Hello message. Actually, it has to occur several times in the Hello because a single
Padding TLV can only hold, and therefore pad, up to 255 bytes. So there may be up to
five full-sized Padding TLVs necessary to make the frame big enough. The following
tcpdump output shows several occurrences of the Padding TLV #8.

Tcpdump output
00:58:53.561521 OSI, IS-IS, length: 1497

L1 Lan IIH, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

Point-to-point Adjacency State TLV #240, length: 1

Adjacency State: Up

Protocols supported TLV #129, length: 2

NLPID(s): IPv4, IPv6

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 193.83.223.237

Area address(es) TLV #1, length: 4

Area address (3): 49.0001

Restart Signaling TLV #211, length: 3

Restart Request bit clear, Restart Acknowledgement bit clear

Remaining holding time: 0s

Checksum TLV #12, length: 2

checksum: 0xadbb (correct)

IS-IS Application Level Fragmentation 235

TLV Type

TLV Length

Remaining Lifetime

9

Bytes

1

1

ID Length (6) +2

2

4

2

LSP-ID

Sequence Number

Checksum

N * 16

Remaining Lifetime

ID Length (6) +2

2

4

2

LSP-ID

Sequence Number

Checksum

FIGURE 9.6.

Padding TLV #8, length: 255

Padding TLV #8, length: 255

Padding TLV #8, length: 255

Padding TLV #8, length: 255

Padding TLV #8, length: 255

Padding TLV #8, length: 168

There is no mechanism in the Hello protocol to support more information than fits in a
single packet. There is no concept of distributing (for instance) certain capability codes over
several Hello messages. In IS-IS each preceding Hello message entirely supersedes the pre-
vious one. There is simply no support for multi-part Hello messages. That gives also the
upper boundary of 1492 bytes that each neighbour may advertise. Luckily, IS-IS today uti-
lizes only 5 per cent of that space. In Hello messages there is no need to support multi-packet
messages and therefore in the application IS-IS there is no hook for multi-part Hello mes-
sages specified.

9.4.2 Sequence Number Packets (SNPs)
Sequence Number Packets (SNPs) have two flavours, complete (CSNP) and partial
(PSNP), and three purposes:

1. Acknowledging receipt of a link-state packet (a job for PSNP)
2. Requesting a more recent version of LSPs due to detection of a mismatch of some

LSPs in the link-state database (also PSNP)
3. Publishing all the headers of the link-state database (this is for CSNP)

There is more information about the details of synchronizing link-state databases and
the use of CSNPs and PSNPs in Chapter 8. All you have to know is that IS-IS reports ele-
ments from the link-state database using a special envelope called the LSP Entry TLV #9.
In Figure 9.7 you can see the structure of TLV #9. In the above-mentioned three uses of
SNPs, all transport one, many or all LSP headers that the link-state database holds.

For an acknowledgement, typically only one occurrence of the LSP Entry TLV #9
is needed. The following tcpdump output shows you a PSNP that serves as an
acknowledgement.

Tcpdump output
01:30:05.788280 OSI, IS-IS, length: 44

L2 PSNP, hlen: 17, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 6b01.c219.07fa.00

LSP entries TLV #9, length: 16

lsp-id: 011c.9a4f.0d02.00-00, seq: 0x000014f4, lifetime:

65522s, chksum: 0xb1cf

Authentication TLV #10, length: 8

simple text password: Juniper

236 9. Fragmentation

This PSNP message was generated in response to an LSP with the LSP-ID of
011c.9a4f.0d02.00-00. There is just one occurrence of TLV #9 and it holds just
one entry. Finally, it is properly authenticated.

However, an implementation may decide to wait for a certain amount of time and then
bundle a few acknowledgements together. There can be more than one LSP-ID in a
PSNP frame mentioned using the LSP Entry TLV #9. What if all the acknowledged LSP-
IDs in a PSNP frame do not fit into a single packet? No problem – as the atomic element
in the PSNP is the LSP Entry field itself. In other words: All the LSP Entries are totally
unrelated to each other. The particular order of an LSP-Entry TLV in a PSNP is totally
meaningless. Unlike Hello messages where there are many different TLVs in a Hello
message the entire Hello message is the atomic element – some TLVs are related to each
other and therefore must occur in the same packet.

In the PSNP there is not much that may be related – there is only the LSP Entry TLVs
(plus the authentication and checksum TLV) and it is not related to any other TLV. That
is the reason why IS-IS may spread a large amount of acknowledgements over several
packets – they are not related to each other.

The second application for PSNPs is requesting a more recent version of LSPs. During
the adjacency formation phase an IS-IS router may detect that the other router holds newer
versions of certain LSP Entries in the link-state database. By explicitly enumerating the
LSP Entries that the router is interested in it is requesting a retransmission of the LSPs in
question. The tcpdump shows a request of more recent LSPs.

IS-IS Application Level Fragmentation 237

TLV Type

TLV Length

Remaining Lifetime

9

Bytes

1

1

ID Length (6) � 2

2

4

2

LSP-ID

Sequence Number

Checksum

N * 16

Remaining Lifetime

ID Length (6) � 2

2

4

2

LSP-ID

Sequence Number

Checksum

FIGURE 9.7. The LSP Entry TLV #9

Tcpdump output
01:29:48.567237 OSI, IS-IS, length: 44

L2 PSNP, hlen: 17, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)
source-id: 6b01.c219.07fa.00, PDU length: 44

LSP entries TLV #9, length: 240
lsp-id: 1921.6800.1009.00-00, seq: 0x00000127, lifetime: 39281s, chksum: 0xbaee
lsp-id: 1921.6800.1011.01-00, seq: 0x00000127, lifetime: 43412s, chksum: 0x4759
lsp-id: 1921.6800.1017.00-00, seq: 0x00000122, lifetime: 7886s, chksum: 0xf1c0
lsp-id: 1921.6800.1018.01-00, seq: 0x0000012b, lifetime: 42379s, chksum: 0x2a17
lsp-id: 1921.6800.1019.00-00, seq: 0x0000011b, lifetime: 59820s, chksum: 0x5644
lsp-id: 1921.6800.1020.01-00, seq: 0x00000118, lifetime: 5239s, chksum: 0x2b6b
lsp-id: 1921.6800.1021.00-00, seq: 0x00000110, lifetime: 6007s, chksum: 0x1862
lsp-id: 1921.6800.1022.00-00, seq: 0x0000143f, lifetime: 50489s, chksum: 0x8489
lsp-id: 1921.6800.1023.00-00, seq: 0x0000140d, lifetime: 26319s, chksum: 0xb590
lsp-id: 1921.6800.1024.00-00, seq: 0x000026d1, lifetime: 49281s, chksum: 0x3464
lsp-id: 1921.6800.1025.00-00, seq: 0x00002b52, lifetime: 19969s, chksum: 0x5f8d
lsp-id: 1921.6800.1033.00-00, seq: 0x00001587, lifetime: 30940s, chksum: 0x13f3
lsp-id: 1921.6800.1045.00-00, seq: 0x00001548, lifetime: 46855s, chksum: 0x9af1
lsp-id: 1921.6800.1046.00-00, seq: 0x00000810, lifetime: 18354s, chksum: 0x6ced
lsp-id: 1921.6800.1050.00-00, seq: 0x00000a88, lifetime: 15579s, chksum: 0x208b

LSP entries TLV #9, length: 48
lsp-id: 1921.6800.1078.00-00, seq: 0x00000424, lifetime: 18438s, chksum: 0xe15d
lsp-id: 1921.6800.1089.00-00, seq: 0x000003e9, lifetime: 10171s, chksum: 0x0442
lsp-id: 1921.6800.1099.00-00, seq: 0x00000167, lifetime: 18200s, chksum: 0x51ac

The PSNP header shows that PSNPs are not prepared for multi-packet transmission – the
PSNP header does not carry sequence-number- or chain-number-like semantics. However,
that is not a big issue: the integrity of the PSNP is under all circumstances maintained
because the atomic element is the LSP-ID. So the bottom line of PSNPs is: the application
IS-IS has put no hooks for multi-packet messages, as they are obsolete. Next, CSNPs are
explored to see if they need multi-packet messages, and we will find out if IS-IS has reserved
a few fields to convey these.

CSNPs are radically different to PSNPs. As the name implies, a router transmitting a
Complete Sequence Number Packet (CSNP) transmits more than a router just transmit-
ting a Partial Sequence Number Update (PSNP). Routers use CSNPs for initial syn-
chronization once an adjacency comes up on point-to-point links and for periodical
synchronization on LAN links. A discussion of the mechanics of what to do once a router
receives a CSNP and how to react upon a mismatch comparing to the own link-state data-
base is out of the scope of this chapter and was elaborated in more detail in Chapter 8
“Synchronizing Databases”. The important thing to know is that these mechanisms fun-
damentally rely on the integrity of the CSNP message. This in turn means that a CSNP
has to convey a full snapshot of the current link-state database. If there is something
missing or, even worse, two CSNPs are accidentally mixed up on the same circuit, the
receiver always assumes that the CSNP integrity is okay and may blast the link with a
massive amount of LSP updates.

Link-state databases can be big (thousands of entries). And even if the CSNP has to report
just the headers in a CSNP message by means of TLV #9, IS-IS may run the risk of exhaust-
ing the space that a single packet may transport. Just take a look at the CSNP recorded on an
average backbone router and look at how all the content is filled up with fully sized LSP
Entry TLVs #9 that show other routers all the contents of its link-state database.

238 9. Fragmentation

Tcpdump output
01:29:48.567237 OSI, IS-IS, length: 1478

L2 CSNP, hlen: 33, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)
source-id: 6b01.c219.07fa.00, PDU length: 1478
start lsp-id: 1921.6800.1001.00-00
end lsp-id: 1921.6802.0022.00-00

LSP entries TLV #9, length: 240
lsp-id: 1921.6800.1001.01-00, seq: 0x000003ac, lifetime: 15110s, chksum: 0xd551
lsp-id: 1921.6800.1001.02-00, seq: 0x0000011c, lifetime: 17576s, chksum: 0x47a0
lsp-id: 1921.6800.1001.03-00, seq: 0x00000166, lifetime: 21751s, chksum: 0x96c8
lsp-id: 1921.6800.0011.00-00, seq: 0x000000b9, lifetime: 27108s, chksum: 0xb43d
[…]
lsp-id: 1921.6801.0046.00-00, seq: 0x000006c7, lifetime: 47027s, chksum: 0x2c71
lsp-id: 1921.6801.0057.00-00, seq: 0x000003cc, lifetime: 39228s, chksum: 0xa5c3
lsp-id: 1921.6801.0063.00-00, seq: 0x000003ac, lifetime: 45114s, chksum: 0x4d09
lsp-id: 1921.6801.0074.00-00, seq: 0x00000393, lifetime: 64927s, chksum: 0x048d

LSP entries TLV #9, length: 240
lsp-id: 1921.6801.0074.00-00, seq: 0x00000453, lifetime: 21053s, chksum: 0xcc1a
lsp-id: 1921.6801.0074.02-00, seq: 0x000002fc, lifetime: 14740s, chksum: 0x67be
lsp-id: 1921.6801.0074.03-00, seq: 0x000002d5, lifetime: 5065s, chksum: 0x97a2
lsp-id: 1921.6801.0088.00-00, seq: 0x0000033e, lifetime: 59876s, chksum: 0xd3cc
[…]
lsp-id: 1921.6802.0012.03-00, seq: 0x000000dc, lifetime: 43654s, chksum: 0xfc64
lsp-id: 1921.6802.0018.00-00, seq: 0x00000530, lifetime: 56270s, chksum: 0x8b39
lsp-id: 1921.6802.0018.00-00, seq: 0x00000494, lifetime: 14156s, chksum: 0xdd6a

LSP entries TLV #9, length: 240
lsp-id: 1921.6802.0019.00-00, seq: 0x0000041f, lifetime: 59421s, chksum: 0x985d
lsp-id: 1921.6802.0019.02-00, seq: 0x000000d3, lifetime: 54186s, chksum: 0xde3a
lsp-id: 1921.6802.0019.03-00, seq: 0x000000d4, lifetime: 44940s, chksum: 0xf814
lsp-id: 1921.6802.0022.00-00, seq: 0x000019a1, lifetime: 12688s, chksum: 0x26f9
[…]

A single packet cannot hold up all the LSP headers of a fully blown link-state database
of the sizes in the Internet today. However, if you take a look at the tcpdump above you
may find, contrary to PSNPs, some mechanisms in the header that support multi-packet
messages. Those are the Start-LSP and End-LSP fields in the CSNP header. CSNPs are
prepared from day one to fully support multi-packet messages. Therefore it needs a
marker to find out when the synchronization process is over and when the receiving
router can start to compute the difference to its local link-state database and either flood
or request more recent instances of a LSP. The Start-LSP-ID and End-LSP-ID fields help
to indicate when a synchronization process is over. The Start-LSP-ID field of the first
message in a multi-message CSNP is set to 0000.0000.0000.00-00 and the End-LSP-ID
field is set to FFFF.FFFF.FFFF.FF-FF. If your environment is a very small one (like our
sample topology) the full CSNP fits into a single packet and most probably looks like the
following.

Tcpdump output
00:33:02.536076 OSI, IS-IS, length: 99

L2 CSNP, hlen: 33, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)
source-id: 0000.0000.0002.00, PDU length: 99
start lsp-id: 0000.0000.0000.00-00
end lsp-id: ffff.ffff.ffff.ff-ff

IS-IS Application Level Fragmentation 239

LSP entries TLV #9, length: 64
lsp-id: 1921.6800.1001.00-00, seq: 0x000022d8, lifetime: 1059s, chksum: 0xdd0b
lsp-id: 1921.6800.1002.00-00, seq: 0x00000125, lifetime: 58193s, chksum: 0x7dc0
lsp-id: 1921.6800.1002.02-00, seq: 0x0000011e, lifetime: 58164s, chksum: 0xb8e3
lsp-id: 1921.6800.1003.00-00, seq: 0x0000011b, lifetime: 58191s, chksum: 0x5fb0

Recall that this packet-type is not the common case found in networks of even moder-
ate size. So watch out and do not wonder if you receive in a small lab environment
single-packet CSNPs with 0000.0000.0000.00-00 and FFFF.FFFF.FFFF.FF-FF as Start-
and End LSP-IDs. One of us (Hannes) even thought that IS-IS implementers tried to
avoid filling the CSNPs properly and only stumbled onto the reality during research into
the graceful-restart (see Chapter 13 “IS-IS Extensions” for details). In IS-IS there is the
notion of a Synchronization Start- and Stop event and it is important to fill these fields
with proper values.

CSNPs encompass something that can be described as application level fragmenta-
tion. The application IS-IS knows that the underlying transport infrastructure cannot
carry more than 1497 or 1492 bytes of synchronization payload. And therefore it spreads
the database headers over different CSNP packets, which is a way of assuming a mini-
mum MTU and fragmentation avoidance.

By discussing PSNPs and CSNPs it was assumed that the reader knows about the for-
mat and structure of LSP-IDs. Link-state packets are one of the places in IS-IS that was
intended by the specification to span more than a single MTU.

9.4.3 Link-state Packets (LSPs)
In a link-state PDU a speaker originates a variety of information like capability codes,
topological (IS) reachability and IP reachability information. For the latter two it can
happen that an IS-IS speaker cannot squeeze all the IP prefixes or all the adjacencies it
has to advertise into a single 1492/1497-byte packet. There are several occurrences in
real networks for this situation, such as Frame Relay, ATM Hub routers or L1L2 routers,
which leak Level-2 prefixes to Level-1.

For the IS-IS specification designers it was clear that in order to avoid fragmentation, the
IS-IS protocol needed a few hooks that support multi-message LSP in a similar way
that CSNPs do. Figure 9.8 shows that the LSP-ID has a special byte called the Fragment-ID
that can indicate what fragment number the LSP is. Each LSP-ID is uniquely identified
using the first seven bytes. The first six bytes are inherited from the System-ID that is
part of the NET. The penultimate byte indicates if the issuing router is a real router
(PSN-byte � 00) or a pseudo router (PSN-bytes � any non-zero value). More about
pseudonodes and the use of the PSN bytes was detailed in Chapter 7, “Pseudonodes and
Designated Routess”. The last byte indicates the fragment of the original LSP message.

If an IS-IS router has to originate (for instance) a 4000 byte LSP, and it is a non-
pseudonode (a real router) with a System-ID of 1921.6800.1077, and given that the com-
mon IS-IS MTU is 1492/1497 bytes, one needs to transmit three fragments. So the
original LSP 1921.6800.1077.00 is split into three fragments: 1921.6800.1077.00,
1921.6800.1077.01 and 1921.6800.1077.02, before transmission over the wire. The

240 9. Fragmentation

receiving router simply installs all three fragments in the link-state database and IS-IS
embedded synchronization mechanisms (CSNPs and PSNPs) make sure that all the frag-
ments are known to all the routers in a network. Of course, everything that can go wrong
with LSPs will go wrong in practice. IS-IS is very liberal in that respect. It does not care
if all the fragments finally arrive at the receiver or delay an SPF calculation for route cal-
culation because of a missing fragment. The embedded CSNP and PSNP mechanisms
are considered to be robust enough to make sure that ultimately all LSPs get delivered.
There is one exception to this rule: handling of Fragment zero has a few rules that every
IS-IS speaker has to obey.

9.4.3.1 Fragment Zero

IS-IS does not care if any non-zero fragment is lost – nothing gets delayed or declared
bogus because of that. Fragment zero, however, has some rules and restrictions.

First of all, if Fragment zero is not present, then the entire set of fragments will be
declared invalid, as there is some mandatory information in Fragment zero that is vital,
for example, to SPF computation. There are further restrictions such as: if it is not in
Fragment zero, it must also not be contained anywhere else. And if Fragment zero is
missing, then the SPF computation cannot start to process the link-state database. The
most important information that needs to be present in SPF runs is:

1. The union of all L1 Areas encoded in the Area TLV #1
2. If Multi-Topologies extensions are enabled (see Chapter 13 “IS-IS Extensions”), the

Multi-Topologies Supported TLV #229

Those two LSPs contain information that are vital to SPF processing (most important
are the Overload and ATTach bits) if the state of information in Fragment zero is not
known it becomes irrelevant to process an SPF operation. Fragment zero is the central
dogma of IS-IS, everybody has to comply with the rules and properly advertise the Area
TLV #1 and Multi-Topology Supported TLV #229, otherwise the entire LSP’s non-zero
fragments will be disregarded and thereby purged off the forwarding topology. On the
other hand, those two TLVs are considered to be illegal in any non-zero fragment and are
at best ignored. This behaviour comes from Jon Postel’s famous rule about protocol
interoperability: “Be tolerant what you receive and strict in what you send”. Both IOS
and JUNOS follow this rule and only evaluate these two TLVs in Fragment zero.

IS-IS Application Level Fragmentation 241

1921.6820.4003.02-00
System-ID Pseudonode-

ID
Fragment-

ID

FIGURE 9.8. The application IS-IS has dedicated one byte in its LSP-ID format to include packet
fragment numbers

9.4.3.2 Fragment “Wander” Problems

The atomic element for a trigger that leads to an SPF calculation is a change in an
LSP’s fragment. For example, if an adjacency is present in LSP-ID 1921.6800.1077.00-
01 and it is not present in an updated LSP 1921.6800.1077.00-01, then an SPF calcula-
tion is scheduled as the trigger condition is met. However, an IS-IS LSP is a linear stream
of data and a change in size of a stream element (TLV) may need to organize the entire
stream, as all the fragments need to be rebuilt. This problem is described as fragment
“wander” and today modern IS-IS implementations have come up with “clue” logic to
prevent that.

Naive IS-IS implementations build up a stream of TLV-encoded information and break
it apart afterwards for transmission on the circuits that have MTUs of 1492/1497 bytes.
The word “naive” is used here because, although it does fulfil what is in the specification,
it can create a lot amount of churn in the network by doing more than is mentioned in the
specification.

Consider Figure 9.9 for a better illustration of fragmentation as a way of post-pro-
cessing a TLV stream. An IS-IS router generates a set of TLV-encoded information
including IS or IP Reachability TLVs. Now one adjacency goes down. A naive imple-
mentation builds the entire stream from scratch and chops everything into pieces after-
wards. What happens is that even adjacencies that have been stable like Adjacency #27
are squeezed back into Fragment zero. That means that two fragments have to be rebuilt:
Fragment zero and Fragment 1.

A “cluey” implementation builds the stream and fragments it first hand. When it has to re-
originate one of its fragments, this approach tries to be as conservative as possible to save the
network portions that do not necessarily involve a change of link-state updates. Remember,

242 9. Fragmentation

Area Adj #1 Adj #2 Adj #3 Adj #27 Adj #28

Fragment 00, 1492 bytes Fragment 01
120 bytes

Area Adj #1 Adj #3 Adj #28

Fragment 00, 1492 bytes Frag. 01
70 bytes

Adj #4Naive implementation

Cluey implementation Adj #27 Adj #28

Fragment 01
120 bytes

Area Adj #1 Adj #3

Fragment 00, 1492 bytes

Adj #4

FIGURE 9.9. Naive implementation can generate a lot of churn in the network by blindly re-building
every fragment on every change in adjacencies or IP reachability.

even if no SPF is triggered, flooding is still an expensive task. A “cluey” implementation
tries to avoid fragment rebuilds as long as possible, as indicated below. If Adjacency #2 flaps
the adjacencies in other fragments will not be affected. So the router has to rebuild and flood
only one fragment throughout the network. Doing so also saves the network from churn
when an adjacency comes back again. In the naive implementation, all fragments need to be
rebuilt. The “cluey” implementation thinks in terms of fragments and only does a full rebuild
of fragments when the LSP fragment space (currently 256) is reached. To avoid squeezing
data into one of the not-100-per cent-full fragments, it does a full rebuild.

Good implementations of the IS-IS routing protocol like IOS and JUNOS of course
are fragment-aware and try to be least disruptive by only rebuilding fragments that are
affected by a change and are thereby friendly to their environment.

9.4.3.3 LSP Fragment Space and LSDB Size

How big is the LSP fragment space and is it big enough? This is a question that is often
raised when talking about IS-IS, and distributed link-state databases. The Fragment byte
is an 8-bit quantity and therefore it can store up to 256 fragments. Each fragment can
hold up to 1492/1497 bytes; 256 fragments times 1497 – 27 (the LSP header) bytes
equals to 1470 * 256, which gives a storage space of 376,320 bytes that an individual
System-ID can originate. Are 256 fragments enough? Look at the numbers of routes and
adjacencies that can be stored in 376,320 bytes. In 376,320 bytes about 42.000 IPv4
routes or approximately 31,000 new-style (TLV #22) adjacencies can be stored. In our
opinion, even for large hub routers injecting a vast amount of Level-2 routes into Level-1,
typically not more than 15–20 fragments are used. For adjacencies, typically not more
than 20 adjacencies are formed at the average core router. At Frame-Relay or ATM Hub
Routers the number of adjacencies rises to a worst case of about 200. So the IS-IS archi-
tecture based on today’s routers is not near its end.

However, the industry is changing, and multi-chassis routers (like the Juniper
Networks TX Series or the Cisco Systems CRS-1 Series) can have up to ten times the
number of interfaces than they had in the past. Assume for a moment that IS-IS is at the
end of the fragment space.

In most IS-IS implementation you probably would see some entries in your log file
such as:

JUNOS output
hannes@Frankfurt> show log messages
[…]
Aug 28 15:14:51 Frankfurt rpd[344]: RPD_ISIS_OVERLOAD: IS-IS database overload
Aug 28 15:24:52 Frankfurt rpd[344]: RPD_ISIS_OVERLOAD: IS-IS database overload
Aug 28 15:34:53 Frankfurt rpd[344]: RPD_ISIS_OVERLOAD: IS-IS database overload

Based on today’s environment, somebody did something seriously wrong in the net-
work, like trying to pump all Internet routes into IS-IS. There is a case study in Chapter 15

IS-IS Application Level Fragmentation 243

“Troubleshooting” that will help you troubleshoot these scenarios. When the router has
reached its end of fragments space, then the only option it has left is to purge Fragment
01–255 and to re-originate fragment zero with the Overload Bit set in the LSP header.
The Overload Bit tells other routers in the network that they should not calculate any
transit paths through this router because it is overloaded and thus might black hole traf-
fic. More about the Overload Bit and what can be done with it was covered in Chapter 6,
“Generating, Flooding and Ageing LSPs”. The good news is that a router setting the
Overload Bit is very visible to the network, and the “bad guy” can quickly be spotted for
further troubleshooting. The bad news is that some IS-IS implementations may not sur-
vive the first killer-wave of 42,000 routes piped into IS-IS.

Getting back to multi-chassis router architectures – what prevents a big, multi-chassis
router from advertising its internal structure of chassis-to-chassis links to the outside world?
Well, LAN adjacencies are scaled nicely using the idea of pseudonodes. The pseudonode
concept can be used just as well to model a router that is surrounded by multiple shelves
each having a dedicated System-ID and owning (perhaps) 376 KB each of distributed stor-
age space. It worked with pseudonodes, why should it not work with real nodes? The answer
is simple: Nothing! There is even an Internet-draft that describes this idea: draft-ietf-isis-
ext-lsp-frags. Chapter 17, “Future of IS-IS”, will explore these concepts in more detail. So
far, no implementation has picked up on these ideas of modelling a Real Router as several
Virtual Routers, as there has been no implementation pressure yet. However, that might
change in the future.

Another option for scaling the distributed LSP storage space is extending the
1492/1497 MTU to something bigger. Today, virtually every interface in the core net-
work of ISPs is based on SONET/SDH that have at least an MTU of 4474 at the link-
layer. That means that IS-IS can transmit up to (4470 – 27)*256 � 1,137,408 bytes of
distributed storage space. That’s about tripling the size with moderate implementation
effort. Changing the minimum MTU in a network is a daunting task and everybody
knows that there may still be a hidden edge in the network that cannot change its MTUs.
The protocol implementers wanted to have a last-resort warning that a node does not sup-
port larger MTUs by originating the so-called LSP Buffer Size TLV #14. This TLV was
mentioned in the second version of ISO 10589 published in 1997. The TLVs contents
simply represent a 16-bit value indicating the maximum MTU that the system can under-
stand. You can see the structure of the TLV #14 in Figure 9.10.

244 9. Fragmentation

TLV Type

TLV Length

LSPBufferSize

14

Bytes

1

1

2

FIGURE 9.10. Any IS-IS router that wants to send bigger than 1492/1497 byte-sized LSPs must have
the Buffer size TLV #14 present in Fragment zero

9.5 Summary

Contrary to IP routing protocols, IS-IS cannot rely on a network layer to do fragmentation
for it. IS-IS runs directly on the link-layer, which has no possibility of fragmenting frames.
IS-IS therefore needs to apply a few techniques to get around the too-small MTU problem
if it has to transmit a message that is larger than the MTU. The two techniques IS-IS uses
fall under the category of fragmentation avoidance and application level fragmentation.
IS-IS assumes a minimum MTU that every link has to support. This limit today is theoreti-
cally 1492 and in practice 1497 bytes. Additionally in several packet types in IS-IS there
is support for multi-packet messages like CSNPs and LSPs. There are also details of how
the application IS-IS should fragment in order to avoid network-wide churn. “Cluey”
implementations think in terms of fragments and try only to rebuild fragments that have
been affected by an adjacency change. In current network architectures, the distributed
LSP storage space is typically only utilized at 10 per cent, and even if the space could
become exhausted, the IS-IS working group has come up with a solution that is similar to
modelling adjacencies on a large LAN. There is also the possibility of raising the 1492
byte limit of LSP buffer size as all modern interface cards, especially in core environ-
ments, support MTUs up to 4474 bytes. Although not needed today, these developments
are a good proof that the IS-IS infrastructure will exist for a long time to come in networks.

IS-IS Application Level Fragmentation 245

10

SPF and Route Calculation

In order for the hop-by-hop routing paradigm to work, link-state routers need a common
algorithm to determine a loop-free path to all destinations in a network. In this chapter
you will gain insight as to how the IS-IS related route-calculation and route-resolution
algorithms work. There will be a step-by-step explanation of the main three elements in
the route calculation process that is SPF calculation, route resolution and prefix insertion.

The SPF calculation process has been practically demonized in the past. There is no
need to view this process negatively, in the authors’ opinion. This chapter includes a per-
formance assessment of each of the three elements needed for SPF calculation to correct
this unfortunate perception. Also, common router OS implementation knobs for mitigating
the CPU overload side-effects of the SPF calculation and route resolution will be discussed.

Finally there will be an implementation assessment of the most dominant perform-
ance-related element of the process, which is prefix insertion. The two common schemes
for prefix insertion are presented and finally the cost of inserting a prefix and the metrics
of current router hardware will be highlighted.

10.1 Route Calculation

From the time that a link-state PDU arrives to the time traffic is flowing through the
changed path in a router, a lot of actions need to be taken. Figure 10.1 shows the three
different steps that are applied for each route.

First, the SPF calculation needs to be run. Depending on the location in the network
topology and which information has changed (topology, prefix), there are three choices
of SPF runs:

• Full
• Partial
• Incremental

247

SPF
calculation

Route
resolution

Prefix
insertion

FIGURE 10.1. The three operations for calculating routes

Then, after executing the SPF calculation, the router needs to find out if there are
dependent routes.

The route resolver determines if a change of the IS-IS-supplied topology and routes
also results in a change of dependent routes. Routing protocols like BGP rely on a working
IGP to map the reachability information to a topology in order to calculate the path cost
properly. Finally, after the affected dependent routes have been determined, the router
proceeds to the third stage, which is prefix insertion.

At the prefix insertion stage the router inserts, deletes or changes prefixes of all
address families (IPv4, IPv6) and their corresponding Next-hops, then downloads the
new forwarding tables to the line-cards and ASICs of the packet forwarding complex of
the router.

The next sections explore all three elements both from a theoretical and practical per-
spective. At the end of each section performance considerations for the network designer
are highlighted.

10.2 The SPF Algorithm

The Shortest Path First algorithm was invented and first documented by Edser Dijkstra,
a Dutch mathematician who was researching the topic of graph theory and looking for an
algorithm to determine the shortest spanning distance between two points on a graph.
The SPF algorithm is perhaps one of the best-analyzed algorithms in computer science,
and its scaling properties are well understood. There are many resources available on the
Internet that explain and illustrate how the SPF algorithm works. A good tutorial to learn
more about the algorithm, even running through an animated SPF calculation, can be
found at http://www.tutor.ms.unimelb.edu.au/dijkstra/dijkstra.html

Briefly, SPF is based on a database of node-to-node costs and, using three lists, the
SPF algorithm can determine the shortest path to all nodes in N steps, where N is the
number of nodes in the network.

10.2.1 Working Principle
The SPF algorithm maintains three lists:

• UNKNOWN
• TENTative
• PATHs

All nodes currently in the link-state database are first moved to the UNKNOWN list.
The node currently being evaluating is placed on the TENTative list, and the local router
executing the SPF calculation puts itself on the TENTative list. The TENTative list consists
of triplets in the form of neighbour, neighbours-cost and cost to root (the router running
SPF). Once SPF determines the best path (lowest cost back to the root) to a node, the
node is moved to the PATHs list. The PATHs list sometimes is called the Known list.

248 10. SPF and Route Calculation

The list of explored PATHS starts at zero. Next, a loop of at most N steps starts, where
N is the number of nodes in the link-state database. Each loop through the algorithm has
these steps:

1. Find the node with the lowest cost and move it into PATHs
2. Find all neighbours reachable from that node and move the neighbours from

UNKNOWN into TENTative, but …
3. Before a node is moved from UNKNOWN into TENTative, apply a two-way check. If

Node A claims that it can see Node B, re-verify that Node B also reports to see Node A.
If not, ignore that adjacency.

4. For each node that moves onto the TENTative list, maintain the cost to get there and
store the first-hop information. The first-hop is needed for populating the routing-table
with routes when SPF is done. The forwarding-engine of a router thinks only in terms
of prefixes and directly connected next-hops (the first-hop).

10.2.2 Example
The SPF algorithm can be very abstract. Consider the sample topology shown in
Figure 10.2. For a better illustration of SPF calculation, we will do an SPF calculation

The SPF Algorithm 249

UNKNOWN List

Area 49.0001
Level 2-only

oc192/STM-64

87000

oc12/STM-4

600000

oc192/STM-64

250000

oc768/STM-256

22000

oc768/STM-256

22000

oc48/STM-16

315000

oc48/STM-16

315000

oc192/STM-64

26000

315000Pennsauken-�London

Pennsauken-�Frankfurt

Pennsauken-�New York

315000

26000

315000London-�Pennsauken

London-�Frankfurt 22000

Frankfurt-�London 22000

Frankfurt-�Pennsauken 315000

Frankfurt-�Washington D.C. 250000

Frankfurt-�Paris 87000

Paris-�Frankfurt 87000

Paris-�Washington D.C. 600000

Washington D.C.-�Paris 600000

Washington D.C.-�Frankfurt 250000

Washington D.C.-�New York 22000

New York-�Washington D.C. 22000

New York-�Pennsauken 26000

TENTative List

LSDB entry cost cost to root

empty 0 0

PATH List

empty - 0

Destination via cost to root

Pennsauken

Frankfurt

London

Washington

New York

Paris

FIGURE 10.2. At initialization all information in the LSDB is moved on the UNKNOWN list

just as a router in this sample topology would, in this example, the Pennsauken router.
The figure shows all the Level-2 routers and eight links to connect them. Those links
have speeds varying from OC-12/STM-4 (622Mbit/s) up to OC-768/STM-256 (40Gbit/s).
The link cost has been assigned on a composite bandwidth/cost scheme. (Those
bandwidth-to-IGP cost values are taken from Figure 12.10 in Chapter 12 “IP Reachability
Information.”)

The full link-state database consists of six routers reporting eight links. Due to these
eight links, the router holds 8 * 2 � 16 unidirectional link-states in the link-state data-
base (LSDB). At the beginning of the SPF calculation, all 16 links are moved, together
with their respective cost field, into the UNKNOWN list, as shown in Figure 10.2.

Then the list of explored PATHs is cleared and each router performing the SPF calcula-
tion puts itself as the first entry into the TENTative list. In our example, we will execute
the SPF calculation from Pennsauken’s point of view as illustrated in Figure 10.3. All
adjacencies that are reported via Pennsauken are moved into the TENTative list.

250 10. SPF and Route Calculation

87000600000

250000

22000

oc768/STM-256

22000

315000

31500026000

315000Pennsauken-�London

Pennsauken-�Frankfurt

Pennsauken-�New York

315000

26000

315000London-�Pennsauken

London-�Frankfurt 22000

Frankfurt-�London 22000

Frankfurt-�Pennsauken 315000

Frankfurt-�Washington D.C. 250000

Frankfurt-�Paris 87000

Paris-�Frankfurt 87000

Paris-�Washington D.C. 600000

Washington D.C.-�Paris 600000

Washington D.C.-�Frankfurt 250000

Washington D.C.-�New York 22000

New York-�Washington D.C. 22000

New York-�Pennsauken 26000

TENTative List

PATH List

LSDB entry cost

315000Pennsauken-�London 315000

Pennsauken-�Frankfurt 315000 315000

Pennsauken-�New York 26000 26000

26000

via

2

1

Frankfurt

Pennsauken

oc192/STM-64 oc48/STM-16

New York
oc48/STM-16

London

Area 49.0001
Level 2-only

oc768/STM-256

Washington

oc192/STM-64

oc12/STM-4 oc192/STM-64

Paris

UNKNOWN List

cost to root

Destination

New York New York

cost to root

FIGURE 10.3. New York has the least-cost path to root and is moved onto the PATH list

The SPF Algorithm 251

Routers also execute a so-called two-way check. The two-way check verifies that
neighbouring nodes are mutually connected on the graph. Routers are required only to
announce two-way verified reachability information. However, there are cases where
two neighbouring routers believe that they are connected when in fact they are not.
Several broken two-way scenarios were presented and illustrated in Chapter 5, “Neighbour-
Discovery and Handshaking”.

Because of the two-way check requirement, Pennsauken takes a look in the LSDB
to see if all its neighbours (New York, London, Frankfurt) have pointers pointing to
Pennsauken as well. If all reported adjacencies pass this two-way check, they are purged
from the UNKNOWN list.

The algorithm now tries to find the best path to the root node (Pennsauken). The least-
cost path on the TENTative list is New York with a cost of 26000. Therefore, as indicated
in Figure 10.3, New York’s path cost is moved onto the PATH list. As a next step, the
algorithm tries to further drill down the best path found so far and load all the immediate
successors onto the TENTative list, since traffic obviously has to pass this way.

New York only has one immediate successor, which is Washington. In Figure 10.4, the
Pensauken router loads all Washington-related LSDBs onto the TENTative list and verifies

87000600000

250000

22000 22000

315000

31500026000
London-�Frankfurt 22000

Frankfurt-�London 22000

Frankfurt-�Washington D.C. 250000

Frankfurt-�Paris 87000

Paris-�Frankfurt 87000

Paris-�Washington D.C. 600000

Washington D.C.-�Paris 600000

Washington D.C.-�Frankfurt 250000

Washington D.C.-�New York 22000

New York-�Washington D.C. 22000

TENTative List

LSDB entry Cost

315000Pennsauken-�London 315000

Pennsauken-�Frankfurt 315000 315000

22000New York-�Washington D.C. 48000

PATH List

New York 26000

Destination via cost to root

Washington D.C 48000

3

4

Pennsauken

oc192/STM-64 oc48/STM-16

New York oc48/STM-16 London

oc768/STM-256 Area 49.0001
Level 2-only

oc768/STM-256

Washington

oc192/STM-64

oc12/STM-4 oc192/STM-64

Frankfurt

Paris

UNKNOWN List

Cost to root

New York

New York

FIGURE 10.4. Washington has the least-cost path to root and is moved onto the PATH list

each claimed adjacency using the two-way check again. After the two-way check, the
entries are deleted from the UNKNOWN list. The link from New York to Washington
has a cost of 22000 and the link from the Pennsauken root to New York comes to
26000, which the router already determined. The aggregate path cost therefore is
22000 � 26000 � 48000 which is written into the cost-to-root field. Washington is the
shortest path to the root and is therefore moved onto the PATH list.

Next, Washington’s successors are explored. In Figure 10.5, the nodes Paris and Frankfurt
are moved onto the TENTative list, but only after satisfying the two-way condition. Two-
way-check-related LSDB entries are then deleted from the UNKNOWN list. Now, there
are two paths to Frankfurt on the TENTative list. One path goes directly and one goes via
New York. SPF adds the shortest path by cost, which is via New York. Frankfurt via New
York moves onto the PATH list with a cost of 298000. Additionally, the higher cost path
to Frankfurt, which is the direct OC-48/STM-16 link, is deleted from the TENTative list.

In Figure 10.6, the last step of the SPF calculation is described. The last node that
has been put onto the PATH list is Frankfurt. Therefore, all nodes that are reported

252 10. SPF and Route Calculation

UNKNOWN List

87000600000

250000

22000 22000

315000

31500026000

London-�Frankfurt 22000

Frankfurt-�London 22000

Frankfurt-�Washington D.C. 250000

Frankfurt-�Paris 87000

Paris-�Frankfurt 87000

Paris-�Washington D.C. 600000

Washington D.C.-�Paris 600000

Washington D.C.-�Frankfurt 250000

TENTative List

LSDB entry cost

315000Pennsauken-�London 315000

Pennsauken-�Frankfurt 315000 315000

Washington D.C.-�Paris 600000

Washington D.C.-�Frankfurt 250000

648000

298000

PATH List

New York 26000

Destination via

Washington D.C 48000

Frankfurt 298000

5

6

Pennsauken

oc192/STM-64 oc48/STM-16

New York oc48/STM-16 London

oc768/STM-256 Area 49.0001
Level 2-only

oc768/STM-256

Washington

oc192/STM-64
Frankfurt

oc12/STM-4 oc192/STM-64

Paris

cost to root

cost to root

New York

New York

New York

FIGURE 10.5. Frankfurt is routed via New York although a direct line exists

The SPF Algorithm 253

via Frankfurt are further examined. The two remaining LSDB entries Frankfurt reports
are the adjacencies to Paris and London. After passing the two-way check, the two links
are moved onto the TENTative list. There are two ways to London: one direct link and
one by way of New York to Washington and then to Frankfurt. The direct link has, in
spite of the lower bandwidth, precedence in SPF over the indirect path. The direct link
has a cost of 315000, which is better than the 320000 of the composite path. Finally,
there are two paths to Paris, one by way of New York to Washington to Frankfurt at a cost
of 385000, and one via New York to Washington at a cost of 648000. The path through
Frankfurt is, due to the lower cost, moved into the PATH list.

Finally, there is no further information on the TENTative list, which is the condition
that terminates the SPF calculation. Fortunately, the UNKNOWN list is also empty, but
it does not necessarily have to be. There could be “stale” LSDB entries on it, which have
not yet aged out, but also could list nodes that did not pass the two-way check. Anyway,

UNKNOWN List

87000600000

250000

22000 22000

315000

31500026000

London-�Frankfurt 22000

Frankfurt-�London 22000

Frankfurt-�Paris 87000

Paris-�Frankfurt 87000

TENTative List

LSDB entry cost cost to root

315000Pennsauken-�London 315000

Washington D.C.-�Paris 600000 648000

Frankfurt-�London 22000

Frankfurt-�Paris 87000

320000

385000

PATHs List

New York New York 26000

Destination via cost to root

Washington D.C 48000

Frankfurt 298000

London

Paris

315000

385000

7

8

9

Pennsauken

oc192/STM-64 oc48/STM-16

New York oc48/STM-16 London

oc768/STM-256 Area 49.0001
Level 2-only

oc768/STM-256

Washington

oc192/STM-64
Frankfurt

oc12/STM-4 oc192/STM-64

Paris

New York

New York

New York

London

FIGURE 10.6. If the TENTative list is empty, the SPF calculation is terminated

those do no harm, as long as all nodes are reachable. Eventually these “extra” entries will
age out of the link-state database.

10.2.3 Pseudonode Processing
In the example network topology illustrated in Figure 10.1, there are only real nodes in
the network. There is no pseudonode on the topology, because a WAN network typically
contains point-to-point links, which do not require pseudonode generation. You can find
complete information about pseudonodes, their background, and how to suppress them,
in Chapter 7, “Pseudonodes and Designated Routers”.

The pseudonode requires special treatment during the SPF calculation. Figure 10.7 shows
an example scenario. Amsterdam and Stockholm are connected by two circuits. The first one
is a point-to-point circuit and the second one is a broadcast circuit. Both circuits have an IGP
cost of 10 assigned. On the left-hand side of the figure, this is represented inside the link-
state database. Note that the cost from the non-pseudonode to the pseudonode is the IGP
metric that has been assigned to the interface, in this case 10. The cost from the pseudonode
to the non-pseudonode is always zero.

Figure 10.8 shows an illustration of the SPF run at Amsterdam on this network. The SPF
calculation starts with moving all reported adjacencies to the UNKNOWN list. In this
small, sample network there are six reported adjacencies between the three nodes. Next the
calculating router (Amsterdam) puts all local adjacencies into the TENTative list (1). Both
adjacencies pass the two-way check and the links are removed from the UNKNOWN list
(2). Next, the Amsterdam router randomly decides to move a node from the TENTative to
the PATH list, as both have equal cost. In the example, the Amsterdam.00 to Stockholm.00
element is moved onto the PATH list (3). (We will see later that this random decision was
a mistake.) The immediate successors of Stockholm.00, which is now the node under
consideration in the PATH list, are moved from the UNKNOWN list onto the TENTative
list (4). Stockholm.02 passes the two-way check and its links are removed from the
UNKNOWN list (5). Now the Amsterdam router realizes it already has a path to
Stockholm.00 with a cost of 10, so this link is discarded (6). As there are no further ele-
ments in the UNKNOWN list, the SPF calculation terminates and as a result just one path
(the point-to-point link) is used between the two routers.

254 10. SPF and Route Calculation

LSDB representation

1010

10 10

10

0

10
10

100

Amsterdam.00 Stockholm.00

LAN

Stockholm.02 Amsterdam.00

p2p circuit

Ethernet Stockholm.00

10
10

0
0

10

10

10 10

10

FIGURE 10.7. Two equal cost paths over a p2p and a broadcast circuit and its representation in the
link-state database

255

T
E

N
T

at
iv

e
L

is
t

L
S

D
B

 e
n

tr
y

co
st

co
st

 t
o

 r
o

o
t

10
A

m
st

er
da

m
.0

0-
�

S
to

ck
ho

lm
.0

0
10

A
m

st
er

da
m

.0
0-

�
S

to
ck

ho
lm

.0
2

10
10

P
A

T
H

 L
is

t

co
st

 t
o

 r
o

o
t

10

U
n

kn
o

w
n

 L
is

t

L
S

D
B

 e
n

tr
y

co
st

S
to

ck
ho

lm
.0

0-
�

A
m

st
er

da
m

.0
0

10

S
to

ck
ho

lm
.0

2-
�

S
to

ck
ho

lm
.0

0
0

S
to

ck
ho

lm
.0

0-
�

S
to

ck
ho

lm
.0

2

0
S

to
ck

ho
lm

.0
2-

�
A

m
st

er
da

m
.0

0

10

A
m

st
er

da
m

.0
0-

�
S

to
ck

ho
lm

.0
0

10

A
m

st
er

da
m

.0
0-

�
S

to
ck

ho
lm

.0
2

10

1 3

T
E

N
T

at
iv

e
L

is
t

L
S

D
B

 e
n

tr
y

co
st

co
st

 t
o

 r
o

o
t

10

A
m

st
er

da
m

.0
0-

�
S

to
ck

ho
lm

.0
2

10
10

P
A

T
H

 L
is

t

L
S

D
B

 e
n

tr
y

vi
a

co
st

 t
o

 r
o

o
t

S
to

ck
ho

lm
.0

0
S

to
ck

ho
lm

.0
0

10

U
n

kn
o

w
n

 L
is

t

L
S

D
B

 e
n

tr
y

co
st

S
to

ck
ho

lm
.0

2-
�

S
to

ck
ho

lm
.0

0
0

S
to

ck
ho

lm
.0

0-
�

S
to

ck
ho

lm
.0

2
10

4

S
to

ck
ho

lm
.0

0-
�

S
to

ck
ho

lm
.0

2

L
S

D
B

 e
n

tr
y

vi
a

S
to

ck
ho

lm
.0

0
S

to
ck

ho
lm

.0
0

2

5

6

2

FI
G

U
R

E
10

.8
.I

f
th

e
ps

eu
do

no
de

 is
 n

ot
 p

ri
or

iti
ze

d
on

 th
e

T
E

N
T

 to
 P

A
T

H
 m

o v
e

th
en

 a
n

eq
ua

l c
os

t p
at

h
is

 lo
st

256

T
E

N
T

at
iv

e
L

is
t

L
S

D
B

 e
n

tr
y

co
st

co
st

 t
o

 r
o

o
t

10
A

m
st

er
da

m
.0

0-
�

S
to

ck
ho

lm
.0

0
10

A
m

st
er

da
m

.0
0-

�
S

to
ck

ho
lm

.0
2

10
10

P
A

T
H

 L
is

t

co
st

 t
o

 r
o

o
t

10

U
n

kn
o

w
n

 L
is

t

L
S

D
B

 e
n

tr
y

co
st

S
to

ck
ho

lm
.0

0-
�

A
m

st
er

da
m

.0
0

10

S
to

ck
ho

lm
.0

2-
�

S
to

ck
ho

lm
.0

0
0

S
to

ck
ho

lm
.0

0-
�

S
to

ck
ho

lm
.0

2

0
S

to
ck

ho
lm

.0
2-

�
A

m
st

er
da

m
.0

0

10

A
m

st
er

da
m

.0
0-

�
S

to
ck

ho
lm

.0
0

10

A
m

st
er

da
m

.0
0-

�
S

to
ck

ho
lm

.0
2

10

1 3

T
E

N
T

at
iv

e
L

is
t

L
S

D
B

 e
n

tr
y

co
st

co
st

 t
o

 r
o

o
t

P
A

T
H

 L
is

t

L
S

D
B

 e
n

tr
y

vi
a

co
st

 t
o

 r
o

o
t

10

U
n

kn
o

w
n

 L
is

t

L
S

D
B

 e
n

tr
y

co
st

S
to

ck
ho

lm
.0

2-
�

S
to

ck
ho

lm
.0

0
0

S
to

ck
ho

lm
.0

0-
�

S
to

ck
ho

lm
.0

2
10

4

L
S

D
B

 e
n

tr
y

vi
a

S
to

ck
ho

lm
.0

2
S

to
ck

ho
lm

.0
2

10
A

m
st

er
da

m
.0

0-
�

S
to

ck
ho

lm
.0

0
10

S
to

ck
ho

lm
.0

2
S

to
ck

ho
lm

.0
2

S
to

ck
ho

lm
.0

2-
�

S
to

ck
ho

lm
.0

0
0

10

S
to

ck
ho

lm
.0

0
S

to
ck

ho
lm

.0
0

10

6

2

5

2

S
to

ck
ho

lm
.0

0
S

to
ck

ho
lm

.0
2

10

7

8

FI
G

U
R

E
10

.9
.I

f
th

e
ps

eu
do

no
de

 is
 p

ri
or

iti
ze

d
on

 th
e

T
E

N
T

 to
 P

A
T

H
 m

ov
e

th
en

 m
ul

tip
le

 e
qu

al
 c

os
t p

at
hs

 a
re

 c
al

cu
la

te
d

SPF Calculation Diversity 257

Figure 10.9 illustrates another SPF run, but this time no random decision is made
when moving a node from the TENTative list to the PATH list. Steps (1) and (2) are
processed exactly as in the previous example. The difference now is that the system
prefers the pseudonode (3) when moving an equal cost node from the TENTative to the
PATH list. The router knows that the pseudonode will connect to a real node with a cost
of zero, and so is a path of interest. Next, the router evaluates immediate successors from
Stockholm.02 and puts them onto the TENTative list (4). After passing the two-way
check, the links are removed (5). Next, the router evaluates the TENTative list and moves
Stockholm.00 onto the PATH list (6). The remaining node in the TENTative list has a
cost of 0 to a node (Stockholm.02) that is already on the PATH list. After summing up 0
plus the cost to reach Stockholm.02, it turns out that there is another path at cost 10 to
Amsterdam.00 available, and this one moved into the PATH list (7). The TENTative and
UNKNOWN lists are empty, which is the terminating condition for the SPF calculation.
The result this time is that both paths are available, which is the desired result.

The above example has shown that any sane SPF implementation must prioritize the
pseudonode when moving it from the TENTative to PATH list. Otherwise, paths in an
equal cost multi-path environment get lost. The interesting thing is that the pseudonode
prioritization is never mentioned in ISO 10589. Many implementers therefore make this
mistake, and years later it is discovered in the field. JUNOS, for example, contained this
oversight for 3 years until it was addressed in JUNOS 5.7.

The SPF calculation itself has been optimized during the course of networking history.
So there are three different kinds of SPF calculations around. The next sections explore
them and their particular performance and resource consumption properties.

10.3 SPF Calculation Diversity

There are two passes in the SPF calculation. The purpose of the first pass is to calculate
the topological grid in an area. This tries to determine which routers are connected to
each other. In the first pass, any prefix information is considered to be irrelevant for the
structure of the grid and hence is disregarded. The router does its calculation of the topo
logical grid purely on the information found in the IS Reachability and/or the Extended
IS Reachability TLVs that are contained in each router’s LSPs. In the previous section,
this first pass was described in great detail.

In the second pass, all the leaf information is extracted. The router tries to find out if a
given node speaks the correct Network Layer protocol. Each Network Layer protocol has
to perform a leaf calculation. For instance, if a router does not speak IPv4, its IPv4-
related TLVs (128,130,135), are completely disregarded during the second pass leaf calcu-
lation. At worst, an IS-IS router needs to calculate prefixes for three distinct address
families (IPv4, IPv6 and CLNS). However, it is uncommon to run all three address proto-
cols in an area. The most typical deployments are two protocols (IPv4 and IPv6 or IPv4
and CLNS) together in an area. In most SPF implementations of the IS-IS protocol the
terms full SPF run and partial SPF run are used, which are different names for the first
pass and the second pass, or leaf extraction.

10.3.1 Full SPF Run
The full SPF run is the heavyweight of SPF flavours. It both re-computes the topological
grid in an area as well as re-computes the reachable IP prefixes. Full SPF runs are typi-
cally triggered by the following events:

• Local configuration change
• Update to a known LSP, which contains an adjacency change
• Local aged adjacency
• Receipt of a new/unknown LSP
• New Area-ID in the Level-1 network
• Link metric change
• Purging an LSP
• Periodically for additional robustness (every 15 minutes)

The full SPF run is not scheduled immediately after the above trigger events. Instead it is
delayed for a configurable minimum amount of time. The most typical event from the
above list is a new or updated LSP. In IS-IS networks, as in any other network running
link-state routing protocols, there is a general observation that single LSP updates are
very rare. They are almost always accompanied by other LSPs, which follow shortly
after the first LSP shows up. The reason behind this is very clear: if a link fails there are
always two routers that need to re-originate their LSPs. So it is better to wait a couple of
milliseconds before starting an SPF calculation, which may tie the router down on the
order of 100s of milliseconds.

So routers delay the SPF calculation. The typical pre-SPF delay value is 100 or 200 ms
(depending on IOS or JUNOS). After the pre-SPF delay, the router freezes the link-state
database and does the SPF calculation. Freezing means that during this time, no LSP
additions or changes can be made.

10.3.1.1 Link-state Database Locking

It is absolutely mandatory for an IS-IS implementation to freeze the database during an
SPF calculation run. An LSP change inserted during a run of the SPF calculation may
result in bogus routes. Consider Figure 10.10 to get an idea what will happen if the link-
state database is not locked. We are in the middle of an SPF calculation. The early stages
of the SPF calculation considered the path through Washington the best path in the network.
Now it is exploring the network downstream from Washington. Suddenly, the link between
Washington and New York goes down. Unfortunately, the New York–Washington path is
our best-path candidate. The SPF calculation does not backtrack through path candidates
to see if the path properties have changed. If the router does not lock the link-state database
then the result will be most likely bogus routes. Of course, IOS and JUNOS both lock the
database (as any serious IS-IS implementation has to) and queue any incoming LSPs for
insertion once the database is unlocked.

After the SPF calculation has completed, the router starts an SPF hold-down timer
which blocks further SPF runs for self-protection reasons.

258 10. SPF and Route Calculation

SPF Calculation Diversity 259

10.3.1.2 Self-protection

The purpose of hold-downs is to allow the IS-IS router to work less. Consider Figure 10.11
to see why SPF hold downs make sense. If there were no hold-down for SPF calculation,
then the average utilization of the control plane CPU would be very high. During an SPF
calculation (100–200 ms) the CPU utilization jumps to 100 per cent. But shortly there-
after it drops down to 0 per cent. If a network is shaky, then additional LSPs triggering
new SPF calculations will follow, raising the CPU utilization to 100 per cent once again
for a short period of time. By applying SPF hold-down timers, IS-IS keeps the intervals
between the SPF calculations large and so lowers the average CPU utilization spent for
SPF calculations. In other words, SPF hold-down is a self-protection mechanism to avoid
meltdown of the router’s control plane. SPF hold downs trade responsiveness for stability.
What is gained is a router control plane that is stable in every situation and does not go
down the “CPU churning spiral” when the network starts to get shaky. However, on the
other hand, a router loses responsiveness. Consider a router that is in the middle of an

87000600000

250000

22000 22000

315000

31500026000

London-�Frankfurt 22000

Frankfurt-�London 22000

Frankfurt-�Paris 87000

Paris-�Frankfurt 87000

LSDB entry cost

315000Pennsauken-�London 315000

Washington D.C.-�Paris 600000 648000

26000

via

Washington D.C 48000

298000

Pennsauken

oc192/STM-64 oc48/STM-16

New York

New York
oc48/STM-16

London

oc768/STM-256 Area 49.0001
Level 2-only

oc768/STM-256

Washington

oc192/STM-64
Frankfurt

oc12/STM-4 oc192/STM-64

Paris

UNKNOWN List

TENTative List

cost to root

Destination

New York New York

New York

New York

cost to root

Frankfurt

PATH List

FIGURE 10.10. If the contents of the LSDB are not locked during the SPF computation, bogus
routes will result

260

av
er

ag
e

u
ti

liz
at

io
n

15
20

25
t (

s)
0

5
s

ho
ld

 d
ow

n

204010
0

C
P

U
 lo

ad
 [%

]

5
s

ho
ld

 d
ow

n
5

s
ho

ld
 d

ow
n

5
s

ho
ld

 d
ow

n
5

s
ho

ld
 d

ow
n

6080

5
10

Peak utilization

Peak utilization

Peak utilization

Peak utilization

Peak utilization

Peak utilization

FI
G

U
R

E
10

.1
1.

SP
F

ho
ld

-d
ow

ns
 s

m
oo

th
 th

e
C

PU
 u

til
iz

at
io

n

SPF hold-down period: even if plenty of LSPs do rush in, the router has to wait until the
hold down period is over before scheduling the SPF calculation again. Then there are
considerations like “How short should the hold-down time be to still be responsive?” and
“How long should the hold-timer be to be stable enough?” and even “What is the optimal
hold-down timer value?”

Unfortunately there is no universal hold-down timer value that applies to all networking
scenarios. Hold-down timers are always a compromise between stability and responsive-
ness. Look at stability to start with: this mostly depends on network size and link stabil-
ity. Network engineers used to say “In a quiet environment, OSPF and IS-IS are quiet
protocols”.

In the infancy of link-state routing protocols there was usually a static SPF hold-down
timer of 5 seconds between SPF runs. This was a conservative timer, the better to scale
for large networks. Today, adaptive timers, which take into account the churn in the network,
are more common. The basic idea behind the new schemes is that the first couple of SPF
calculations are scheduled immediately without any notable delay and only subsequent,
persistent SPF runs are delayed. The more SPF runs need to be scheduled, the longer the
hold-down timer gets. Such schemes are a much better compromise between responsiveness
and stability than static timers can ever be.

The typical adaptive timer algorithm implementation reacts very fast, and is very
responsive at first. This covers 99 per cent of the typical network-changing events, which
are link failures. That means that two LSPs arrive within a very short window. For the
remaining 1 per cent of failure scenarios, the algorithm falls back to the older SPF hold-
down static intervals for self-protection reasons.

JUNOS and IOS have different ways of implementing hold-down timers. IOS imple-
ments a technique called exponential back off. Here the hold-down interval gets doubled
each time an SPF calculation is executed. The initial delay, the max-delay and the mini-
mum hold-down interval can be configured using the using the spf-interval
<max-holddown> [<initial-wait> <minimum-holddown>] configura-
tion command. The following shows a custom configuration of the SPF hold down
behaviour in IOS. This works as follows:

IOS configuration
In IOS there are three timers to control SPF hold-down. The first timer specifies the SPF
hold-down in the slower phase expressed in units of seconds. The second timer specifies
how many milliseconds to wait before scheduling the very first SPF calculation. The third
timer specifies the minimum SPF hold-down in the fast phase. The last two timers are
expressed in units of milliseconds.

London# show running-config

[…]

router isis

spf-interval 5 200 1000

[…]

SPF Calculation Diversity 261

Figure 10.12 shows the timing behaviour of the exponential back-off algorithm compared
to the JUNOS style, called a “3 � fast back-off” method. In IOS, the first SPF run is
delayed for 200 ms. Next, the minimum-hold-down timer kicks in, so scheduling of the
second SPF run will take at least 1000 ms as specified in the third argument of the spf-
interval configuration command. All subsequent SPF runs will get delayed for double
the previous hold-down time, 2 seconds for the third SPF run, 4 seconds for the fourth
SPF run, and so on. Similarly, the LSP origination interval, which was explained in
Chapter 6, “Generating, Flooding and Ageing LSPs”, also has a precaution that the hold-
down does not grow to infinite value. Clipping of the hold-down timer is done with the
first argument (5 seconds) of the spf-interval command. During every fast-build,
the SPF interval gets bigger until it hits the ceiling of 5 seconds. After a particular router
has not scheduled an SPF run for 20 seconds, the SPF hold-down state will be reset. This
means that from here on, any further SPF calculations will be scheduled “fast”, like the
first couple of SPF runs.

JUNOS takes a different approach. Instead of gradually getting slower, there is a fixed
number of fast runs, and after that the router falls back into slow scheduling mode. The
engineers at Juniper Networks argue that this linear form of back off has worked fine for
the past 10 years, and more sophisticated methods are not needed. In most implementations,
the static SPF hold-down period is set to 5 seconds and by straight switching between the
two modes, fast and slow, no harm is done.

JUNOS has an initial pre-SPF timer that defaults to 200 ms. It can be changed using
the spf-delay configuration command, which is available under the protocols
isis stanza. This command affects both the partial and the full SPF calculation and can
be changed in the range from 50 ms to 1000 ms.

JUNOS configuration
In JUNOS there is only one timer that controls SPF scheduling. The spf-interval con-
figuration command determines in units of milliseconds the initial-wait and inter-SPF wait
period when scheduling SPF calculations.

hannes@Vienna> show configuration

[…]

protocols {

isis {

spf-delay 100;

interface lo0.0;

interface so-0/0/0;

}

}

All other values are hard coded into JUNOS. The number of fast runs is 3 and the min-
imum pre-SPF timer can go as low as 50 ms. In the above configuration example, the
router has to wait 100 ms before an SPF calculation is scheduled, and 100 ms between
SPF calculations.

262 10. SPF and Route Calculation

263

20
00

40
00

60
00

80
00

10
00

0
12

00
0

0
27

00
0

50
00

m
s

ho
ld

 d
ow

n
(m

ax
 h

ol
d

do
w

n)

A
fte

r
20

s
fa

llb
ac

k
to

 fa
st

 b
eh

av
io

ur

IO
S

 e
xp

o
n

en
ti

al
 h

o
ld

-d
o

w
n

 b
eh

av
io

u
r

20
00

40
00

60
00

80
00

10
00

0
12

00
0

0
24

00
0

A
fte

r
20

s
fa

llb
ac

k
to

 fa
st

 b
eh

av
io

ur

JU
N

O
S

 (
3x

 s
h

o
rt

, a
ft

er
 t

h
at

 lo
n

g
)

h
o

ld
-d

o
w

n
 b

eh
av

io
u

r

F
irs

t
LS

P
rc

vd

S
ec

on
d

LS
P

rc
vd

F
irs

t
S

P
F

ru
n

S
ec

on
d

S
P

F
ru

n

T
hi

rd
LS

P
rc

vd T
hi

rd
S

P
F

ru
n

F
ou

rt
h

LS
P

rc
vd F
ou

rt
h

S
P

F
ru

n

10
00

m
s

ho
ld

 d
ow

n
20

00
m

s
ho

ld
 d

ow
n

40
00

m
s

ho
ld

 d
ow

n
t (

m
s)

t (
m

s)

F
irs

t
LS

P
rc

vd

S
ec

on
d

LS
P

rc
vd

T
hi

rd
LS

P
rc

vd

F
irs

t
S

P
F

ru
n

S
ec

on
d

S
P

F
ru

n

T
hi

rd
S

P
F

ru
n

10
00

m
s

ho
ld

 d
ow

n
10

00
m

s
ho

ld
 d

ow
n

10
00

m
s

ho
ld

 d
ow

n
50

00
m

s
ho

ld
 d

ow
n

(m
ax

 h
ol

d
do

w
n)

FI
G

U
R

E
10

.1
2.

IO
S

m
ak

es
 th

e
ho

ld
-d

ow
n

in
te

rv
al

 e
xp

on
en

tia
lly

 lo
ng

er
 –

 J
U

N
O

S
st

ar
ts

 w
ith

 th
re

e
sh

or
t a

nd
 a

ft
er

 th
at

 u
se

s
lo

ng
 h

ol
d-

do
w

n
in

te
rv

al
s

10.3.1.3 Timer Compatibility Issues

It is recommended to keep at least the initial-wait timer the same across the IOS and
JUNOS routers in a network. Once they are the same it is certain that the SPF calculations
start and finish almost simultaneously. Due to the hop-by-hop routing paradigm, near
simultaneous SPF calculations and re-routing is desired to avoid transient loops. However,
it can never be guaranteed that two routers converge at the same time, but keeping the
timers current is usually good enough, or at least does not break the desired global conver-
gence intentionally.

The following two IOS and JUNOS configuration files are a good tradeoff between the
two schemes and have proven to work well even in large multi-vendor networks.

JUNOS configuration
An SPF delay of 100 ms means that the SPF algorithm converges fast and still provides
reasonable protection. The typical SPF run in large networks does not last longer than
100 ms. This 100 ms of quiet takes the average utilization down to 50 per cent.

hannes@Vienna> show configuration

[…]

protocols {

isis {

spf-delay 100;

interface lo0.0;

interface so-0/0/0;

}

}

IOS configuration
The two 100 ms arguments make the initial-wait and minimum hold-down behaviour
exactly like JUNOS. The first argument specifies the maximum SPF hold-down value,
which is hard-coded in JUNOS as well.

London# show running-config

[…]

router isis

spf-interval 5 100 100

[…]

10.3.1.4 Performance and CPU Usage

The CPU cost of a plain, un-optimized SPF run is probably one of the most well-examined
algorithms in computer science. Before assessing worst-case figures, first consider two
factors: how many routers and how many links are in the network. Let the number of
routers be N and the number of links be L.

264 10. SPF and Route Calculation

SPF Calculation Diversity 265

It is actually very hard to predict the SPF runtime, as it is highly dependent on the
topology, that is, how the routers are meshed to each other. It has been shown above that
the tracking of nodes on the PATH list consumes the most cycles. So what is done is to
present a worst-case and an average-case scenario, considering the number of routers (N)
or the number of links (L). To find out what the real SPF runtime will be, and it will be
somewhere between the two figures, how densely meshed the network is has to be taken
into account.

For a router-based, worst case estimate, simply take a look at the number of routers
and the number of search operations, assuming that every router is in the worst case con-
nected to every other router (a full mesh). Therefore, for a total of N nodes, at maximum
N–1 iterations steps are needed for the search operation to find out if the actual path is
better than the TENTative path. This is quite intuitive. Mathematically speaking, the runtime
requirements of the SPF run equals N * N–1 or O(N^2). Squared growth is really, really
the worst case.

Exploring all the feasible path scales directly, along with the absolute number of links
it can be shown that the SPF computation time is proportional to the number of links in
the network. Mathematically speaking, O(L * log(L)).

For example, let the number of routers be 100 and the numbers of links be 400. Then
the worst-case estimate would be that O(N^2) CPU-time-units (100 * 100 � 10000) are
spent. The abstract unit “CPU-time units” is used because such observations only make
sense in a comparative way. If there is a given number of nodes and a given number of
links in a network, and the current SPF run time, a good estimate of the CPU runtime in
the future, when the number of routers and the number of links is higher, can be made.
The pure link-based observation results in a computational complexity of L * log(L),
which is 400 * (log(400)) � 1040 of CPU time-units.

So there is a factor of 10 deviation between the two estimates. In reality both the number
of links and the number of routers need to be considered. Both figures are needed for the
meshing factor, that is, how densely a given set of routers is meshed. It will be shown
shortly that the link-based model is a much better approximation than the worst-case
estimate.

The model where the total SPF runtime equals N (log(N)*2*log(L)) turns out to work
best in practice. In this formula, both the number of links and the number of nodes plus
a factor of two go into the formula. The factor of two is needed because the two-way
check is part of the path selection algorithm. Based on that formula, the resulting calcula-
tions come very close to reality. See Table 10.1 for the best model of route-processor
CPU prediction around today.

The theoretical model was verified using a lab test based on two common route
processors: the Juniper Networks RE 3.0 taken from the M & T-Series of Routers, and
the GRP Routing Engine taking from the Cisco GSR 12000 series. The two route processors
were exercised using the Agilent QA Robot Router Control-Plane Stress Testing Software.
The Router Tester produces a grid, as shown in Figure 10.13.

Every 25 seconds, one link of the virtual topology was changed and the SPF runtimes
have been recorded using the show isis spf-log operational level CLI command
on IOS and show isis spf log on JUNOS.

IOS command output
London#show isis spf-log

Level 1 SPF log

When Duration Nodes Count Last trigger LSP Triggers

04:17:46 0.021189 408 1 virtual-5-3.00-00 DELADJ

TLVCODE

04:15:46 0.021224 408 1 PERIODIC

04:00:46 0.021712 408 1 PERIODIC

03:45:46 0.021323 408 1 PERIODIC

[…]

JUNOS command output
hannes@Frankfurt> show isis spf log

IS-IS level 1 SPF log:

Start time Elapsed (secs) Count Reason

Sat Nov 1 15:04:34 0.017179 1 Periodic SPF

Sat Nov 1 15:19:03 0.017067 1 Periodic PF

Sat Nov 1 15:31:47 0.017081 1 Periodic SPF

Sat Nov 1 15:44:19 0.017334 1 Periodic SPF

[…]

Sat Nov 1 15:45:07 0.017365 1 Updated LSP

[…] virtual-5-3.00-00

Both outputs show the reason (trigger) and the duration of the SPF calculation.
The disparity between the theoretical prediction model and the simulation on the virtual

topology has been less than 3 per cent. Therefore, the model gives a good prediction of how
long the full SPF run will last in practice. The result of the simulation and the prediction

266 10. SPF and Route Calculation

TABLE 10.1. A prediction of real-world SPF runtime on common control plane CPUs.
Routers Links SPF runtime (ms) Juniper SPF runtime (ms) Cisco

Networks Routing Engine 3.0 Systems GRP 12000

100 250 1,92 4,80
200 500 4,97 12,42
400 1000 12,49 31,22
600 1500 21,18 52,94
800 2000 30,67 76,67
1000 2500 40,78 101,94
1500 3750 68,11 170,27
2000 5000 97,68 244,21
2500 6250 128,98 322,45
3000 7500 161,69 404,22
4000 10000 230,53 576,33
5000 12500 303,09 757,72
6000 15000 378,67 946,67
7000 17500 456,82 1142,04
8000 20000 537,19 1342,98
9000 22500 619,55 1548,86
10000 25000 703,67 1759,18

model are quite surprising. For even moderate to large topologies, the SPF calculation is
quickly finished after several tens of milliseconds. There are barely 30 IS-IS networks in
the world that have more than 400 routers and an SPF runtime greater than 50 ms
for their Level-2 routers. So for the majority of networks, SPF-runtime is an absolute
non-issue. It is certainly not the SPF runtime for the full SPF run that consumes a lot of
CPU resources.

10.3.2 Partial SPF Run
A partial SPF run only does recalculation leaf-related information. Partial runs are typically
triggered by the following events:

• Metric of prefixes change
• New prefixes
• Deletion of prefixes

The partial SPF run is basically an extraction of all the prefixes in the link-state data-
base plus some information about the proximity of the prefixes (in simple words, a

SPF Calculation Diversity 267

SUT

FIGURE 10.13. The SUT is exposed to a 7 � 7 virtual grid to test SPF calculation time

metric). Based on that, the partial run is basically a search operation, which tries to find
out the lowest metric for a given prefix. Figure 10.14 illustrates the simplicity of a partial
SPF calculation. All the leaf information from the routers on the PATH list, plus the
Pennsauken root router, extract their IPv4 prefixes and move them to a table. Next, the
list is sorted and duplicate entries with a worse cost are eliminated. Finally, the prefixes
are sorted by their cost in ascending order. This simple search operation is computationally
much less complex than the topological section of the full SPF run.

Both JUNOS and IOS support partial runs for IPv4 and IPv6. In IOS, you can also
control the SPF delay for partial route calculations (PRCs). PRC is an IOS term and can
be controlled using the prc-interval router isis configuration command. These
timers can be more aggressive (shorter) than the spf-interval <a> <c>
timers. This is because the burden that a partial SPF run adds to a control plane is not as
high as a full run, so the router does not need to self-protect so much. The following con-
figuration example sets the router pre-SPF timer (initial wait) before doing a partial SPF
calculation to 100 ms. For the second run, the router holds down for 250 ms. The PRC
also employs an exponential back-off timer. That means after the second run, the hold-
down value is now 500 ms. The first argument of the command controls the maximum
hold-down value of one second.

IOS configuration
In IOS there are three timers to control partial SPF hold down. The three timers work sim-
ilarly to the timers for the spf-interval configuration command.

London# show running-config

[…]

router isis

prc-interval 1 100 250

[…]

JUNOS does not have a dedicated control knob to control the PRC behaviour. In
JUNOS, there is just one hold-down logic path. For partial SPF runs, therefore, the same
hold-down logic applies as for full SPF runs. it is recommended setting the three IOS
parameters 5, 200 and 200 for compatiblity to the JUNOS default behaviour.

10.3.2.1 Performance and CPU Usage

Partial SPF runs are pretty cheap from the calculation point of view. A router has to scan
through all the routers in its link-state database, extract the prefix information, add the
prefix cost of the distance to the originating router, and sort the prefixes to find out which
is closest. This exhibits absolutely linear behaviour, meaning the CPU processing time is
directly proportional to the number of routes in the network. Mathematically speaking,
this would be O(R) with R being the number of prefixes of an address family. In practical
implementations, the cost of the partial SPF run nears zero cost. Typically, the partial run
is less than 10 ms execution time, even if R is unreasonably high (like 10,000) routes. So
partial runs are even less of an issue than full SPF runs.

268 10. SPF and Route Calculation

269

172.16.33.16/30

172.16.33.0/30

172.16.33.12/30

172.16.33.4/30

172.16.33.28/30

172.16.33.24/30

172.16.33.8/30

S
P

F
 R

es
u

lt
 li

st

vi
a

co
st

E
xt

ra
ct

ed
 IP

v4
 P

re
fi

x
lis

t

N
ew

 Y
or

k
26

00
0

W
as

hi
ng

to
n

48
00

0

F
ra

nk
fu

rt
29

80
00

Lo
nd

on

P
ar

is

31
50

00

38
50

00

D
es

ti
n

at
io

n
o

ri
g

in
co

st

P
en

ns
au

ke
n

-
0

19
2.

16
8.

0.
19

/3
2

17
2.

16
.3

3.
0/

30
17

2.
16

.3
3.

16
/3

0

19
2.

16
8.

0.
8/

32
17

2.
16

.3
3.

8/
30

17
2.

16
.3

3.
12

/3
0

17
2.

16
.3

3.
20

/3
0

17
2.

16
.3

3.
24

/3
0

19
2.

16
8.

0.
12

/3
2

17
2.

16
.3

3.
4/

30
17

2.
16

.3
3.

12
/3

0

S
o

rt
ed

 IP
v4

 p
re

fi
x

lis
t

D
es

ti
n

at
io

n
co

st
19

2.
16

8.
0.

17
/3

2
0

17
2.

16
.3

3.
0/

30
0

17
2.

16
.3

3.
4/

30
0

19
2.

16
8.

0.
19

/3
2

17
2.

16
.3

3.
16

/3
0

26
00

0

17
2.

16
.3

3.
8/

30
0

19
2.

16
8.

0.
21

/3
2

48
00

0
17

2.
16

.3
3.

20
/3

0
17

2.
16

.3
3.

28
/3

0
19

2.
16

8.
0.

8/
32

29
80

00
17

2.
16

.3
3.

24
/3

0
29

80
00

19
2.

16
8.

0.
12

/3
2

31
50

00
17

2.
16

.3
3.

12
/3

0
31

50
00

19
2.

16
8.

0.
22

/3
2

38
50

00
17

2.
16

.3
3.

24
/3

0
38

50
00

19
2.

16
8.

0.
17

/3
2

0
17

2.
16

.3
3.

0/
30

0
17

2.
16

.3
3.

4/
30

0
17

2.
16

.3
3.

8/
30

0

19
2.

16
8.

0.
21

/3
2

17
2.

16
.3

3.
16

/3
0

17
2.

16
.3

3.
20

/3
0

17
2.

16
.3

3.
28

/3
0

19
2.

16
8.

0.
22

/3
2

17
2.

16
.3

3.
24

/3
0

17
2.

16
.3

3.
28

/3
0

P
en

n
sa

u
ke

n

19
2.

16
8.

0.
17

N
ew

 Y
o

rk

19
2.

16
8.

0.
19

L
o

n
d

o
n

19
2.

16
8.

0.
12

W
as

h
in

g
to

n

19
2.

16
8.

0.
21

17
2.

16
.3

3.
20

/3
0

F
ra

n
kf

u
rt

19
2.

16
8.

0.
8

P
ar

is

19
2.

16
8.

0.
22

D
es

ti
n

at
io

n

N
ew

 Y
or

k

N
ew

 Y
or

k

N
ew

 Y
or

k

N
ew

 Y
or

k

Lo
nd

on

W
as

hi
ng

to
n

W
as

hi
ng

to
n

W
as

hi
ng

to
n

W
as

hi
ng

to
n

N
ew

 Y
or

k
N

ew
 Y

or
k

N
ew

 Y
or

k
P

ar
is

P
ar

is
P

ar
is

P
en

ns
au

ke
n

P
en

ns
au

ke
n

P
en

ns
au

ke
n

P
en

ns
au

ke
n

F
ra

nk
fu

rt
F

ra
nk

fu
rt

F
ra

nk
fu

rt
F

ra
nk

fu
rt

F
ra

nk
fu

rt
Lo

nd
on

Lo
nd

on
Lo

nd
on

48
00

0
48

00
0

48
00

0
48

00
0

26
00

0
26

00
0

26
00

0
38

50
00

38
50

00
38

50
00

29
80

00
29

80
00

29
80

00
29

80
00

29
80

00
31

50
00

31
50

00
31

50
00

P
ar

tia
l S

P
F

ca
lc

ul
at

io
n

o
ri

g
in

P
en

ns
au

ke
n

P
en

ns
au

ke
n

P
en

ns
au

ke
n

P
en

ns
au

ke
n

N
ew

 Y
or

k
N

ew
 Y

or
k

W
as

hi
ng

to
n

W
as

hi
ng

to
n

W
as

hi
ng

to
n

F
ra

nk
fu

rt
F

ra
nk

fu
rt

Lo
nd

on
Lo

nd
on

P
ar

is
P

ar
is

26
00

0

48
00

0
48

00
0

FI
G

U
R

E
10

.1
4.

A
 p

ar
tia

l r
ou

te
 c

al
cu

la
tio

n
(P

R
C

)
is

 b
as

ic
al

ly
 a

 s
im

pl
e,

co
m

pu
ta

tio
na

l c
he

ap
 s

or
t o

pe
ra

tio
n

10.3.3 Incremental SPF Run
The incremental SPF (iSPF) run is an optimized version of the full SPF run. What it does
is maintain additional data structures, so-called Neighbor and Parent lists, during previous
full SPF calculations. The paths that have not been used so far are of special interest.
Consider Figure 10.15, which shows the SPF tree from the SPF calculation example.
Note that the link between London and Frankfurt is not on the shortest path tree from

270 10. SPF and Route Calculation

Pennsauken

Paris

oc192/STM-64

26000

New York

oc768/STM-256

22000

Washington

oc12/STM-4

600000

oc192/STM-64

87000

250000

oc192/STM-64

Area 49.0001
Level 2-only

Frankfurt

oc768/STM-256

22000

London
oc48/STM-16

315000

oc48/STM-16

315000

FIGURE 10.15. Incremental SPF does not need to re-compute a SPF calculation if a link is not on
the shortest path tree

Pennsauken’s perspective. If the Pennsauken router receives a new LSP reporting that
this particular link is down, then Pennsauken does not need to schedule a full SPF run.
The reason is that because the router doing the SPF calculation has not used the link
before (when it was up), then it does not have to consider it when it is down.

Keep in mind that such considerations, whether to do a full SPF or an incremental SPF
run, is a purely local decision that applies only to the local router. For other routers in
the network, for example Frankfurt, the link between London and Frankfurt may be mean-
ingful, and therefore on Frankfurt’s shortest path tree. The iSPF advantage on the
Pennsauken router is meaningless to the Frankfurt router. The incremental SPF run only
spares the full SPF run on some of the routers in a given area but not to all of them.
Which routers benefit from incremental SPF is heavily dependent on topology.

Another optimization of the incremental SPF run is to track network dependencies.
Consider Figure 10.16, which shows a new router (Munich) attached as a leaf to the sample

SPF Calculation Diversity 271

87000600000

250000

22000 22000

oc48/STM-16

315000

31500026000

43000

GE

Pennsauken

oc192/STM-64 oc48/STM-16

LondonNew York

oc768/STM-256 Area 49.0001
Level 2-only

oc768/STM-256

Washington

oc192/STM-64

oc12/STM-4 oc192/STM-64

Frankfurt

Paris

Area 49.0001

Munich

FIGURE 10.16. Leaf routers also do not need to re-run SPF on all event that would trigger a full
SPF run

topology. The incremental SPF algorithm figures out that Munich is a leaf node and
dependent on the Frankfurt router. That knowledge is used in the SPF calculation. Recall
that once the immediate successors on the PATH list are explored, the algorithm knows
that Munich is (because of its edge position) an uninteresting node for path searches and
hence does not need to get explored.

Two scenarios where the iSPF algorithm may be applicable have been highlighted. It
is the authors’opinion that in the first scenario (Figure 10.15) the performance improvement
is next to nothing. This is due to the fact that, in a distributed environment, convergence is
bound to the worst-case performing router. It has been shown that not all routers take
equal advantage of the optimization, and some routers in the topology need a full SPF
run anyway. The second example (Figure 10.16) is far more interesting as it dramatically
reduces the number of nodes that need to get explored. Also the majority of the routers
in the network take advantage of this and so there is a real SPF performance improvement.

10.3.3.1 Performance and CPU Usage

There are little, but profound, things known about theoretical models of the incremental
SPF calculation. This is because there are lots of caveats and “it depends” in the underlying
algorithm. Incremental SPF only makes sense if the underlying topology is sparsely
meshed and has many edge nodes. Identification and path tracking turned out to have one
of the highest overheads in the full SPF run.

Stefano Previdi, a Development Engineer at Cisco Systems who maintains their IS-IS
routing protocol, claims that the average saving is 80 per cent from early field trials. The
first practical examination was conducted by Cengiz Alaettinoglu and Stephen Casner of
Packetdesign, who monitored the QWEST backbone in the US and analyzed full and
incremental SPF runtimes. The results are illustrated in Figure 10.17.

It will be shown shortly that this is the misguided reason that people are afraid of frequent
SPF runs. It is the post-processing of route resolving and prefix insertion, and not the SPF
calculation itself, which makes the control planes of the core routers in the Internet busy.

272 10. SPF and Route Calculation

10000

1000

100

10

1
0 10 20 30 40 50 60 70 80 90 100

Percentage of SPF runs

avg = 13 usec

Dijkstra SPF
Incremental SPF

avg = 1069 usec

FIGURE 10.17. Incremental SPF performs by a factor of 80 better than the full (Dijkstra) SPF based
on the QWEST topology

The result of the SPF calculation is fed into the route resolution process. The route
resolver checks to see if routes from other routing protocols have been affected by the
result of the SPF calculation.

10.4 Route Resolution

Pure reachability protocols like BGP rely on a working IGP like IS-IS to map the
Reachability information, such as customer and Internet routes, to a topology in order to
properly calculate the path cost. After every SPF recalculation, the route resolver needs to
track dependent routes and update their forwarding next-hops accordingly. Finally, the
changed prefixes are downloaded to the line cards and ASICs. In the past there has been lit-
tle attention to the nature and performance implications of tracking the dependent routes.

However, in an Internet environment with full routing tables, it turns out to be that
finding out who is dependent and who is not is one of the most dominating factors in the
total route-recalculation period.

10.4.1 BGP Recursion and Route Dependency
Routing protocols like BGP are somehow agnostic to the underlying topology and need
an IGP that provides two services:

1. Connectivity between the internal loopback IP addresses of all the routers in an AS so
that the BGP speakers can bootstrap their iBGP mesh

2. Topology awareness to calculate the IGP distance to a BGP speaker

Internal BGP neighbours are typically not directly connected, so a router cannot simply
inherit the neighbour address from the routing update sender as other distance vector proto-
cols (RIP and EIGRP) would do. Even if the neighbour is directly connected, the router still
cannot inherit that information because it does not know if the neighbour is a BGP Route
Reflector or not. The good news is that there is information contained in the BGP message
that points to the IP address where the route originated. This field is called the next-hop and
is a mandatory BGP attribute that points to the correct forwarding router. In the tcpdump
output below, a BGP Update message containing a next-hop attribute is shown.

Tcpdump Output
The BGP Next-hop attribute carries an IP address that the IGP needs to resolve.
08:28:27.945234 IP 192.168.0.19.179 > 192.168.0.21.28161: BGP, length: 77

Update Message (2), length: 77

Origin (1), length: 1, Flags [T]: IGP

AS Path (2), length: 14, Flags [T]: 3320 4711 12788 24896

Next-hop (3), length: 4, Flags [T]: 192.168.0.8

Local Preference (5), length: 4, Flags [T]: 100

Community (8), length: 12, Flags [OT]: 5511:500, 5511:516, 5511:999

Updated routes:

81.21.0.0/20

Route Resolution 273

After receiving the BGP update the router needs to look up 192.168.0.8 in the SPF
result database and find the local forwarding next-hop. The BGP route 81.21/20 is now
dependent on the IS-IS route pointing to 192.168.0.8. Whenever the IS-IS topology is
recalculated, the router needs to check all dependent routes and find out if there is a better
way to reach the BGP speaker.

A given route may arrive at a BGP router via many diverse paths. Certain rules in the
BGP route selection process depend on the IGP calculated route.

10.4.2 BGP Route Selection
BGP performs tie-breaking to find the best path according to the following list:

1. Is the BGP next-hop reachable?
2. Prefer the highest Local Preference value
3. Prefer the shortest AS Path length
4. Prefer the lowest Origin value
5. Prefer the lowest MED value
6. Prefer routes learned via EBGP over routes learned via iBGP
7. Prefer routes with the lowest IGP metric
8. Prefer routes from the peer with the lowest RID
9. Prefer routes from the peer with the lowest peer ID

At the very top of the tie-breaking list, BGP is heavily dependent on IS-IS. BGP needs
to validate its BGP next-hop and check if it is reachable before further comparing the
route. The BGP next-hop is a mandatory BGP attribute that points to the correct forwarding
router. In Rule #7, the BGP route again is dependent on IS-IS. This time the lower IGP met-
ric provides BGP with some insight on how close a BGP speaker is. Consider Figure 10.18
for an example. Router Pennsauken has learned the prefix 81.21/20 from London, New
York and Paris. After applying the BGP tie-breaking process, it turns out that the route
from New York is best, due to a lower (better) IGP metric.

There are different ways of implementing route-recursion inside the router – the most
common ones are to store backtracking pointers. Whenever a BGP route is resolved
through an IS-IS route, the router stores a pointer from the IS-IS routes to the dependent
BGP routes. If a change is needed to an IS-IS route, simply revisit the stored prefixes and
look to see if the old IS-IS route is still the best route. The router does that by checking
if the BGP next-hop is still on the shortest path. If it is – fine, then simply stop there (do
not attempt to change forwarding state). If it is not, and there has been a path change
(which could be a path becoming better or a path getting worse), then re-run the recursion
for the prefixes stored in the backtrack-list. The router has to re-check to see if there are
better paths pointing to the BGP next-hop. In a worst case, this means that 100 K prefixes
need to re-run through the entire BGP tie-breaking process, which can be quite expensive
in terms of computational cost (CPU load).

10.4.2.1 Performance and CPU Usage

Both JUNOS and IOS do a proper BGP recursion check, but implemented differently.
The difference is in the way the BGP code is written and its performance implications.

274 10. SPF and Route Calculation

In IOS the BGP code is job-based. That means whenever there is a change to a BGP
learned prefix only a flag in the data-structure of the prefix is set or cleared. Then there
is a job that scans the BGP table for changed entries (called the BGP walker). Why is this
information relevant for a book about IS-IS? It means that even if IS-IS has detected that
a link has been broken, and must perform all the relevant actions (flooding, scheduling of
an SPF full run etc.), it takes in the worst case the BGP walker duration in IOS (50 sec-
onds) until the Cisco router starts to change prefixes, update forwarding states, and so on.
So the implementation style of the BGP implementation dictates the convergence behaviour
of the BGP routes. Perhaps this is not the best design choice. In all fairness, the first
implementation of BGP in IOS was coded at a time when the Internet consisted of not
even 1000 routes. So it is probably not bad design, but a legacy effect.

In contrast, JUNOS routing software is event-driven. That means that whenever a sub-
system in the router notices that something has gone wrong, or is up again, that change
is propagated throughout the system immediately and without any delay. Immediately
after the SPF run, JUNOS does BGP recursion.

Both implementations result in a list of prefixes that need to change in the main routing
table. After that, the router updates the forwarding state in the forwarding plane. Updating
the forwarding plane is the most daunting task of all because it makes both the forwarding
and control plane CPUs really busy. The reason this keeps both CPUs busy is the sheer
amount of data and table sizes that has to be pumped through a router’s chassis. Currently

Route Resolution 275

Area 49.0001
Level 2-only

oc192/STM-64

87000

oc12/STM-4

600000

oc192/STM-64

250000

oc768/STM-256

22000

oc768/STM-256

22000

oc48/STM-16

315000

oc48/STM-16

315000

oc192/STM-64

26000

Origin: IGP
AS Path: 5511 2874 12788 24896
Next-hop: 192.168.0.12
Local preference: 100

81.21.0.0/20
Origin: IGP
AS Path: 701 702 12788 24896
Next-hop: 192.168.0.19
Local preference: 100

81.21.0.0/20

Origin: IGP
AS Path: 3320 8847 12788 24896
Next-hop: 192.168.0.8
Local preference: 100
Community: 3320:4711

81.21.0.0/20

LondonNew york

Pennsauken

New York

Paris

Community: 5511:500, 5511:516, 5511:999

Washington Frankfurt

London

FIGURE 10.18. The transit route 81.21/20 via Pennsauken wins the BGP tie-breaking process

a full routing table of all Internet routes consumes about 120–200 MB of memory. A full
forwarding table consumes about 2 MB of memory on each line-card in the router. So
crunching at least 100 MB of BGP tables and generating N*2 MB sized forwarding tables
is the main reason the router is busy.

The next section covers legacy and state-of-the-art methods of forwarding state change
operations that can make the prefix insertion process scale better.

10.5 Prefix Insertion

In the age when the Internet was a network of only 1000 prefixes, no one had to worry
about efficiency in changing forwarding state. Figure 10.19 shows an old-style implementa-
tion of a forwarding table structure.

10.5.1 Flat Forwarding Table
There are two tables in the figure. The first table holds all the prefixes of the main routing
table. The second table holds all the forwarding next-hops of the router. A forwarding
next-hop is a local interface plus Layer-2 data like encapsulation method, MAC addresses
etc. As a result of the route calculation, the entries in the prefixes list are all pointing to
the forwarding next-hops. To put the two tables into perspective: based on today’s Internet
routing tables, 100,000s of prefixes point to only 10s of forwarding next-hops.

It is exactly that many-to-few mapping that causes problems. Consider the sample
topology shown in Figure 10.20 where each router is a public BGP speaker and injects
BGP routes into the network. Each of the six routers carries a full BGP load, and after the
BGP tie-breaking process the routers figure out which are the best routes. The figures in
the box indicate how many active routes each router carries.

For simplicity, look at the Frankfurt routing and forwarding table only. The forwarding
table looks very simple: all 120.000 prefixes map to one of three possible next-hops,
which are the SONET/SDH links to London, Paris or Pennsauken. Now, assume the link
between Washington and Frankfurt breaks. Both Washington and Frankfurt will quickly
detect that one of their SONET/SDH interfaces is down. Next, both routers will originate

276 10. SPF and Route Calculation

Forwarding engine

81.21.0.0/20 so-7/3/0.0

100000s of Prefixes
10s of forwarding

Next-hops

FIGURE 10.19. In a flat forwarding table a prefix points directly to a forwarding next-hop

a new LSP declaring the adjacency down. Because of the default values of the SPF hold-
down timers in the network, the SPF run will be scheduled after 100 ms. As the number
of nodes and links is low, in less than one millisecond the results will be available. Now
the scary part begins: the recursion and change of forwarding state in the forwarding
plane. The routing tables are traversed in 1–2 seconds and the control plane realizes that
it has to change 40,000 prefixes. The route processor computes new forwarding tables
and loads them down to the line-cards. Because of the fact that the router has to update

Prefix Insertion 277

Area 49.0001
Level 2-only

LondonNew York

BGP

13K active
routes

Pennsauken

Frankfurt

London

Washington

New York

Paris

BGP

40K active
routes

BGP

18K active
routes

BGP

17K active
routes

BGP

22K active
routes

BGP

10K active
routes

FIGURE 10.20. Each router in the sample topology is a BGP router and carries several thousand
active paths

40 K prefixes, the total convergence time until the last prefix is updated takes about
40 seconds (if not minutes) depending on the router hardware. Updating forwarding
tables under load is hard and quite expensive to achieve.

10.5.2 Hierarchical Forwarding Table
The alternate solution does not map the prefixes directly to the forwarding next-hops.
There is instead the notion of an indirect next-hop. An indirect Next-hop is the originator
of a prefix that is not directly connected to the router. It is a different way of modelling
the dependency from BGP routes to IS-IS routes at a forwarding table level. Consider the
sample network again, where there are six BGP speakers. Therefore the number of indirect
next-hops equals six. Figure 10.21 shows how the forwarding table is implemented. The
120,000 prefixes do not point to the forwarding next-hop directly anymore, but rather to
their corresponding indirect next-hops. The indirect next-hops finally point to the forward-
ing next-hop. This is the key point: 120.000 interfaces point to six indirect next-hops,
which point to only three physical interfaces. What is gained from that, except another
memory lookup in the forwarding path to find out the indirect next-hop? Actually, a lot
is gained once it comes down to changing the fowarding state. Look at the previous
example where the link between Washington and Frankfurt fails and assume the forwarding
table is structured as in Figure 10.21. After LSP propagation, a full SPF run, and BGP
recursion some BGP speakers (most notably Washington) are found to have a different
path. Previously the link outage traffic to Washington has been routed straight, but now
it is re-routed via Paris. The good news is that now at least 40.000 pointers that point
from the prefixes to the forwarding next-hops do not have to be changed. The only thing
that the router needs to do is flip one pointer!

The hierarchical scheme does trade some forwarding lookup latency (less than 1
microsecond) against maintainability and convergence of the forwarding tables. However,
given that there are multiservice networks deployed today transporting all kinds of traffic,
convergence considerations are always important and need to be considered.

There is one case when the abstraction of indirect next-hops to next-hops does not
help, which is the case when an indirect next-hop (a BGP speaker) goes down. Then BGP
needs to find out during the recursion run which BGP routes have to change their next-

278 10. SPF and Route Calculation

Forwarding engine

81.21.0.0/20 192.168.0.8 so-7/3/0.0

100s of BGP Next-hops100000s of Prefixes 10s of forwarding
Next-hops

FIGURE 10.21. In a hierarchical forwarding table a prefix points first to an indirect next-hop, which
maps finally to a forwarding next-hop

hop information and reassign these prefixes to other indirect next-hops. Ultimately this
will result in a massive amount of forwarding state changes at the forwarding plane. The
speed of the raw forwarding table changes at about 5000–6000 prefixes per second. A
common design practice is (if possible) to balance the number of active BGP paths
evenly across a network by incorporating a good and solid peering mesh with other ASs.
Reducing the number of active routes per-AS makes sure that if an indirect next-hop
(BGP speaker) goes down, the re-routing is done within several seconds.

10.6 Conclusion

The CPU impact of the SPF algorithm really has been “demonized” in the past. Fears that
an SPF calculation may lock up a router entirely are not justified today. Modern control
plane processors have sufficient CPU power to recalculate even large topologies in the
sub-second range, so the bare SPF algorithm itself is not the problem anymore. The associ-
ated BGP recursion check can be completed in sub-second range as well. What persists
as a challenge is the final stage of the post-processing cycle of the SPF results. Forwarding
table maintenance in modern routers can fully engage the CPUs for several seconds,
much more than SPF ever could do. This challenge can be tackled from two sides: on the
vendor side, by applying clever implementation techniques like indirect Next-hops in the
forwarding path and, on the service provider side, by doing a proper network design.
With proper balancing of active BGP paths evenly across the network, a network carrying
even 120,000 routes converges in a both fast and stable manner.

Conclusion 279

11

TLVs and Sub-TLVs

Charles Darwin’s classic theory of evolution and its basic mechanism of natural selection
through mutation can be re-applied to technology and the Internet. As the environment
changes, entities within the environment must change as well or become extinct. Indeed,
the relationship between the evolution of living creatures and the evolution of Internet
technology is impressive. Each age of technology builds upon the discoveries of the pre-
vious age resulting in a constant change, which also helps humankind to adapt to or cope
with their technological environment. Experience from the last decade of networking has
shown that Darwin’s Law is just as present and active in networking as anywhere else in
life. When Darwin is translated to the routing protocols environment this means that not
the strongest, most lightweight or most optimal routing protocol, algorithm and imple-
mentation at a fixed, given time will prevail in the end. The routing protocol that wins the
technology prize for survival of the fittest will be the one that adapts best to its changing
Internet environment and can add features mandated by passing time. Based on the his-
torical development of the OSPF routing protocol, it will be shown why Darwin’s Law is
valid in the technology environment.

11.1 Taxonomy for Extensibility

First of all, the term extensibility as used in this chapter will be defined in more detail.
In any discussion of extensibility, there are three things that need to be considered:

• How do current software maturation models work?
• What are the ramifications if a routing protocol is barely or not extensible at all?
• What does it mean when a routing protocol is called extensible?

Software quality assurance is still a young topic in computer science. This is especially
true for the additional complexity of distributed systems, where one failing node may
impact others, no really clueful model has been found. Best common practice to ensure
software quality is hardening by deploying. This essentially means that if software is
deployed frequently, all the inherent bugs will finally go away after a maturation cycle. In
the next paragraph, a typical software maturation cycle is described.

11.1.1 Current Software Maturation Models
The most common software maturation model applicable in the last decade is briefly
described in Figure 11.1 and explained as follows:

1. Develop the base (alpha) code. This is the first engineering cut at the program and will
not be released publicly. This software is tested at the router vendor’s internal test bed.

281

Once bugs are discovered they will be fixed. Typically the alpha code testing efforts
are accomplished in a few days or at most a couple of weeks.

2. Bring the code into a closed environment and test functionality. This is often called the
“beta” program. The beta code is usually released to friendly customers. The goal of
the beta program is to get input from the various customers’ testing labs. Each of these
testing labs will focus their testing efforts of the feature or feature of most interest to
the particular customer. The customer will test the beta to see if the features of interest
are correctly supported, and working properly.

3. Gather problem and bug reports, then apply fixes. This is the feedback phase of the
beta program. Typically lots of bugs are filed and fixed in this phase. Generally, the
more bugs found at this stage, the more stable the release will be later. The customers
will get the fixes to test against their respective network environment before the code
is released.

4. Release the code to deploy it on a larger scale. Although closed environment testing
is fine, and it is always a good idea to do some base-line testing, there is no better test
than to expose the code to the real world. Here for the first time a routing protocol
leaves the safety of the pool and is hit by the crashing waves of the Internet. Now there
are things like constant BGP updates, flapping links causing IGPs to recalculate their
SPF graph every couple of seconds, and many other events all putting stress on both
router hardware and software. This is the phase where new, undocumented problems
are found, and often actions that are nowhere mentioned in any specification. These
new and unexpected issues sometimes lead to entire software projects being dismissed
because of the problems that no one was aware of during the writing of the internal
design specifications.

5. Gather problem and bug reports, apply fixes. Not all problems are discovered on Day
One of an ongoing deployment – Murphy’s Law is also, and especially, valid in the

282 11. TLVs and Sub-TLVs

1. Develop base (alpha) code

2. Bring it into a closed environment to test
 functionality (beta program)

3. Gather problem and bug reports, apply fixes

4. Release the code, deploy it on a larger scale

5. Gather problem and bug reports, apply fixes

6. Repeat steps 4–5 several times

Maturity loop

1 2 3 4 5

6

FIGURE 11.1. The maturity cycle of IP routing protocol software

networking environment. Typically, more problems are discovered when the last few
routers in a customer’s network are updated with the new software. If there is improp-
erly functioning software in the customer’s live network, then it is the router vendor’s
responsibility to provide fast, “hot” fixes for the problems being discovered. This is a
scary phase for the ISP, because sometimes the hot fix has not been subjected to the
full internal test bed, mostly because of urgency to bring the fix into the field. A full
regression test of routing software can last from a few days to many weeks, depending
on the complexity of the overall software architecture.

6. Repeat steps 4 and 5 (deploy and fix) several times. This is probably the most important
phase of all. Because this software development activity concerns the Internet, an ever
expanding and growing thing, there is no such thing as software that is working and
complete at the same time. It might be that during the software life cycle the Internet
as a whole or the ISP’s network is hitting a new scaling barrier for the routing software.
This is the development phase that one large router vendor refers to as the “Internet
classroom” where both ISPs and router vendors have to learn every day about the
changing environment. But this results in a feedback loop of constant improvement
through extensibility.

The full deployment and fixing steps in the process and the repeated iteration of these
key deploy and fix steps are increasingly important for the overall quality and maturity of
the routing protocol software. Even if this software maturation model sounds expensive
at first for the customers, who are asked to deploy software that is admittedly incomplete,
there is really no other way to complete the process. Some customer agents buying soft-
ware and hardware from the router vendors might ask if the software should or could be
tested better and more rigorously before going into general release for customer use. This
is a valid point. But experience has shown that even the most rigorous of testing environ-
ments cannot detect all bugs or lack of needed functions in a routing protocol. Now, for
the first public release after the beta-program, enough experience and testing should have
been done to avoid a large percentage of “severe” bugs, which are bugs that cause the
failure of the routing protocol and/or router. But less severe bugs, or feature shortcomings
in the routing protocol, often only reveal themselves during extensive and large-scale
operations in the Internet environment.

What the deploy-and-fix steps really boil down to is the repeated application of the fol-
lowing related steps:

• Deploying routing software
• Getting further experience (sometimes based on a slightly changed environment), and
• Improving routing software

These steps are very important for the maturity – and continued survival – of the proto-
cols. Ideally, routing protocols should be almost like good wine – the older, the better.

11.1.2 Ramifications of Non-extensible Routing Protocols
The allowance for constant improvement of the routing protocol through added features
and bug fixes forms the essence of the extensible routing protocol. How do non-extensible

Taxonomy for Extensibility 283

routing protocols negatively impact the maturity cycle of routing protocol software?
A routing protocol becomes stable after spending enough cycles in the maturity (deploy-
and-fix) loop. So what happens if this maturity cycle is disrupted by (for example) the need
to add new features to the protocol? It is clear that there will always be enhancements, new
capabilities and features requested by customers dictating innovation by voting with their
dollars. No router vendor (or any type of company, for that matter) can withstand customer-
originated pressure and refuse to add needed and desirable functionality to an already stable
protocol. Ironically, one of the toughest challenges for the router vendors is to strike a bal-
ance between the customers desiring rock-solid, stable routing protocols and the customers
at the edge of the technology pushing for innovation. So the question turns into “How do I
introduce new functionality without harming the existing code base?” It is important to real-
ize what the last part of this question states – due to the prevailing software development
model, vendors do not want to disrupt the maturity cycle by creating something radically
different, and so incompatible, with the existing routing protocol. It turns out that this
desired property (extensible, but not harmful) is solely dependent on the routing protocol’s
architecture. This architecture determines how easy it is (or is not) for the developer to incor-
porate new features into the routing protocol. First of all it is hard to extend a protocol whose
architecture was never prepared for extension. The ramification of this uphill battle will be
additional demand for time and resources for bringing the protocol to a mature state, which
may delay new enhancements to your network. Competitively speaking, it may be that a
competitor is already provisioning services while other vendors are still testing in the labs to
verify the protocol and the accompanying new features are prime-time ready.

11.1.3 What Does it Mean When a Routing Protocol
Is Called Extensible?

How can anyone tell if a routing protocol is really extensible or not? There are two places
to look at in order to determine if a routing protocol is friendly to the developer (that is,
ready for extensions). The two places are:

• Hellos and Capability Announcement messages
• NLRI (Network Layer Reachability Information) messages

11.1.3.1 Hellos and Capability Announcement Messages

Hellos are the packets that are regularly exchanged between routers to determine if there
is basic connectivity between the routers. Since these types of packets are common and
exchanged whenever adjacencies are established between routers, Hello packets are also
a good place to indicate new capabilities in the routing protocol. These capabilities might
include, but are not limited to, things such as:

• Support for additional networking protocols beside IPv4 (for example, IPv6, CNLP,
IPX, and so on).

• Changes and modifications to the protocol interaction (for example, the basic hand-
shake procedures for the protocol).

• Changes and modifications to the topological understanding of the routing protocol (for
example, support for multiple topologies and link types, more than one area, and so on).

284 11. TLVs and Sub-TLVs

• Changes and modifications to the basic timers such as establishing a different baseline
for the timers. Think of an extension to the routing protocol that allows for sub-second
convergence and requires other routers to re-interpret their own timers, sometimes in
violation of the original specification. For instance, a router wanting to indicate that
the dead-timer value of 300 should not be interpreted in units of seconds (300 seconds),
but should be now interpreted as a 300-millisecond dead-timer.

• Changes to the authentication scheme used on the link (for example, public-key authen-
tication used instead of a simple password).

• Non-stop forwarding (also known as graceful restart) behaviour that allows neigh-
bouring node to still forward traffic through a router with a failing control plane, as
described in draft-ietf-isis-restart-05.

11.1.3.2 NLRIs

NLRI (Network Layer Reachability Information) is a term borrowed from BGP and used
with IGPs like ISIS and OSPF. But the idea of an NLRI can be used for virtually any net-
working and routing protocol that has to pass on OSI-RM Layer 3 (L3) network prefixes
(routes). The NLRI is basically a per-Layer3 protocol envelope for passing on reachability
information (“if you have any packets for the IP addresses that follow, you can send them
here. I know how to reach them.”). Keeping the eventual need to transition to IPv6 in mind,
any protocol should support multiprotocol extensions to a degree that one can convey both
IPv4 and IPv6 NLRIs concurrently. The concept of a per-protocol container is needed
because, virtually every network layer protocol has different L3 address formats and rules that
routers follow to parse them. For instance, the bit string 192.168.1/24 could and does mean
something totally different in IPv4 than in IPv6. So each prefix has to be packaged in a dedi-
cated envelope telling the other routers what network layer protocol the prefix is targeted for.

It would be nice if Hellos and NLRIs formed two completely independent mechanisms
of extensibility. Unfortunately, Hellos and NLRIs are related to each other. For example,
if a node sends IPv6 reachability information inside an IPv6 NLRI to another router, the
receiving router has to have a way of finding out ahead of time which of its neighbours
can forward IPv6 in order to route the traffic closer to the destination. So a single look to
see if a routing protocol supports a different NLRI type is only half the story. This makes
it clear that a truly extensible routing protocol must easily accommodate both new cap-
abilities in its Hello Messages as well as support for different NLRIs during route prefix
update exchanges to facilitate extensions.

Two routing protocols often cited as models of extensibility and for their ease of
adding new features while remaining stable are OSPF and IS-IS. The rest of this chapter
is an analysis of how OSPF and then IS-IS achieve their extensibility.

11.2 Analysis of OSPF Extensibility

The analysis in this section is based on RFC 2328 “OSPF Version 2” Appendix A “OSPF
Data Formats”, and also RFC 2370 The OSPF Opaque LSA Option.

What this section basically does is try to pose some hypothetical questions of the routing
protocol. For instance, we could ask, “in what parts or fields of the routing protocol could

Analysis of OSPF Extensibility 285

OSPF extensions be placed?” Now, no one really would do this in real life. This procedure
is just an exercise for the sake of finding out if a protocol is truly extensible or not. If
there is no place to put extensions, then the routing protocol is just not extensible, no
matter what the standard might say in this regard.

Figure 11.2 shows a generic OSPF header and an OSPF Hello in detail. One feature
of the OSPF routing protocol is immediately obvious just by glancing at the figure. The
OSPF routing protocol has a frame structure aligned to 32-bit (4 bytes) boundaries. Today,
32-bit alignment is merely a legacy from the times when CPU processing power was
small and realigning a byte stream would have had a serious CPU impact. This optimiza-
tion effort is considered to be a non-issue in modern networks. For CPU architectures that
store 32-Bit integers in non-network order format (like for example the Intel x86
Architecture) this optimization is even more irrelevant because for network order to host
order conversion the stream is read in 8-bit quantities anyway). The generic OSPF header
as well as the OSPF Hello header has some occurrences of IPv4 addresses without explicit
fields establishing that these addresses are in the IPv4 format. This is a bad thing, because
it means that OSPF cannot send Hellos for any other address family such as IPv6. How
would the parser in the receiving router know what’s inside a field like the Designated
Router field without implicitly expecting an IPv4 address? What if inside the address field
is an IPv6 address, or even something else? Simply put, current OSPF extension mech-
anisms cannot be extended in that way to indicate multiple address families in the header.

286 11. TLVs and Sub-TLVs

Neighbour List

Version

Router ID

Area

Hello Interval

2

Bytes

2

4

4

2

2

8

4

2

Checksum

Authentication Data

Network Mask

Options

1

4

Priority

Dead Interval

Packet Length

Type

Authentication Type

1

1

1

1

Designated Router

Backup Designated Router

4

4

N * 4

Bit
0
1
2
3
4
5
6
7

Option Bit Name
Reserved
Opaque
Demand Circuit
External Attributes
NSSA support
Multicast Support
External
Type of Service Support

Options

FIGURE 11.2. The OSPF Hello packet has no provisions for optional fields and the 8-bit options
field is almost fully populated

But what about using fields after the Hello message? There is plenty of room in an IP
packet (65,515 bytes for the IPMAX size field in the IP packet header. A good idea, but it
won’t work. The last field in the Hello message is the Neighbour List. The Neighbour List
is an implementation of a 3-way handshake protocol. Consider when Router A and Router B
first communicate. In the Hellos exchange, the Neighbour List basically lists routers,
including Router A, by IP address in Router B’s Hellos in order to indicate that there is
bi-directional connectivity between Router A and Router B. However, the Neighbour
List lacks a Length indicator field. How does the receiver then know where the “Neighbour
List” ends? Recall that the software parsing the Hello knows the length of the entire
OSPF packet. Knowing this, the router simply subtracts the OSPF generic header plus
the OSPF Hello, which are in total 44 bytes. The result divided by four (each entry in the
Neighbour-ID list is a 32-bit IPv4 address) and so reveals the number of neighbours that
this specific router has “seen”.

From a purely bit-field perspective the OSPF Hello is not extensible at all. This is because
neither re-interpretation of existing fields nor attaching new fields at the end of the frame
works to extend OSPF to other address families without breaking the base OSPF proto-
col. If such a multi-family feature were added to OSPF, the result would be incompatible
with older versions of OSPF.

Right from it first version, OSPF included an 8-bit field called the “Options Field”,
which can be seen in Figure 11.2. Throughout the last decade, the Options field has been
utilized for several extensions to OSPF. These extensions include:

• O – The router supports the Opaque LSA Types 9,10,11 which are mainly used for
Traffic Engineering applications

• DC – Demand circuits (circuits that are not up all the time, such as dial-ups)
• EA – External LSA (deprecated, this option must no longer be used)
• N/P – NSSA support (allows external routes in a stub area)
• MC – Multicast OSPF (using OSPF to distribute multicast routing information)
• E – Indicating ASBRs (routers redistributing routes from another routing source such

as RIP)
• T – TOS (type of service) routing support

As shown in Figure 11.2, the Options field has only three unused (Reserved) bits left.
So there is not-much room to extend the protocol in a backward-compatible way. The
option negotiating mechanism in OSPF is solved quite nicely because a router receiving
Hellos and not having certain capabilities replies in its own Hellos with the Options field
bits that are not supported cleared.

In the common OSPF frame there are fields indicating the Version and the Packet-
Type. In Figure 11.2, the Packet-Type for the Hello is set to 1 (Hello Packet-Type) and
the Version field is set to 2 indicating OSPF protocol version 2.

Mention has just been made of the OSPF Packet-Type field. A value of 1 indicates an
OSPF Hello packet. In the base specification OSPF supports five different packet types:

1. Hello
2. Database description
3. Link-state request

Analysis of OSPF Extensibility 287

4. Link-state update
5. Link-state acknowledgment

Database description, link-state update, and link-state acknowledgment are purely for
synchronizing the link-state databases on demand. The element carrying network layer
reachability information, the main source of detailed link state information, is the link-
state update packet. If OSPF wants to announce IP prefixes and their related metrics,
the vehicle to get this information across to other OSPF routers is the link-state update
packets (LSAs).

The next step in exploring the extensibility of OSPF is to make sure the link-state update
packet can be extended. Figure 11.3 shows that there is a field called Link-State Type.
Simply adding new Link-State Types can extend OSPF. It is not necessary to go deeper
into what link-state types exist today and what the various packet formats look like to
understand that this is how OSPF can be extended for new features and functions. This
information is available from a number of sources. After all, this is a book about IS-IS
and not a book about OSPF.

288 11. TLVs and Sub-TLVs

Version

Router ID

Area

LSA age

2

Bytes

2

4

4

2

2

8

4

2

Checksum

Authentication Data

LSA Count

Options

1

4

LSA Type

Link State ID

Packet Length

Type

Authentication Type

1

1

1

4

Advertising Router

Sequence Number

4

4

Checksum

Length

2

2

FIGURE 11.3. The LSA type field would be a possibility for extending OSPF

Consider extending OSPF by adding a new, hypothetical LSA type. The number could
be anything not currently used or defined – LSA type 53, for example. Now, what if a router
running older OSPF software does not recognize the new, hypothetical LSA type 53?
Should the router flood the LSA further across the network or should the router simply
discard the update? To explain what OSPF does with extensions that the router does not
understand, it is necessary to borrow a term from BGP terminology. The term is called
transitivity. Certain BGP attributes are transitive as the attributes flow from BGP router
to BGP router. But the term can be applied to protocols other than BGP. Transitivity means
that if a router cannot interpret a given message, the router will flood the message further
across the network anyway. Non-transitive behaviour means that a router does not for-
ward an LSA that the router cannot interpret in terms of the LSA payload.

OSPF is a strictly non-transitive protocol. OSPF routers will not flood LSA types that
the routers themselves do not understand. The ramifications of that are a bit depressing.
Non-transitive OSPF behaviour means that a new feature cannot be rolled out unless all
OSPF routers in a given link-state domain are updated with the new software. Given the
fact that the role of the IGP is changing from the narrow role of distributing NLRI infor-
mation towards a wider role with regard to a topology discovery function, it might be
necessary for new OSPF features of increasing interest to use the flooding sub-system of
OSPF for distributing network-wide information. And this information must be spread
all over the network, information that not each OSPF speaker must necessarily see.
I won’t flood because I do not understand behaviour is not migration-friendly, and there-
fore causes a lot of headache for preparing migrations.

Fortunately, the issue of OSPF transitivity has been addressed. RFC 2370, The OSPF
Opaque LSA Option, describes an enhancement to base OSPF. A set of opaque LSAs is
defined in this RFC that correct the problem with OSPF being non-transitive. Instead of
using the BGP terminology of transitive, OSPF uses the concept of an LSA that is visible
(and understandable) to some OSPF routes and yet not visible to all OSPF routers. The
new LSAs are not transparent to all OSPF routers, but opaque to some routers, routers that
must still pass on this LSA type through flooding nonetheless. With RFC 2370, type 9, 10
and 11 LSAs now become the universal transport vehicle for routing and topology-related
data that need to get distributed by the flooding sub-system of OSPF. With those extensions
in place, arbitrary data, including reachability information from other address families such
as IPv6, could theoretically be distributed about an OSPF routing domain. A full discus-
sion of opaque LSA types in OSPF is not needed in a book on IS-IS. It is enough to note
the presence of opaque LSA types in OSPF for the purposes of extensibility.

11.3 Analysis of IS-IS Extensibility

IS-IS uses TLVs to encode Hellos, NLRIs, as well as miscellaneous other information
needed for the IS-IS routing protocol to function properly. Virtually all these message elem-
ents use Type-Length-Value (TLV) encoding to get their data across to other IS-IS routers.

11.3.1 TLV Format
Figure 11.4 shows the basic elements for TLV encoding.

Analysis of IS-IS Extensibility 289

The first element of the TLV structure is the Type field. The size of the Type field is
8-bits wide, which gives room for 256 different codes. In fact, a lot of documents call this
the Code-Length-Value (CLV) structure instead of TLV. But the TLV terminology is
much more common and is therefore used here. Type number 0 is reserved for further
expansion of the protocol. The Type field is a well-known field that should be understood
by all routers in a given link-state domain (� IS-IS level). Next comes the Length field
that indicates the length of the payload data, which is stored in the Value field. Why is the
Length field needed if the Type code establishes the format of the information in the
Value field? As long as all Type codes are well known, it would seem that the router has
enough information to decipher the value that the Type contains. But it is not that simple.

Let’s invent an example demonstrating the need for a Length field. Suppose we want to
encode an IPv4 prefix. What we need is 8 bytes of space in the TLV. Four bytes are for the
prefix itself and four bytes are for the Netmask. Next, let’s give this Value field the hypo-
thetical Type number, say 47. Because Type Code #47 is well known by all routers running
the IS-IS protocol, one could suppose that there could be a rule in the IS-IS
protocol that Code 47 always means an implicit length of 8 bytes for the Value field.
However, what happens if a router running older software does not recognize our new
hypothetical Type Code 47 Message? How is the Length made know to IS-IS routers that
do not know what a Type Code 47 is? Even worse, the section of IS-IS code that parses all
the incoming routing messages does not know when other messages-codes beyond the
Type Code 47 begin, because the code has no indication when the unknown Type Code 47
message ends. Figure 11.5 illustrates the dilemma of the receiving router’s message parser.

So an explicit Length field is always needed for TLVs. The Length field is again 8-bits
wide, which leaves room for Values up to 255 bytes. Although this may sound like a small

290 11. TLVs and Sub-TLVs

Type

Length

Value

1–255

Bytes

1

1

1–255

1–255

FIGURE 11.4. Basic information encoding in (T)ype (L)ength (V)alue triplets

Type

Value

47

Bytes

1

???

1Type

Value

53

12

The receiver does not know Type #47,
and the length of #47 and therefore does
not know where #53 starts

FIGURE 11.5. Implicit length fields do not work unless all routers know all the Type codes

number (just think of a router that has hundreds of adjacencies to advertise) it has turned
out to be a sufficient size for most message types.

11.3.2 TLV Encoding
For the case of messages larger than 255 bytes, smaller message elements are scattered
across multiple occurrences of a given Type Code. Figure 11.6 shows how a large chunk (30
in this case) of IPv4 prefixes are scattered over two occurrences of Type Code 128 messages.
Type Code 128, which is not hypothetical, will be discussed in more detail in Chapter 12.
The only thing a router needs to know is that the basic message format of TLV #128 is
repeated occurrences of IPv4 prefixes, metrics and net masks having a fixed length of 12
bytes. So each IPv4 prefix consumes 12 bytes space in the message. What the TLV encod-
ing engine needs to know is the maximum amount of IPv4 prefix data that can be stored in a
255 bytes sized message. As it turns out, the densest packaging is reached when 21 prefixes
are squeezed into one TLV encoded message, filling up the message to 252 bytes. That still
results in a TLV message space utilization of 98.4 per cent, which is fine for a routing proto-
col. The remaining nine prefixes get stored in a second occurrence of a Type #128 message.

Interestingly, IS-IS has a uniform Type Code space for both Hellos and NLRIs. This
means that an arbitrary TLV can theoretically be present both in all three IS-IS packet
types. The three packet types that IS-IS generates are:

• IIHs (Hellos)
• SNPs (sequence number PDUs)
• LSPs (link-state PDUs)

Although this uniform Type Code space makes it easier for humans to memorize the
defined TLVs, not all TLVs are present in all three IS-IS PDU types. For instance, for
authentication information it makes no sense to limit authentication only to IIH packets,
because an attacker can do a lot of harm by forging any of the PDU types.

Analysis of IS-IS Extensibility 291

Bytes

30 IPv4 prefixes
(30 � 12) � 252 bytes

Type

Length

Value

21 IPv4 prefixes
(21 � 12) � 252 bytes

128 1

1

252

252

Value

9 IPv4 prefixes
(9 � 12) � 108 bytes

108

Type

Length

128 1

1108

FIGURE 11.6. A large chunk of IPv4 prefixes, not fitting in a single TLV encoded message, is scat-
tered across multiple occurrences of the same Type Code

292

TA
B

L
E

11
.1

.T
he

 li
st

 o
f

T
LV

s
th

at
 m

od
er

n
ro

ut
er

 O
Ss

 s
up

po
rt

.
PD

U
 ty

pe

15
16

17
18

20
24

25
26

27
L

A
N

p2

p
T

LV
H

el
lo

H
el

lo
L

SP
C

SN
P

PS
N

P

IS
-I

S
T

LV
s

#
So

ur
ce

L
1

L
2

L
1

L
2

L
1

L
2

L
1

L
2

A
re

a
A

dd
re

ss
1

IS
O

10
58

9
X

X
X

X
X

IS
 R

ea
ch

ab
ili

ty
2

IS
O

10
58

9
X

X
IS

 N
ei

gh
bo

rs
6

IS
O

10
58

9
X

X
Pa

dd
in

g
8

IS
O

10
58

9
X

X
X

L
SP

 E
nt

ry
9

IS
O

10
58

9
X

X
X

X
A

ut
he

nt
ic

at
io

n
10

IS
O

10
58

9,
R

FC
35

67
X

X
X

X
X

X
X

X
X

C
he

ck
su

m
12

R
FC

33
58

X
X

X
X

X
X

X
E

xt
en

de
d

IS
 R

ea
ch

ab
ili

ty
22

R
FC

37
84

X
X

IS
 A

lia
s

24
R

FC
37

86
X

X
IP

 in
te

rn
al

 R
ea

ch
ab

ili
ty

12
8

R
FC

11
95

,R
FC

29
66

X
X

Pr
ot

oc
ol

s
Su

pp
or

te
d

12
9

R
FC

11
95

X
X

X
X

X
IP

 e
xt

er
na

l R
ea

ch
ab

ili
ty

13
0

R
FC

11
95

,R
FC

29
66

 (
*)

X
(*

)
X

ID
R

P
In

fo
rm

at
io

n
13

1
R

FC
11

95
X

X
IP

 I
nt

er
fa

ce
 A

dd
re

ss
13

2
R

FC
11

95
X

X
X

X
X

T
E

 R
ou

te
r

ID
13

4
R

FC
37

84
X

X
E

xt
en

de
d

IP
 R

ea
ch

ab
ili

ty
13

5
R

FC
37

84
X

X
D

yn
am

ic
 h

os
tn

am
e

13
7

R
FC

27
63

X
X

Sh
ar

ed
 li

nk
 r

is
k

gr
ou

p
13

8
dr

af
t-

ie
tf

-i
si

s-
gm

pl
s-

ex
te

ns
io

ns
-1

9
X

X
R

es
ta

rt
 S

ig
na

lin
g

21
1

R
FC

38
47

X
X

X
M

ul
ti

To
po

lo
gy

 I
S

R
ea

ch
ab

ili
ty

22
2

dr
af

t-
ie

tf
-i

si
s-

w
g-

m
ul

ti-
to

po
lo

gy
-0

7
X

X
M

ul
ti

To
po

lo
gi

es
 S

up
po

rt
ed

22
9

dr
af

t-
ie

tf
-i

si
s-

w
g-

m
ul

ti-
to

po
lo

gy
-0

7
X

X
X

X
X

IP
v6

 I
nt

er
fa

ce
 A

dd
re

ss
23

2
dr

af
t-

ie
tf

-i
si

s-
ip

v6
-0

6
X

X
X

X
X

M
ul

ti
To

po
lo

gy
 I

P
R

ea
ch

ab
ili

ty
23

5
dr

af
t-

ie
tf

-i
si

s-
w

g-
m

ul
ti-

to
po

lo
gy

-0
7

X
X

IP
v6

 R
ea

ch
ab

ili
ty

23
6

dr
af

t-
ie

tf
-i

si
s-

ip
v6

-0
5

X
X

M
ul

ti
To

po
lo

gy
 I

Pv
6

R
ea

ch
ab

ili
ty

23
7

dr
af

t-
ie

tf
-i

si
s-

w
g-

m
ul

ti-
to

po
lo

gy
-0

7
X

X
p2

p
ad

ja
ce

nc
y

st
at

e
24

0
R

FC
33

73
X

II
H

 S
eq

ue
nc

e
N

um
be

r
24

1
dr

af
t-

sh
en

-i
si

s-
iih

-s
eq

ue
nc

e-
00

X
X

X
V

en
do

r
Pr

op
ri

et
ar

y
25

0
dr

af
t-

ie
tf

-i
si

s-
ex

pe
ri

m
en

ta
l-

tlv
-0

1
X

X
X

X
X

X
X

X
X

However, the 3-way handshake TLV on point-to-point (p2p) links, for example, only
makes sense in p2p IIHs. This is because the problem that this specific TLV #240 is
trying to fix is purely related to p2p Hellos, during the startup procedure.

Table 11.1 shows a list of the most important TLVs in IS-IS, and in which packet type
the TLV might occur.

The Type field is an 8-bit entity, which is a relatively small space, given the fact that
routing protocols can live dozens of years. In order to not exhaust the 8-bit space
throughout the years the protocol designers carried the TLV orientation further inside the
TLVs. This concept is called sub-TLVs.

11.3.3 Sub-TLVs
Sub-TLVs are used inside a TLV to encapsulate further message elements. Theoretically
a dedicated TLV could be used as well for new message elements. This would, however,
quickly exhaust the TLV space. The Extended IS Reachability TLV is a good example for
use of sub-TLVs. The Extended IS Reachability TLV describes an IS-IS Adjacency and
all sorts of link properties like Maximum Link Bandwidth, Link colours, Neighbours,
IP addresses, Traffic Engineering metrics and so on.

Tcpdump output
The Extended IS Reachability TLV #22 carries an additional 69 bytes of link property infor-
mation.

11:36:45.587565 OSI, IS-IS, length: 405

L2 LSP, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

lsp-id: 1921.6800.1019.00-00, seq: 0x000002fd, lifetime: 1198s

chksum: 0xe984 (correct), PDU length: 405, L1L2 IS

[…]

Extended IS Reachability TLV #22, length: 75

IS Neighbor: 1921.6800.1021.00, Metric: 22000, sub-TLVs present (69)

IPv4 interface address subTLV #6, length: 4, 172.16.33.6

IPv4 neighbor address subTLV #8, length: 4, 172.16.33.5

Traffic Engineering Metric subTLV #18, length: 3, 22000

Unreserved bandwidth subTLV #11, length: 32

priority level 0: 9953.280 Mbps

priority level 1: 9953.280 Mbps

priority level 2: 9953.280 Mbps

priority level 3: 9953.280 Mbps

priority level 4: 9953.280 Mbps

priority level 5: 9953.280 Mbps

priority level 6: 9953.280 Mbps

priority level 7: 9953.280 Mbps

Reservable link bandwidth subTLV #10, length: 4, 9953.280 Mbps

Maximum link bandwidth subTLV #9, length: 4, 9953.280 Mbps

Administrative groups subTLV #3, length: 4, 0x00000000

[…]

Analysis of IS-IS Extensibility 293

In Table 11.2 you can see all current defined sub-TLVs. Chapter 14, “Traffic Engineering
and MPLS”, gives a more thorough discussion of the extended IS Reachability TLV
which is just discussed here for the aspect of sub-TLVs.

Figure 11.7 shows a real-world example of the Extended IS Reachability TLV. In our
example TLV, two adjacencies are reported. The first link adjacency is describing link
characteristics to Neighbour 1921.6800.1008.00. The cost of using this link during the
SPF cycle is 250,000 as described in the Metric field. After the Metric field each TLV ter-
minates with an optional sub-TLV length. If the length field is zero, then no further link
characteristic are reported for this adjacency. In our example there is indication that there
are 11 further bytes of link properties.

The next byte contains the first sub-TLV type. Code-point #8 is used to indicate a remote
neighbour’s IP address. The sub-TLV Code is followed by a sub-TLV Length which is set
to 4. What finally follows is the value of 4 bytes describing the actual Neighbor IP Address.

The encoding of the first sub-TLV consumed 1 � 1 � 4 � 6 bytes. So there is still
5 bytes left of sub-TLV information to decode.

The next sub-TLV is code-type 18 and the sub-TLV length field indicates 3 bytes of
Metric Information. This sub-TLV carries a kind of metric information that is purely
related to constrained based routing (CSPF) which is further illustrated in Chapter 14,
“Traffic Engineering and MPLS”.

The encoding of the second sub-TLV consumed 1 � 1 � 3 � 5 bytes. The original
sub-TLVs field of the IS reach adjacency indicated a total sub-TLV length of 11 bytes.

What the router tries to find out next is to determine the remaining size of subTLVs –
it does so by subtracting the actual offset from the entire TLV length of 33 bytes. So far
22 bytes (the first TLV plus the two sub-TLVs) have been processed so there must be 11

294 11. TLVs and Sub-TLVs

TABLE 11.2. The list of sub-TLVs that modern router OSs support.
Sub-TLV

IS Reach Sub-TLVs # Source

Administrative Group 3 RFC3784
Link Local/Remote Identifier 4 RFC3784, draft-ietf-isis-gmpls-extensions-19
Link Remote Identifier 5 RFC3784
IPv4 interface address 6 RFC3784
IPv4 neighbor address 8 RFC3784
Maximum link bandwidth 9 RFC3784
Reservable link bandwidth 10 RFC3784
Unreserved bandwidth 11 RFC3784
Traffic Engineering Metric 18 RFC3784
Link Protection Type 20 draft-ietf-isis-gmpls-extensions-19
Interface Switching Capability 21 draft-ietf-isis-gmpls-extensions-19

Sub-TLV
IP Reach Sub-TLVs # Source

32-Bit Administrative Tag 1 draft-ietf-isis-admin-tags-01
64-Bit Administrative Tag 2 draft-ietf-isis-admin-tags-01
Management Prefix Color 117 draft-ietf-isis-wg-multi-topology-07

Analysis of IS-IS Extensibility 295

bytes left. The parser therefore knows that the next 10 bytes is another IS adjacency
pointing to neighbour 1921.6800.1019.00 plus an SPF metric of 22000. This second link
is not carrying any sub-TLVs hence the sub-TLV length field is being set to zero.

It has already been shown that there are several levels of information packaging inside
TLVs. The Extended IS Reachability TLV #22 is a good example. It contains several IS
neighbours which may contain further sub-TLVs. There is lots of room for all sort of
things that can go wrong here. Just imagine what happens if the sub-TLV length is big-
ger than the TLV length. Of course this can be avoided by all sorts of clever boundary
checking. However, no specification expresses a mandate for boundary checking. In
the next section you will learn about IS-IS TLV sanity checking and how vendors have
hardened their implementations to catch corrupted information.

11.3.4 TLV Sanity Checking
Jon Postel postulated a famous guidance about protocol interoperability:

“Be tolerant of what you receive and strict in what you send!”

The background was that a protocol’s implementations should never assume that the
receiver will get it right and should encode its information as concisely as possible. On
the receiving side the rule mandates that the protocol should support error detection and

Type

Length

Neighbor ID

sub LV Value

22

Bytes

1

1

ID Length (6) � 1

3

1

1

1

4

Metric

subTLVs Length

subTLV Type

subTLV Length

33

1921.6800.1008.00

250000

8

4

172.16.33.12

subTLV Value

subTLV Type

subTLV Length

18

3

12000

1

1

3

Neighbour ID ID Length (6) � 1

3

1

Metric

subTLVs Length

1921.6800.1019.00

22000

0

11

FIGURE 11.7. The sub-TLV length field of the Extended IS Reachability TLV #22 determines if
there are any sub-TLVs following the basic IS reachability information

296 11. TLVs and Sub-TLVs

be tolerant about slightly malformed information structures. Link-state routing protocols
do not allow implementers to follow that guidance, because of their highly distributed
nature.

Consider the following example: A router receives a malformed TLV and detects that
TLV is malformed. What should the router do? – further flood it or silently discard it and
log an error message? ISO 10589 mandates that flooding should be transparent through-
out the area. If the flooding stops what might be the biggest harm? Worst case, a routing
loop. What happens if the router floods the LSP containing the malicious LSP further?
Worst case, it may crash other routers in the network who do not encompass proper TLV
sanity checking. In the past 10 years of IS-IS deployment there have been at least 20 major
network meltdowns because corrupted LSPs got flooded further across the network. The
first occurrence was back in the NSFNet backbone. Dr Rekhter, now a Distinguished
Engineer with Juniper Networks, relates the following story:

“One thing that happened in the NSFNET backbone concerns the way my code han-
dled ISIS link state updates. When a router received an ISIS link state update, the router
would do some processing on that update, then flood the update to its neighbors, and then
complete the rest of the processing on this update. Due to some bug in the code the last
part (“the rest of the processing”) caused router crash. But since the router crashed after
it flooded the link state update to its neighbors, the update also caused the neighbors to
crash as well, resulting in the overall network meltdown.”

Implementers of the IS-IS protocol decided, because of the high inherent risk, to take
a closer look to known TLVs and tightly check their formatting. The most common
found TLV format tests are discussed in the next three subsections.

11.3.4.1 Maximum Length Checking

Each TLV and sub-TLV reports a certain length. The length field is typically an 8-bit field
that can express Value fields between 0 and 255 bytes. However, not all TLVs and sub-
TLVs can actually consume the full range of 255 bytes.

For example, in March 2001 there was a big meltdown in a large US transit carrier’s
network. The root cause was that a failing piece of hardware generated a malformed Area
TLV #1. Figure 11.8 illustrates the structure of the Area TLV #1. The TLV contains a set
of Area Lengths and their corresponding Area-IDs. In the OSI world only Area-IDs
between 1–13 bytes length are supported. If the Area-ID is outside that range, then the
entire TLV, if not the entire LSP, is highly likely to be corrupted. After parsing the TLV
the receiving router did not check for the maximum Area-ID length and overwrote data
structures in the SPF algorithm implementation, which were expecting Area-IDs not
larger then 13 bytes. The routing software crash did not manifest itself immediately –
there was unfortunately enough time to flood the killer LSP further, enough time to crash
the entire network.

Since that incident, maximum length checking is employed for the Area TLV #1.
Continuing that thought there would be other TLVs that could get checked for Minimum

and Maximum Length Fields. Table 11.3 lists the minimum and maximum length values
for all TLVs.

Analysis of IS-IS Extensibility 297

TLV

TLV Length

1

Bytes

1

1

1

1–13

Area Length

Area ID

1

1–13

Area Length

Area ID

FIGURE 11.8. The Area TLV #1 lists all the variable length Area that a router participates

TABLE 11.3. Each TLV, due to its structure, has given minimum and maximum values.
TLV name TLV # Min. length Max. length

Area Length field 1 1 13
IS Reachability 2 12 254
LSP Entry 9 16 240
Authentication (if Authentication 10 17 17

Type � MD5 (54))
Checksum 12 2 2
Maximum LSP Buffer Size 14 2 2
Extended IS Reachability 22 11 –
IS Alias 24 8 –
IPv4 Internal Reachability 128 12 252
IPv4 External Reachability 130 12 252
IPv4 Interface Address 132 4 252
Traffic Engineering Router ID 134 4 4
Extended IPv4 Reachability 135 5 –
Restart Signaling 211 3 3
Multi Topology Extended IS Reachability 222 13 –
IPv6 Interface Address 232 16 240
Multi Topology Extended IPv4 Reachability 235 7 –
IPv6 Reachability 236 6
p2p Adjacency State 240 1 15

All implementers are encouraged to check each received TLV against Table 11.1.
Checking for the minimum TLEB Length Values reveals if there are broken TLVs
around. Checking for the maximum value helps to avoid Buffer overruns.

11.3.4.2 Sub-TLV Overrun Checking

A sub-TLV parser should verify at any time that the sum of all parsed sub-TLVs does not
get bigger than the original TLV minus the TLV specific overhead. Table 11.4 lists all the
TLVs that support sub-TLVs and their maximum value they can grow.

298 11. TLVs and Sub-TLVs

TABLE 11.4. The sub-TLVs must not consume more space than the TLV offers.
TLV name TLV # Max. length

Extended IS Reachability 22 244
IS Alias 24 247
Extended IPv4 Reachability 135 250
Multi Topology Extended IS Reachability 222 242
Multi Topology Extended IPv4 Reachability 235 248
IPv6 Reachability 236 249

A receiving router needs to check for two things. First, is the sub-TLV shorter than the
maximum value according to Table 11.4? Then, it needs to verify if the sub-TLV is not
bigger than the actual TLV length as encoded in the Length value.

11.3.4.3 Discrete Length Checking

Some early ISO 10589 TLVs have a very structured layout. Some of the RFC 1195 IP Reach
TLVs copied the ISO 10589 style and hence have a similar structured layout as well. That
structured layout allows now to predict certain packet sizes. In the right-hand columns of
Table 11.5 there is a small formula for each TLV. The factor N is typically the amount of
information elements announced in that TLV. For example, a router with three IP addresses
would advertise a N * 4 � 3 * 4 � 12 bytes Length Interface Address TLV #132 in is Hello.

The final check tries to verify certain patterns in the information elements.

TABLE 11.5. Certain TLVs because of their structure only have discrete sizes.
TLV name TLV # Formula

IS Reachability 2 N * 11 � 1
LSP Entry 9 N * 16
IPv4 Internal Reachability 128 N * 12
IPv4 External Reachability 130 N * 12
IPv4 Interface Address 132 N * 4
IPv6 Interface Address 232 N * 16
p2p Adjacency State 240 1, 5, 11, 15

11.3.4.4 TLV Content Pattern Checking

A good example for a pattern check is the Netmask field in the IPv4 Internal and External
Reachability TLVs. Although the Netmask field is a 32-bit field, it only allows 33 certain
values covering all permutations of prefix lengths. Another example would be the bandwidth
values of some Extended IS-Reach #22 sub-TLVs like the Maximum Link Bandwidth
sub-TLV #9 can only carry certain discrete bandwidth values. draft-ietf-isis-gmpls-exten-
sion-19 gives good guidance on which values are supported.

TLV sanity checking is a new discipline which is in contradiction to the fully trans-
parent flooding model of ISO 10589. However, it turned out that service providers are
happy to trade better stability against flooding transparency especially the one that experi-
enced a full-scale network crash due to bogus TLVs that did not get detected.

Conclusion 299

299

11.4 Conclusion

Based upon this chapter’s examination of the Hellos and the NLRI carrying packets, in
both OSPF and IS-IS, OSPFv2 is not quite as extensible as IS-IS.

On the Hello side, OSPFv2 in general lacks extensibility. For the NLRI carrying packets,
OSPF now contains a set of so-called “Opaque LSAs” that could be used to carry exten-
sible information for additional address families. But to address the non-extensibility in
OSPF in conjunction with the ongoing deployment of IPV6, the OSPF protocol design-
ers had to develop a whole new version of OSPF. And unfortunately, OSPFv3 does not
have much in common with OSPFv2, since the code was mostly a rewrite from scratch,
so it doesn’t use all the stable code of the OSPFv2 version. All routing software has to
undergo a maturity process to become stable enough for productive use in the Internet
backbones of the world and OSPFv3 maturity may take a little longer as it tries to be all
things to all packets.

Compared to OSPF, IS-IS is almost like a case study on how to do it right the first time.
From day one, IS-IS has been designed to stay neutral no matter which Network Layer
protocol information it had to transport. IS-IS has always been effectively multi-protocol
ready: in the 1980s it was used for routing CNLP traffic; in the 1990s IPv4 traffic was
added; and, since 2001, IPv6 has been efficiently carried. It helps when the message elem-
ents and packet types of the base IS-IS routing protocol use the proper TLV encoding. In
addition, special precautions have been made not to exhaust the small 8-bit code space
through use of sub-TLVs, even in the newer TLVs. TLVs and sub-TLVs turn out to be a
powerful vehicle to further extend the protocol. Due to the extra complexity of sub-TLV
encoding and tight sanity checks based on known TLV structure, before loading TLV
contents into the link-state database are recommended.

Finally, the code changes from the IPv4 to an IS-IS supporting IPv6 required only
400–600 lines of code, not an entire rewrite of the protocol. It is unlikely that active rout-
ing of IPv6 prefixes will do any harm to the base stability of the IS-IS code.

Adapting in a constantly changing environment is what Darwin’s Law is all about.
When it comes to routing protocols, extensibility is a prerequisite for routing protocol
evolution. It is the authors opinion that IS-IS adapts better than OSPF, which is why it
will continue to prevail in the largest routed networks in the world.

12

IP Reachability Information

IS-IS was ready from day one for extensibility. Originally intended to route CLNP pre-
fixes, today IS-IS carries routing information about a variety of networking protocols
including IPv4 and IPv6. In this chapter you will learn about the various places where IP
prefixes or IP reachability information, which is the IS-IS term, is encoded. Support for
IP prefixes came in three waves. The chapter covers both the old-style (first generation)
and the new-style (second generation) TLVs. Additionally, the limitations of the first-
generation IPv4-related TLVs defined in the Integrated IS-IS Routing specification (RFC
1195) will be highlighted. Finally, some of the reasoning surrounding the particular prob-
lems that the more recent traffic-engineering TLVs solve will be explained.

IS-IS has multiple places to convey IP reachability information. To understand why the
IP-related TLVs have been re-engineered continually, it is necessary to take advantage of
hindsight and consider the times when a specific protocol decision was made. Therefore,
before exploring the style of the IP TLVs, a look at one of the original ISO 10589 TLVs is
needed. Of course ISO 10589 is totally unrelated to IP; however, to acquire an understand-
ing of how ISO 10589 encodes information, it is a good idea to also get a better under-
standing of why the first generation of IP TLVs are the way they are.

12.1 Old-style Topology (IS-Reach) Information

Figure 12.1 shows how IS-IS encodes neighbour reachability information in the IS
Reachability TLV #2. The TLV conveys pure router-to-router connectivity information
and is unrelated to IP. The first byte is the Virtual Flag, which is either set to zero or one.
Typically this is set to zero. It is only set to 1 in Level 2 LSPs and indicates that this link
is used to repair an area partition. However, partition repair isn’t something that a proto-
col should address. Typically partitioning of Level 1 areas is avoided by putting enough
links in the area. IOS supports area partitioning for CLNP. However, JUNOS lacks sup-
port for healing broken, partitioned areas. Therefore the least common denominator is
the simplistic design rule: “Never let an area get partitioned”, and try to avoid partitioning
of an area by throwing enough links at the problem.

After the virtual flag there is a basic structure of 11 bytes that may be repeated through-
out the TLV. That 11-byte structure holds 4 bytes of metric-related information and
6 bytes of System-ID appended with the one-byte Pseudonode-ID. Interestingly, the basic
ISO 10589 specification supports multidimensional metrics. There are distinct metrics

301

for Delay, Error, Expense and a mandatory default metric. The basic idea behind this scheme
is that each router computes four distinct “topologies” by running a dedicated SPF oper-
ation for each. However, at the time IS-IS was first deployed (end of the 1980s) people
were cautious about using CPU cycles and therefore only computed the mandatory SPF
topology, which is the default topology. If IS-IS would have been first deployed at the
end of the 1990s, computing distinct SPF trees probably would have not been much of
an issue due to the massive processing power available even in embedded router systems.
For routing IP, the IS-IS implementation of IOS and JUNOS does not support computa-
tion of anything but the default topology. Both only propagate the default metric and
ignore any other metrics during receipt and during the SPF run. IOS, however, does sup-
port multidimensional metrics for routing CLNP, as already mentioned.

Each of the four possible metrics is represented by a dedicated byte. The most signifi-
cant bit (MSB) of the respective metric byte indicates what additional metrics an individ-
ual router supports. Typically the MSB is set in the Delay, Expense and Error metrics, which
indicate that the metric is not supported. Next to the MSB there is the Internal/External
bit, which expresses whether the Metric is comparable or not. Internal means it is compar-
able, while External means it is not. (Internal metrics are always based on the same rout-
ing protocol, while externals metrics are independent of IS-IS.) Typically the I/E bit is set to

302 12. IP Reachability Information

TLV Type

TLV Length

Virtual Flag

Neighbour ID

2

Bytes

1

1

1

1

1

1

1

ID Length (6) �1

N*11 � 1

0

Default MetricR
0

I/E
0

Delay MetricS
1

I/E
0

Expense MetricS
1

I/E
0

Error MetricS
1

I/E
0

Neighbour ID

1

1

1

1

ID Length (6) �1

Default MetricR
0

I/E
0

Delay MetricS
1

I/E
0

Expense MetricS
1

I/E
0

Error MetricS
1

I/E
0

FIGURE 12.1. The IS-Reachability TLV is the blueprint for all the old-style Reachability TLVs
encompassing 6-bit metrics

zero, indicating that the metric is comparable. Confused? Don’t worry! Simply assume the
I/E bit is always set to zero – in this TLV the I/E bit has no real practical meaning. Next,
there are 6 bits that hold the metric information. Six bits can only express routing metrics
ranging from 0 to 63, which is quite limited these days. Once again, the design choice of
using 6 bits goes back to the anxiousness about the SPF calculation consuming too many
CPU cycles.

In every step of the SPF calculation a sorting function needs to be executed. One can
optimize that sorting function through the use of linear arrays. Consider Figure 12.2 where
a router’s preliminary metric during the SPF calculation is 456. Now the process needs
to find out if there are any other routers offering a better path to a given destination (the
System-ID) by applying a sorting function. Using index arrays, one can skip that sorting
function. All that need be done is store a pointer to the System-ID at the 456th entry in
the array. If the array gets traversed from zero to the end, the first non-null pointer must
be the highest value. This implementation has the disadvantage that it consumes mem-
ory. By limiting the Link Metric to 63 and the Aggregated Metric to 1023, IS-IS makes
sure that the indexing function does not consume too much memory. This is another place
where CPU/memory constraints have made their way into the IS-IS protocol. In hindsight,
almost always where protocol designers tried to address a particular CPU/memory/
environment shortage issue of the time by protocol properties, those protocol properties
finally got deprecated over time. It turned out that protocols live much longer than micro-
processors or memory chip restrictions do.

Old-style Topology (IS-Reach) Information 303

0

SysID 1921.6800.1008.00
Metric 456

1

2

3

4

5

455

1023

456

FIGURE 12.2. Index arrays helped to speed up search operations

For lower bandwidth links the limitation to just 63 distinct metric values was not much
of an issue, because there was not much disparity between the smallest and the largest
bandwidth links in a network. Consider (for instance) a DS0 (64 Kbps) circuit and a T1
(1.544 Mbps) circuit. The T1 has 24 times the bandwidth of the DS0. Inverse bandwidth

metric schemes are commonly used (since the lower the metric, the more attractive the
route), so setting the T1 line to a metric of 1 and the DSO to a metric of 24 provides good
differentiation between the two bandwidths in the metric space. Now, consider that the
highest bandwidth in the network becomes an OC-3/STM-1 circuit capable of carrying
155 Mbps. Assign the lowest-cost metric to the high-speed circuit, as before. About 100
times the capacity of a single T1 circuit fits into an OC-3/STM-1 circuit, so assign a met-
ric of 100 to the T1. Stop! Assigning a metric of 100 doesn’t work because there are only
6 bits available. The metric must be “clipped” to 63. Continuing with the 155 Mbps
example, re-doing the calculation for the DS0 again exposes the limitations of a 6-bit met-
ric space. About 2400 DS0s fit into an OC-3/STM-1 circuit. However, since there is no
bigger metric, once again clip the metric to 63. The end result is that, from an IS-IS per-
spective, the DS0 link becomes now indistinguishable to the T1 line, as both metrics are
now 63. That increasing disparity of IGP metrics became the motivation to introduce new
TLVs that have a broader metric field than just 6 bits (called wide-metrics in IS-IS).

12.2 Old-style IP Reach (RFC 1195) Information

It is best to demonstrate the way of thinking embodied in the ISO 10589-defined TLVs
first. Then it is easier to catch the spirit of the IP reachability information, which is very
similar to the IS-Reach TLV #2.

RFC 1195 specifies six new IP-related TLVs that are used to convey IP reachability
information. Two of the 6 TLVs became deprecated and are not used anymore. The
remaining 4 TLVs are used for a variety of functions, like transporting IP routes, inform-
ing neighbours of new capabilities and troubleshooting ease.

12.2.1 Internal IP Reachability TLV #128
The Internal IP Reachability TLV #128 is probably the most important of the RFC 1195-
defined TLVs. It conveys internal routing information, which is to say, directly con-
nected routes. Figure 12.3 shows the basic structure of TLV #128. Please refer to Figure
12.1 for comparison. Correct – they look very similar. The structure basically starts, as in
ISO 10589, with the same 4 bytes of metric information. The Metric fields are still 6 bits.
Although broader metrics would not have an impact on CPU cycles (this is just leaf-
information), the protocol designers decided to stay consistent with the spirit of ISO
10589. The IP Network Number and the Netmask follow after the 4 Metric bytes. These
fields have these names because it was common at the beginning of the 1990s to specify
IP reachability information not as prefixes and prefix lengths but rather as networks and
network masks.

The internal IP Reachability TLV gets automatically advertised when IS-IS is run on
an interface with a configured IP address, or through use of the passive option.

Whenever IS-IS is run on an interface, once an adjacency forms, all IPv4 addresses on
that interface are encoded using TLV #128 in the router’s LSP. Alternatively, if the router
needs to be configured to advertise a sub-net but not form an adjacency (there are valid
reasons to do this, as discussed in Chapter 16), use the passive option. The passive

304 12. IP Reachability Information

option is a way to include an IP sub-net in the link-state announcement, however, there
is no attempt to establish an adjacency over that link. This is achieved by suppressing all
Intermediate Systems to Intermediate Systems Hellos (IIHs).

The passive option is available on both IOS and JUNOS. Consider the following
two configuration examples.

JUNOS configuration
In JUNOS the passive option is a per-level or alternatively a per-interface property.

[edit]

hannes@Frankfurt# show

[…]

protocols {

isis {

interface fe-4/2/0.0 {

level 2 passive;

}

Old-style IP Reach (RFC 1195) Information 305

TLV Type

TLV Length

IP Address

128

Bytes

1

1

1

1

1

1

4

4

N*12

Default MetricR
0

I/E
0

Delay MetricS
1

I/E
0

Expense MetricS
1

I/E
0

Error MetricS
1

I/E
0

1

1

1

1

Default MetricR
0

I/E
0

Delay MetricS
1

I/E
0

Expense MetricS
1

I/E
0

Error MetricS
1

I/E
0

SUbnet Mask

IP Address 4

4SUbnet Mask

FIGURE 12.3. Structure of the IP Reachability TLV #128

interface fe-1/3/1.0 {

passive;

}

interface lo0.0;

}

}

[…]

JUNOS command output
You can display the actual interface list and check whether an interface is passive or not
using the show isis interface command and spot passive flags.

hannes@Frankfurt> show isis interface

IS-IS interface database:

Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric

fe-1/3/1.0 3 0x2 Munich.02 Passive 10/10

fe-4/2/0.0 3 0x1 Passive Passive 10/10

so-0/0/0.0 1 0x1 Disabled Point to Point 10/70

lo0.0 0 0x1 Passive Passive 0/0

IOS configuration
In IOS the passive-interface configuration option is available across the entire rout-
ing-protocols including IS-IS. The passive-interface removes the interface from the
list where CLNS PDU (� IS-IS in this case) are being sent.

New-York# show running-config

[…]

router isis

passive-interface GigabitEthernet0/0

net 49.0001.1921.6816.8007.00

is-type level-2-only

[…]

IOS command output
The show clns interface command shows CLNS processing disabled for all passive
interfaces.

New-York# show clns interface

GigabitEthernet0/0 is up, line protocol is up

CLNS protocol processing disabled

Good network designs are not supposed to use the passive interface a lot. With the help
of BGP, IS-IS is responsible for quick network discovery and re-routing and BGP is
responsible for transporting the bulk amount of the discovered routing information.

306 12. IP Reachability Information

In newer versions of IOS there is even a knob called passive-only which reduces the
announcements of IP reachability information in IS-IS to a bare minimum, which is to
announce the loopback interface only. In JUNOS similar behaviour can be created using
routing policies. More about routing policy design philosophy and use of the passive-
only knob appears in Chapter16.

12.2.2 Protocols Supported TLV #129
The Protocols Supported TLV makes IS-IS a true multiprotocol IGP. Using this TLV an
IS-IS router can tell other routers what protocols it speaks. It is basically an envelope for
Protocol Capability Codes. The Protocols Supported TLV is transmitted in Hellos and
also in LSPs. It contains 1-byte Network Layer Protocol IDs (NLPIDs, one for each proto-
col that a router speaks on a per-interface (IIH), or on a per router basis (LSP)). The
two most important NLPIDs are 0xCC, indicating IPv4 forwarding capability, and 0x8e
indicating IPv6 forwarding capability. Table 12.1 shows a list of common NLPIDs.

For example, if an IS-IS v4-only router does not find this TLV or the NLPID contain-
ing IPv4 (0xCC) in the Hello from one of its neighbours, it keeps the adjacency down.
Similarly, if a router speaks IPv4 on any interface, it will tell others that it globally
speaks IPv4 and announce that capability in its LSP. If the NLPID is missing in the
Protocol Supported TLV, then the router will be disregarded entirely during a SPF run.
Chapter 13, “IS-IS Extensions”, takes a closer look into this TLV and discusses the lim-
itation specifically with regard to transport of new Network Layer Protocols like IPv6. It
will be shown that, especially given the “router-global” nature of that TLV in LSPs, there
is a problem when computing non-congruent Network Layer topologies. Furthermore, in
Chapter 10 the exact steps and the role of TLV#129 during the SPF run was explored in
great detail.

Old-style IP Reach (RFC 1195) Information 307

TABLE 12.1. In the OSI world every protocol has a one-byte
Network Protocol ID, even for non-OSI protocols.
Code point Code point name

0x00 NULL
0x01 T.70
0x02 X.29
0x03 X.633
0x08 Q.931, Q.932, Q.933,

X.36, ISO 11572,
ISO 11582

0x09 Q.2931
0x0c Q.2119
0x81 CLNP
0x82 ES-IS
0x83 IS-IS
0x85 IDRP
0x8a X25 ES-IS
0x8e IPv6
0xcc IPv4
0xcf PPP

IOS and JUNOS work very differently with regard to when this TLV is sent in a Hello
message and when it will be suppressed. IOS makes a general differentiation if an interface
is used for pure CLNP routing or also for integrated IP routing. As soon as the ip
router isis and a valid ip address <address> <mask> are configured on
an IOS platform this TLV appears in the Hello PDUs. If one of the two statements is
missing, generation of that TLV is suppressed.

Tcpdump output
As soon as the ip router isis configuration statement plus a valid ip address
<address> <mask> is configured on an IOS platform you will see the Protocols Supported
TLV in IIHs indicating that this router understands IPv4 on this circuit.

11:35:23.248504 OSI, IS-IS, length: 63

p2p IIH, hlen: 20, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 1921.6800.0012, holding time: 30s, Flags: [Level 2 only]

circuit-id: 0x01, PDU length: 63

Point-to-point Adjacency State TLV #240, length: 1

Adjacency State: Up (0)

Protocols supported TLV #129, length: 1

NLPID(s): IPv4 (0xcc)

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 172.16.12.14

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

JUNOS had the advantage of being introduced to the market at a time when there was
no need to support CLNP routing any longer. Therefore the pure-CLNP-routing case could
easily be ignored. IS-IS in JUNOS is meant to transport IPv4 and IPv6 prefixes only.
IS-IS is by definition multiprotocol, so JUNOS always generates the Protocols Supported
TLV #129 irrespective of whether an IPv4 or IPv6 address is configured on that interface.
The explanation why the NLPIDs are set unconditionally is deferred to Chapter 13, “IS-IS
Extensions”, which gives a better overview by example of the IPv6 transition.

Tcpdump output
Since Version 5.1 JUNOS unconditionally generates a Protocols Supported TLV with the
NLPIDs of IPv4 (0xCC) and IPv6 (0x8e) in both Hello and LSP PDUs.

01:32:47.162118 OSI, IS-IS, length: 63

p2p IIH, hlen: 20, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 1921.6800.0008, holding time: 27s, Flags: [Level 2 only]

circuit-id: 0x01, PDU length: 63

Point-to-point Adjacency State TLV #240, length: 15

Adjacency State: Up (0)

308 12. IP Reachability Information

Extended Local circuit-ID: 0x0000001a

Neighbor System-ID: 1921.6800.0012

Neighbor Extended Local circuit-ID: 0x00000000

Protocols supported TLV #129, length: 2

NLPID(s): IPv4 (0xcc), IPv6 (0x8e)

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 172.16.12.13

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

RFC 1195 specifies two IP reachability-related TLVs. The first TLV has already been
covered in this chapter. The next section shows why splitting IP reachability information
over two TLVs makes sense, according to RFC 1195, and how the External IP reachability
TLV is used today.

12.2.3 External IP Reachability TLV #130
At the end of the 1980s, there was the belief that there would be a single routing protocol
for routing both intra-domain routes and inter-domain routes. So the routing protocols
were prepared to mark routes Intra-Domain for internal routes from Inter-Domain for
external routes. For that reason, everything had to be packaged in a dedicated TLV. Today,
common sense is that IGPs like IS-IS, OSPF or Cisco Systems proprietary E-IGRP, do not
transport large numbers of external routes very well, and so IGPs are not used according to
the original purpose of conveying Inter-Domain routes. So if today no Inter-Domain routes
are dumped into IS-IS, why does an External IP Reachability TLV still have a justification?

Remember there are always routes in a service provider’s network which are sourced
by another routing protocol, for example RIP or OSPF. If those routes are injected into
the IS-IS “cloud” they are packaged in the External reachability TLV. Consider the setup
shown in Figure 12.4. New York learns the RIP route 47.11/16 from the RIP router in
the POP. New York exports the RIP routes via the following IOS configuration into the
IS-IS cloud of the sample network.

Old-style IP Reach (RFC 1195) Information 309

RIP Router 1 RIP Router 2

47.11/16 (1)
…

52.33/16 (1)
…

WashingtonNew York

LSP

External 47.12/16

New- York, Seq 0x2fc
Lifetime 1181s

LSP

External 47.11/16

New-York, Seq 0x2fc
Lifetime 1181s

LSP

External 47.12/16

Wash D.C., Seq 0x129
Lifetime 1192s

LSP

External 52.33/16

Wash D.C., Seq 0x129
Lifetime 1192s

FIGURE 12.4. Two RIP routers injecting routes into IS-IS

IOS configuration
All the RIP routes, which are learned over FastEthernet0/0, get exported into IS-IS using
the IP External Reachability TLV #130 with a metric of 8.

New-York# show running-config

[…]

! this is the interface to the RIP router

interface FastEthernet0/0

ip address 172.16.67.133 255.255.255.252

router rip

network 172.16.0.0

router isis

net 49.0001.1921.6800.1189.00

redistribute rip metric 8

[…]

New York’s LSP looks in the tcpdump packet trace as follows:

Tcpdump output
A redistributed RIP route shows up in the LSP as an IP External Reachability TLV:

14:48:32.234806 OSI, IS-IS, length: 405

L2 LSP, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

lsp-id: 1921.6800.1189.00-00, seq: 0x000002fd, lifetime: 1198s

chksum: 0xe984 (correct), PDU length: 405, Flags: [L1L2 IS]

[…]

IP External reachability TLV #130, length: 12

IPv4 prefix: 47.11/16

Default Metric: 8, Internal, Distribution: up

IS Reachability TLV #2, length: 67

IsNotVirtual

IS Neighbor: 0000.0000.0003.02, Default Metric: 10, Internal

IS Neighbor: 0000.0000.0003.02, Default Metric: 10, Internal

[…]

You can also spot the IP External TLVs by looking into the isis database using the
show isis database command.

IOS command output
The bold marked output represents the content transported using the IP External
Reachability LSP, which can be displayed using the show isis database command.

Amsterdam# show isis database verbose

[…]

IS-IS Level-2 Link State Database

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

Amsterdam.00–00 0x00000762 0x6467 732 0/0/0

NLPID: 0xCC 0x8E

310 12. IP Reachability Information

Area Address: 49.0001

IP Address: 192.168.1.1

Metric: 10 IS London.02

Metric: 10 IP-External 172.16.33.2 255.255.255.252

[…]

In JUNOS the external prefixes can be spotted at two places of the show isis
database extensive command line output.

JUNOS command output
JUNOS yields information at two places of the show isis database command line out-
put. First, at the LSP Overview Section next to LSP-Name, Sequence Number, Checksum
and Lifetime Information and then in the detailed TLV Breakdown.

hannes@olive-2> show isis database extensive

[...]

IS-IS level 2 link-state database:

New-York.00-00 Sequence: 0x3a, Checksum: 0x249e, Lifetime: 64986 secs

IS neighbor: Wash-D.C..02 Metric: 24

IP prefix: 47.11.0.0/16 Metric: 8 External

IP prefix: 172.16.1.0/24 Metric: 24 Internal

IP prefix: 192.168.1.2/32 Metric: 0 Internal

[…]

TLVs:

Area address: 49.0001 (3)

Speaks: IP

Speaks: IPv6

IP router id: 192.168.1.2

IP address: 192.168.1.2

Hostname: olive-2

IS neighbor: Wash-D.C., Internal, Metric: default 24

IP prefix: 192.168.1.2/32, Internal, Metric: default 0

IP prefix: 172.16.1.0/24 Metric: default 63

IP external prefix: 47.11.0.0/16, Internal, Metric: default 8

No queued transmissions

Finally, look at a configuration example for JUNOS, which has the same effect as the
above described IOS configuration.

In JUNOS all exchange of routes between routing protocols have to go through policies
which are defined under the policy-options configuration branch. Each policy
consists of one or more from and then parts. The from clause means more like “if”,
which is a bit counterintuitive, as one would understand from as something like “origin”
at first. However the from statement always takes the inet.0 Routing Table as input and
computes a subset of these routes. The then portion tells what to do with the prefixes that
match the from part. In our example, the policy rip-routes-to-isis takes all

Old-style IP Reach (RFC 1195) Information 311

routes in the main routing table inet.0 that match the from part. The from part matches all
routes, all of which have been learned through RIP, and computes a list of prefixes plus rele-
vant attributes like Metrics. Once the policy is called under the protocols isis section
the previously computed list of routes will get inserted into an IS External Reachability
TLV #130.

JUNOS configuration
In JUNOS a policy needs to scan the main routing table inet.0 for all routes that are
learned via RIP. They get set to a metric of 8 and, through use of the export statement
under the protocols isis section, are exported into IS-IS using the IP External
Reachability TLV #130.

New-York# show configuration

[…]

protocols {

isis {

export rip-routes-to-isis

interface so-7/0/0.0;

interface lo0.0;

}

rip {

group washington-POP {

neighbor fe-0/1/0.0;

}

}

}

policy-options {

policy-statement rip-routes-to-isis {

from protocol rip;

then {

metric 8;

accept;

}

}

}

[…]

Figure 12.5 shows that the External IP Reachability TLV #130 shares exactly the
same format as the IP Internal Reachability TLV #128. The only difference is that certain
combinations of the TLV Type and the Internal/External Bit of the Metric Bytes are
not valid.

More about the valid and invalid combinations of the both TLVs, which finally led to the
demise of the old-style IP-Reach TLVs, is covered in the section that discussed the extended
IP Reachability TLV 135.

312 12. IP Reachability Information

12.2.4 Inter-Domain Information Type TLV #131
The Inter-Domain Type TLV is related to the belief that Inter-Domain routes should be
transported in the External IP Reachability TLV #130. It ought to give further evidence
about the routing domain from where these routes have been obtained. This TLV has
become obsolete, as Inter-Domain routes are not dumped into IS-IS anymore. Figure 12.6
shows the basic structure of that TLV.

The first byte contains information about the format of the Inter-Domain Information
Value that follows. Three types are defined: Type 0 and 1 indicate reserved or local usage
and Type 2 indicates that a two-byte AS number follows. Typically this Information TLV
is inserted before an IP External Reachability TLV #130 and helps the receiving router to
store AS-related information (where the route came from) with the external routes. Neither
IOS nor JUNOS make use of this TLV, due to the harm to scaling that redistribution of
Inter-Domain routes into IS-IS causes.

Old-style IP Reach (RFC 1195) Information 313

TLV Type

TLV Length

IP Address

130

Bytes

1

1

1

1

1

1

4

4

N*12

Default MetricR
0

I/E
0

Delay MetricS
1

I/E
0

Expense MetricS
1

I/E
0

Error MetricS
1

I/E
0

1

1

1

1

Default MetricR
0

I/E
0

Delay MetricS
1

I/E
0

Expense MetricS
1

I/E
0

Error MetricS
1

I/E
0

SUbnet Mask

IP Address 4

4SUbnet Mask

FIGURE 12.5. Structure of the External IP Reachability TLV #130

12.2.5 Interface Address TLV #132
The Interface Address TLV #132 is valid in IIH and LSP PDUs. It should tell a remote router
about the IP addresses that are configured at the neighbouring router. If a router sees one
of its own IP addresses in a remote router’s Hello PSU, then the adjacency will not come
up. The format of the IP Interface Address TLV is shown in Figure 12.7. The TLV length
is always a multiple of 4 bytes, each entry conveying an IP address. Typically there is just
one IP address contained in this TLV, however if one or more secondary address (es) are
configured, the secondary IP address (es) also show up here.

314 12. IP Reachability Information

TLV Type

TLV Length

Inter-Domain Information Type

131

Bytes

1

1

1

1–254

2

Inter-Domain Information Value

FIGURE 12.6. The obsolete TLV #131 conveys additional information about external routes

TLV Type

TLV Length

IP Address

132

Bytes

1

1

4

4

N*4

IP Address

FIGURE 12.7. The IP Interface Address TLV #132 gets advertised in IIHs and LSPs

Watch the results of the following configuration.

IOS configuration
If you want to configure in IOS more than one IP address per interface, you have to use
the keyword secondary after the IP address.

Amsterdam# show running-config
[…]

interface GigabitEthernet 3/0

ip router isis

ip address 172.16.33.1 255.255.255.0

ip address 172.16.34.1 255.255.255.0 secondary

router isis

net 49.0001.1921.6801.1001.00

is-type level-1

[…]

Once we start tcpdump on a workstation, which is on the LAN, we will get a similar
output. Note that the number in brackets behind the TLV is the length of that TLV.

Tcpdump output
All the configured IP addresses are listed in the IP Interface Address TLV.

16:19:27.486634 OSI, IS-IS, length: 84

L1 Lan IIH, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 0000.0000.0003, holding time: 40s, Flags: [Level 1, Level 2]

lan-id: 0000.0000.0003.02, Priority: 70, PDU length: 84

IS Neighbor(s) TLV #6, length: 6

IS Neighbor: 0002.b32b.0e52

Protocols supported TLV #129, length: 1

NLPID(s): IPv4

IP Interface address(es) TLV #132, length: 8

IPv4 interface address: 172.16.33.1

IPv4 interface address: 172.16.34.1

Area address(es) TLV #1, length: 4

Area address (3): 49.0001

You can also display the contents of the IP Interface Address TLV through use of a
CLI command. In JUNOS the show isis adjacency detail command reveals
information about the IP address that the neighbour holds.

JUNOS command output
In JUNOS you can explore the IP address of a neighbour using the show isis adja-
cency command.

hannes@New-York> show isis adjacency detail

NY-Access4

Interface: ge-4/0/1.0, Level: 2, State: Up, Expires in 8 secs

Priority: 70, Up/Down transitions: 1, Last transition: 2d

21:54:18 ago

Circuit type: 2, Speaks: IP, IPv6, MAC address:

00:90:69:2b:0e:52

Restart capable: Yes

LAN id: NY-Access4.02, IP addresses: 172.16.33.1

IPv6 addresses: fe80::7777:69ff:fea0:8001

[…]

In Cisco IOS you can display the IP addresses of your neighbour by issuing the show
clns neighbor detail command.

Old-style IP Reach (RFC 1195) Information 315

IOS command output
In IOS you can display the contents of TLV #132, which are the IP address (es) of a neigh-
bour, using the show clns neighbor detail command.

Amsterdam#show clns neighbors detail

System Id Interface SNPA State Holdtime Type Protocol

New-York POS4/0 *HDLC* Up 2 L2 IS-IS

Area Address(es): 49.0001

IP Address(es): 172.16.34.1*

Uptime: 04:04:52

[…]

The IS-IS router will refuse to build an adjacency if the Hello message from any of the
neighbouring routers contains an IP addresses that is local to the local router, assuming
that there is something broken. IOS logs that event once you start turning on debug out-
put for isis adj-packets.

IOS debug output
IOS logs if it receives a Hello PDU from a neighbour holding bogus IP addresses.

Amsterdam# debug isis adj-packets

IS-IS Adjacency related packets debugging is on

Amsterdam #

1d08h: ISIS-Adj: Rec L1 IIH from 0090.6994.a43e

(GigabitEthernet3/0), cir type L1L2, cir id

1921.6800.1133.02, length 1492

1d08h: ISIS-Adj: No usable IP interface addresses in LAN IIH from

GigabitEthernet3/0

1d08h: ISIS-Adj: Sending L2 LAN IIH on GigabitEthernet3/0, length 1497

[…]

In JUNOS you can log a sub-net mismatch by setting the error flag under the
protocols isis traceoptions branch.

JUNOS debug output
JUNOS shows you in the isis-log messagefile that it could not find a matching IP sub-
net.

protocols {

[…]

isis {

traceoptions {

file isis-log size 1m microsecond-stamp;

316 12. IP Reachability Information

flag error;

flag packets detail;

}

[…]

}

}

Jun 16 10:24:18.154351 Received PTP IIH, source id Amsterdam on so-7/0/0.0

Jun 16 10:24:18.154430 intf index 2

Jun 16 10:24:18.154455 max area 0, circuit type l1l2, packet length 56

Jun 16 10:24:18.154476 hold time 27, circuit id 1

Jun 16 10:24:18.154500 ptp adjacency tlv length 5

Jun 16 10:24:18.154521 neighbor state down

Jun 16 10:24:18.154542 neighbor extended local circuit id 1

Jun 16 10:24:18.154563 speaks IP

Jun 16 10:24:18.154587 speaks IPV6

Jun 16 10:24:18.154615 IP address 10.0.0.6

Jun 16 10:24:18.154705 area address 49.0001 (3)

Jun 16 10:24:18.154730 restart RR reset RA reset holdtime 0

Jun 16 10:24:18.154772 ERROR: IIH from Amsterdam without matching

addresses, interface so-7/0/0.0

From an IS-IS perspective, a multiprotocol IGP like IS-IS should not police adjacen-
cies based on Layer 3 information such as IP sub-nets. Many developers argue that, par-
ticularly on broadcast interfaces, the forwarding next-hop resolver relies on a protocol to
supply MAC addresses for correctly framing a routed packet. In the IP world this is typ-
ically the ARP protocol. The router OS kernel relies on ARP solely to resolve L3 next-
hop to MAC address mapping, because such IP addresses belonging to the same sub-net
need to be present in order for the next-hop resolution sub-system to work correctly.
While this violates the multiprotocol nature of IS-IS a bit, it is common consensus
among implementers of routing protocols to do it that way.

12.2.6 IP Authentication TLV #133
The IP Authentication TLV was meant to be a dedicated authentication method only
applied for IP Reachability Information. The IOS and JUNOS implementers however
never implemented that dedicated Authentication TLV. Instead they implemented the far
more general Authentication TLV #10 that authenticates all TLVs in a given PDU.
Because no vendor ever supported the IP Authentication TLV #133, it finally got depre-
cated. Now in the official TLV Code Point Allocation scheme (RFC 3359) it is marked as
illegal.

Deployment experience in the mid 1990s has revealed the deficiencies of the RFC
1195 and ISO 10589 defined TLVs. Beside the obviously too small 6-bit Metrics, the
mess surrounding Internal/External Routes and the limited functionality to add link-
related information into the LSP caused the IS-IS community to define some new- and

Old-style IP Reach (RFC 1195) Information 317

redefine some old TLVs. This set of TLVs is mostly referred to as New-Style Metrics, con-
trasting to the historical Old-Style Metrics.

12.3 New-style Topology (IS-Reach) Information

The IS Reachability TLV that was proposed in ISO 10589 actually has two major limita-
tions. Besides the obvious limitation of the 6-bit metric space there is another limitation,
which does not allow adding any link-related information to an adjacency. The old-style
(ISO 10589 and RFC 1195) TLVs are quite strictly formatted: each neighbour adjacency
consumes 11 bytes and so does not have any place where additional information could
be attached to a particular adjacency. Given that, it was clear that a revision of both
the IS-Reachability and IP-Reachability TLVs needed to have a bigger metric space and
more importantly, it needed to be ready for further extensions.

The IETF revised the existing IS Reachability TLV #2 and IP Reachability TLVs #128
and #130 to correct these deficiencies and provide further extensibility mechanisms.
RFC 3784 mentions two new TLVs:

• Extended IS Reachability TLV #22
• Extended IP Reachability TLV #135

These metrics are also known as wide-metrics.
Figure 12.8 show the basic structure of the extended IS Reachability TLV. The first

seven bytes hold the System-ID plus pseudonode number. Next there is room for a 24-bit
metric. Why 24-bits and not 32-bits? The basic idea behind that scheme was to be able to
do all the calculations during an SPF run using 32-bit unsigned integers without exhaust-
ing the integer space. Therefore, the extended IS Reach TLV #22 theoretically supports
up to 255 hops (1 byte), each at a maximum metric of 16.7 million, without wrapping the
32-bit integer space. Twenty-four bits are also enough for expressing a bandwidth range
of 64 KBit/s to 1 Terabit/s in the inverse bandwidth metric scheme. The calculation for
this is straightforward: just assume the lowest bandwidth (64 KBit/s) and assign it to the
highest metric (2^24).

64 Kbit/s * 2^24 � 1073741824 Kbit/s/1024 � 1048576 Mbit/s � 1024 GBit/s � 1 Tbit/s

The next byte is probably the most powerful of this TLV. If this is non-zero then there is
additional information included about this link/adjacency. In fact, the Extended IS Reach
TLV #22 is the first TLV to have a variable length, including so-called sub-TLVs that carry
additional information about the link. Please note that generally in IS-IS there is no notion
of a link. All that IS-IS can express is adjacencies. In WAN environments the mapping of
adjacencies to links is typically a one-to-one mapping. In LAN environments this can be a
one-to-one relationship but does not have to be. Practically speaking, 95 per cent of all the
circuits in a service provider core topology are pure point-to-point links, so in most envir-
onments the term link and adjacency can be used interchangeably. There is more detailed
information about TLVs and sub-TLVs in Chapter 11, “TLVs and Sub-TLVs”.

318 12. IP Reachability Information

12.3.1 Automatic Metric Calculation
The Metric field is typically a dimensionless scalar, which expresses the preference of using
that link. Typically it is calculated according to the inverse bandwidth of that link. Each
implementation allows to set an internal Reference Bandwidth parameter. The Reference
Bandwidth is the base value which will be divided by the bandwidth of the interface to
yield the metric. So, for instance, if the Reference Bandwidth is 1 Gbit/s, then a 10 Mbit/s
circuit will be assigned a metric of 100. Similarly a Fast Ethernet circuit will be assigned
a metric of 100.

The problem with Reference Bandwidth is that they are constantly changing, depending
how fast the circuits in the network are being upgraded. Assume there are OC-192/STM-
64 circuits deployed in the network, which are capable of transporting roughly 10 Gbit/s.
As soon as the network turns on its first OC-768/STM-256 the metric scheme has to be
revised. For instance, for a long time OSPF used to have the Reference-Bandwidth of
100 Mbps, because at the time when OSPF was specified the architects of the protocol
thought that 100 Mbps would be sufficient forever. One could argue that what could be

New-style Topology (IS-Reach) Information 319

TLV Type

TLV Length

Neighbour ID

optional subTLV Value

22

Bytes

1

1

ID Length (6) � 1

3

1

1

1

1–242

Metric

subTLVs Length

optional subTLV Type

optional subTLV Length

Neighbour ID

optional subTLV Value

ID Length (6) � 1

3

1

1

1

1�*

Metric

subTLVs Length

optional subTLV Type

optional subTLV Length

FIGURE 12.8. The most significant change of the Extended IS Reachability TLV #22 is the support
for sub-TLVs and 24-bit metrics

learned from that mistake was to simply define a Reference Bandwidth that will most
likely not hit the ceiling in the next 10 years: like 100 Terabits per second. But the problem
with setting the Reference Bandwidth too high is that most routing protocols (including
IS-IS and OSPF) have finite and limited Metric fields. This is a problem similar to the
6-bit metric space of the original ISO 10589 TLVs, where all the low-speed links get
clipped to the maximum value and thereby do not provide any further differentiation.

Today the most common Auto-Bandwidth setting for IS-IS is 1 Terabit per second (or
1000 Gigabit per second), which can, through the use of 24-bit metric fields, go down to
64 KBit/s without clipping the metrics. Manual setting of the Reference Bandwidth is not
supported on IOS. In JUNOS you can configure it through use of the reference-
bandwidth <bandwidth> command under the protocols isis configuration
branch.

JUNOS configuration
In JUNOS you can automatically calculate the metric that IS-IS is using by configuring the
reference-bandwidth <bandwidth> command.

hannes@New-York> show configuration

[…]

protocols {

isis {

reference-bandwidth 1000g;

interface so-0/0/0.0;

interface lo0.0;

}

}

[…]

In very large IS-IS networks the policy to set the routing metric is not as simple as a
division of the Reference Bandwidth. Typically the routing metrics should be controlled
manually to have tighter control about the impact of all kinds of re-routing scenarios.

12.3.2 Static Metric Setting
Service providers do not always want IS-IS to calculate its own routing metrics with a sim-
ple formula such as inverse bandwidth. Typically for very expensive links like transat-
lantic links, there is an additional de-preference or negative bias expressed in an increased
routing metric. Consider Figure 12.9 where one of the most important links in the European
topology goes down. The SP does not want to heal the European core over the transatlantic
links, as from a cost-per-bit perspective, it is not very economical to route traffic from
Frankfurt to London via Pennsauken.

In order to avoid suboptimal rerouting there are tables similar to the one shown in
Figure 12.10, which consider both bandwidth and cost of links. In the first column the
different line speeds that are today typically deployed in service provider networks are
listed. In the rows the routing metrics according to that line speed, depending on what
kind of circuit type it is, are shown. If it is an intercontinental (expensive) link a very high

320 12. IP Reachability Information

routing metric is assigned, if it is a cheap circuit like a pair of fibres inside a POP, it gets
a low routing metric. These per circuit-type metrics are not computed linearly. Typically
there is an exponential function involved, which controls the offset and the gradient of
the metric curve. The routing metrics shown in Figure 12.10 represent rounded-down
values which follow an inverse logarithmic curve. Such logarithmic cost/bandwidth

New-style Topology (IS-Reach) Information 321

Area 49.0001
Level 2-only

Pennsauken

Frankfurt

London

Washington

New York

Paris

FIGURE 12.9. From a cost perspective not every possible path is a feasible path

tables are very common in the service provider community and significantly help to con-
trol the re-rerouting behaviour even in large IS-IS networks.

The following IOS configuration snippet sets the IS-IS Metric for an interface. There
are distinct metric settings for each level on an interface.

IOS configuration
In IOS there are distinct metric settings for each level. The isis metric <metric>
level-<n> command can be invoked in interface configur-ation mode.Values higher than
63, can only be set if the metric-style is set to wide.

Amsterdam# show running-config

[…]

interface POS4/0

ip address 172.16.7.21 255.255.255.252

ip router isis

isis metric 1700 level-1

isis metric 2800 level-2

322 12. IP Reachability Information

Circuit Speed Bandwidth
(Mbps)

Intra-POP In-country Continental Intercontinental

220000
250000
315000
430000
600000
950000

74000
87000

112000
141000
185000
275000
370000
580000

22000
26000
35000
43000
50000
74000

117000
175000
250000
435000

oc-768/STM-256
oc-192/STM-64
oc-48/STM-16
Gigabit Ethernet
oc-12/STM-4
oc-3/STM-1
Fast Ethernet
T3
E3
Ethernet
E1
T1

39808
9952
2488
1000
622
155
100
45
34
10
2

1,544

125
400

1300
3000
4500

14000
20000
34000
60000

100000
150000
220000

Bandwidth cost metric scheme

0

200000

400000

600000

800000

1000000

39808 9952 2488 1000 622 155 100 45 34 10 2 1,544

Circuit speed (Mbps)

R
o

u
ti

n
g

 m
et

ri
c

Intra POP In-CountryContinental Intercontinental

FIGURE 12.10. Composite bandwidth/cost metrics are typically for large networks in order to
control the re-routing behaviour

!

router isis

net 49.0001.0010.0100.1004.00

metric-style wide

!

[…]

The metric information can only be set if the metric style is set to “wide”. If you (for
example) unconfigure the metric style wide (metric-style narrow) and forget to change
the metric down to below 63, the system will log the following message and fallback to
automatic metric calculation:

IOS command output
Unconfiguring the metric-style wide back to metric-style narrow causes IOS to
drop every static metrics at the interface level.

Amsterdam (config-router) #metric-style narrow

%Removing wide metrics also removes ‘isis metric 1700 level-1’

configured on POS4/0

%Removing wide metrics also removes ‘isis metric 2800 level-2’

configured on POS4/0

Below is a JUNOS configuration, which sets the IS-IS metrics on a given logical
interface.

JUNOS configuration
In JUNOS all IS-IS related information is located under the protocols isis configura-
tion branch. The routing metrics are properties of a given logical IS-IS interface.

hannes@New-York> show configuration

[…]

protocols {

isis {

interface so-7/0/0.0 {

level 1 metric 1700;

level 2 metric 2400;

}

interface lo0.0;

}

}

[…]

The JUNOS configuration interface accepts all values ranging from 0 to 16777215.
However, if an IS or IP reachability needs to get packaged in old-style TLVs, then

New-style Topology (IS-Reach) Information 323

JUNOS simply clips those values to 63. The above configuration generates an LSP,
which looks like the following using tcpdump:

Tcpdump output
JUNOS silently clips metrics bigger than 63 down to 63. In order to produce congruent
topologies between ISs supporting old or new-style TLVs JUNOS even clips the new-style
TLVs down to 63.

11:36:49.609255 OSI, IS-IS, length: 270

L2 LSP, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

lsp-id: 2092.1113.4007.00-00, seq: 0x000006b2, lifetime: 1199s

chksum: 0xb2a6 (correct), PDU length: 270, Flags: [L1L2 IS]

[…]

IS Reachability TLV #2, length: 12

IsNotVirtual

IS Neighbor: 1921.6800.1004.00, Metric: 63, Internal

Extended IS Reachability TLV #22, length: 10

IS Neighbor: 1921.6800.1004.00, Metric: 63, no sub-TLVs present

IP Internal reachability TLV #128, length: 12

IPv4 prefix: 192.168.1.2/32, Distribution: up,

Metric: 63, Internal

Extended IPv4 Reachability TLV #135, length: 9

IPv4 prefix: 10.254.47.8/30, Distribution: up, Metric: 63

[…]

The Extended IS Reach TLV #22 was just the first outcome of the Traffic Engineering
Extensions. As the RFC 1195 Style IP reachability TLVs #128 and #130 also suffer from
the same set of problems a new Extended IP Reachability TLV has been defined.

12.4 New-style Topology (IP-Reach) Information

The Extended IP Reachability TLV #135 collapses the two old-style IP reachability
TLVs #128 and #130 together. Figure 12.11 shows the structure of the Extended IP
Reachability TLV #135. The first four bytes is the Metric field which is 32 bits in size.
The reason why it is 32 bits wide and not 24 bits wide is to stay compatible to other rout-
ing protocols like BGP and OSPF, which also have 32-bit metrics for their routing infor-
mation. By picking a compatible metric size, the protocol designers made sure that the
imported metric from these protocols does not get clipped. Next, there is the Header byte
which consists of the Up/Down Bit, the Sub-TLV Indicator Bit, and 6 bits for storing the
prefix length. The purpose of the Up/Down Bit will be explained in more detail in
Section 12.6. The Sub-TLV Bit indicates if there are any further sub-TLVs stored after
the prefix. As of writing this book, only three sub-TLVs have been defined. Most of them
address a way to tag routes for administrative purposes. draft-martin-neal-policy-isis-
admin-tags and draft-ietf-isis-wg-multi-topology specify the sub-TLVs 1, 2 and 117.

324 12. IP Reachability Information

Next follow 6 bits of prefix length. It would appear at first that since 2^6 � 64, 5 bits
should be doing fine, but do not be misled. Although IP prefixes are 32 bits in size, there
are still 33 distinct prefix lengths, keeping in mind that the default route (0/0) is a unique
prefix as well. So only the values 0 to 32 are valid for encoding the prefix length. Next
there are 0 to 4 bytes holding the prefix information. The extended IP Reachability TLV
allowed variable packaging of IP prefixes for the first time. Recall that the old-style TLVs
always consumed 12 bytes for the entire prefix, regardless of how many bits were redun-
dant due to the network mask masking the bits out.

In the Extended IP Reachability TLV #135 the idea is to only encode the bytes that con-
tain useful information. Consider Figure 12.12 where the example prefix 172.16.64/19 is
encoded. The first question is: how many bits really contain information? To find that out,
just map the prefix length to the grid shown in Figure 12.12. The /19 line goes through the

New-style Topology (IP-Reach) Information 325

TLV Type

TLV Length

metric

Prefix Length

Prefix

optional all-subTLVs Length

optional subTLV Type

optional subTLV Length

optional subTLV Value

metric

Prefix Length

Prefix

optional all-subTLVs Length

optional subTLV Type

optional subTLV Length

optional subTLV Value

135

U/D sub

Bytes

1

1

4

1

0�4

1

1

1�247

4

1

0�4

1

1

1�*

U/D sub

1

1

FIGURE 12.11. The Extended IP Reachability TLV #135 uses variable-length packaging of prefix
information

3rd byte. So byte number 3 is the last byte that contains useful information. Byte 4 does not
contain anything useful – there are just zeros. Therefore, only three bytes need to be stored.
So by looking at the prefix length a receiver knows how many bytes to decode before
the next prefix starts in the TLV. If there are no further sub-TLVs (as indicated by the
sub-TLV bit) and the length in the TLV Header indicates that there are still some prefixes
left, the receiving decoder starts to read out the same structure once again, starting with the
4-byte metric value.

The beginning of this section indicated that both the Internal and the External IP
Reachability TLV got collapsed to TLV #135. However, there is no internal/external dif-
ferentiation in the TLV anymore. Protocol engineers argue that prefixes are typically
either internal or external, but not both. Quite the contrary: if the same prefix is known as
both internal and external, there is something really broken in the network. Should a
routing protocol support ugly corner cases? Probably not. However, there is another
(non-obvious) reason why there is no further internal/external differentiation in the TLV.
Henk Smit, one of the authors of RFC 3784, noted once on a posting to the ISIS-WG
mailing list:

I have never really understood the need for both TLV128 and TLV130. This was also one of the
reasons why we decided to not carry the I/E metric bit semantics forward into TLV135 (the new IP
prefix TLV defined in the IS-IS TE extensions draft). The most important reason was of course the
fact that we had no bits left, and did not want to spend another byte per prefix.

Routing software is typically not upgraded frequently. Therefore it is clear that the
old-style and new-style TLVs need to coexist for quite a while. Simply because it is prac-
tic-ally neither possible nor feasible to upgrade an IS-IS network with several thousand
routers on a flag day. Unfortunately RFC 3784 gives no guidance about how the old- and
new-style TLVs should interoperate, and therefore vendors have come up with schemes
that are specified nowhere, which is bad, as it by definition prevents clean, interoperable
solutions.

326 12. IP Reachability Information

Byte 1

172

32

Byte 2 Byte 3 Byte 4

241680

16 64

172.16.64/19

Prefix Length

19

FIGURE 12.12. Variable packaging means that only the significant bits (byte chunks) are stored

12.5 Old-, New-style Interworking Issues

Recent releases of IOS and JUNOS support both the old-style and the new-style behav-
iour. However, the implementations came up with different default behaviours as to how
the old-style and the new-style TLVs are advertised.

IOS by default advertises only the old-style information. The old-, new-style gener-
ation can be controlled using the metric-style <narrow|transition|wide>
level <1|2|1–2> router configuration command.

IOS configuration
In IOS you can control generation of old- and new-style TLVs using the metric-style
<narrow|transition|wide> [level-<1|2>] router configuration knob. If the optional
level statement is omitted then the metric-style applies to both levels.

Amsterdam# show running-config

[…]

router isis

metric-style wide level-2

metric-style transition level-1

[…]

The metric-style commands controls what information that IOS is advertising, but also
implicitly what kind of information IS-IS accepts. If you set the metric style to wide,
then IOS in turn also accepts wide TLVs from other routers. The behaviour is similar for
the narrow metric style. If IOS only generates “narrow” style TLVs then it also just
accepts narrow style TLVs from other routers. The metric-style transition sends both old-
and new-style TLVs and accepts both. If you think that the plain narrow and wide modes
are too restrictive for your network migration, then you can weaken the strictness by adding
the keyword transition to the metric-style configuration command. The fol-
lowing IOS configuration sends new-style TLVs in the Level 2 but does accept both
old- and new-style TLVs at receipt of LSPs.

IOS configuration
In IOS you can weaken the strict checking nature of non-matching TLVs (non-matching
means receipt of old-style TLVs if wide metrics are configured, and receipt of new-style
TLVs if narrow metrics are configured) through adding the transition statement after the
metric-style configuration.

Amsterdam# show running-config

[…]

router isis

metric-style wide transition level-2

[…]

Old-, New-style Interworking Issues 327

JUNOS is more migration-friendly in that respect. First of all, JUNOS always accepts
both old-style and new-style TLVs. If (for example) a prefix or IS reachability information
is present in both old- and new-style TLVs, then the new-style TLVs take precedence over
the old-style TLVs. This accept-everything behaviour can’t be changed. What can be con-
trolled is what JUNOS advertises. By default, both old and new-style metrics are adver-
tised. Considering the previous example, one could best describe the JUNOS behaviour in
(IOS words) as metric-style transition. In JUNOS, suppression of the
old-style TLVs can be enabled using the wide-metrics-only configuration com-
mand which is located under the protocols isis configuration branch. Sorry
for the awkward wording, “suppression can be enabled” – this wording tries to emphasize
the default behaviour and how the behaviour can be changed.

JUNOS configuration
In JUNOS suppression of old-style TLVs can be enabled on a per-level basis through use
of the wide-metrics-only keyword.

hannes@New-York> show configuration

[…]

protocols {

isis {

level 1 wide-metrics-only;

interface lo0.0;

interface so-0/0/0;

}

}

[…]

JUNOS can also suppress generation of the new-style TLVs, although this is almost
never used in practice. Everybody wants to leverage the broader metrics and additional func-
tionality, which is encoded into the sub-TLVs that are found only in the new-style TLVs.
Suppression of new-style TLVs is only available on an IS-IS global basis. It is not pos-
sible to turn the new-style TLVs off on a per level basis. The following JUNOS configur-
ation shows how to turn off generation of new-style TLVs on a router-global basis.

JUNOS configuration
In JUNOS suppression of new-style TLVs can be enabled on a router-global basis through
use of the traffic-engineering disable keywords. The newstyle TLVs have been
defined in RFC 3784 as the first application of one of the new-style TLVs was conveying
Traffic Engineering related information.

hannes@New-York> show configuration
[…]
protocols {

isis {
traffic-engineering disable;

328 12. IP Reachability Information

interface lo0.0;
interface so-0/0/0;

}
}
[…]

In today’s networks there is a combination of the old- and new-style TLVs and both will
co-exist for quite a while to come. Some of the original RFC 1195 old-style TLVs have
been refined in order to support domain-wide prefix distribution, which is defined in RFC
2966. RFC 2966 re-defines the IP Reachability TLVs #128, #130 and also loosens a few
restrictions of the original old-style TLVs. The following section clarifies why trading
scalability versus optimal routing makes sense.

12.6 Domain-wide Prefix Distribution

The designers of IS-IS had scalability in mind during the drafting of the specification.
There are several different places to look for scalability in IS-IS, and one is the way that
prefixes get leaked between levels. Before explaining how IS-IS does this, it is best to first
describe how OSPF, another link-state protocol, leaks routing information between OSPF
areas. The assumption is a bit of familiarity with OSPF, enough to appreciate the differ-
ences between the two protocols. Consider Figure 12.13 to see how OSPF leaks prefixes
between areas. The sample topology was introduced in Chapter 1, “Introduction”, and is
redesigned here as an OSPF network – the two networks almost look the same. The sig-
nificant difference is that the borderline between the backbone and the non-backbone areas
is in IS-IS on the link (for example, between Atlanta and New York) whereas in OSPF it
is inside the Area Border Router (New York). There are three OSPF areas defined: the
backbone Area 0, and two leak Areas 47 and 11. Now, explore how routes are leaked
through the OSPF domain. First, the Area Border Routers (New York, Washington DC)
between Area 47 and the backbone transfer (or leak) an internal route from Area 47 to the
backbone. The two Area Border Routers re-package the internal route from a Type-1
LSA to a Type-3 LSA (Step 1). LSAs are information carriers in OSPF, similar to LSPs
in IS-IS. A side effect of re-packaging New York and Washington is also to replace
the Router-ID in the LSA field by the router’s loopback IP address. Next, the route gets
propagated through the backbone by means of the Type-3 LSA. Then the two Area Border
Routers between Area 0 and Area 11 (London, Frankfurt) take the route that was pack-
aged in the Type-3 LSA and translate them into the Area 11 (Step 2). Again, the two Area
Border Routers replace the originating Router-ID by their own Router-ID which is typi-
cally the loopback address. Finally, all internal routes from Area 47 get propagated
through area 0 and all attached non-zero areas like Area 11. A similar flow of routes goes
in the reverse direction: internal routes from Area 11 get re-packaged into the backbone
Area 0 as Type-3 LSAs by the Area Border Routers London and Frankfurt (Step 3). On
the left-hand side of Area 0 the two Area Border Routers New York and Washington pick
up the Type-3 LSA and inject it into Area 47 (Step 4). Finally, all the areas see all routes.

This behaviour is exactly the problem with scaling in a plain-vanilla OSPF setup:
Smaller routers in the non-zero area get overwhelmed by a massive amount of routes.

Domain-wide Prefix Distribution 329

O
S

P
F

 A
re

a
11

O
S

P
F

 A
re

a
47

O
S

P
F

 A
re

a
0

B
ac

kb
on

e

P
en

n
sa

u
ke

n

F
ra

n
kf

u
rt

L
o

n
d

o
n

W
as

h
in

g
to

n

N
ew

 Y
o

rk

P
ar

is

A
m

st
er

d
am

S
to

ck
h

o
lm

V
ie

n
n

a
M

u
n

ic
h

A
tl

an
ta

M
ia

m
i

S
an

 J
o

se

S
an

 F
ra

n

1
2

3
4

1
2

4
3

FI
G

U
R

E
12

.1
3.

O
SP

F
le

ak
s

al
l p

re
fix

es
 in

to
 a

ll
ar

ea
s,

w
hi

ch
 is

 o
ne

 o
f

O
SP

Fs
 s

ca
lin

g
ha

rm
s

330

Domain-wide Prefix Distribution 331

Typically, leakage of all routes into the non-zero areas is not necessary. All that the non-
zero area needs to know is the area internal routes and a default route that points to the
Area Border Routers.

IS-IS has much better scaling properties in that respect. Consider Figure 12.14. Very
much like OSPF, IS-IS passes on Level 1 information to Level 2. However, the other
direction is by default blocked: Level 1 routers have to rely on a default route generated
by the L1L2 routers.

Flooding just a default route is clearly a very scalable approach; however, the use of
the default route as the only routing information pointing towards the ATTached Level 2
router is very unspecific information. Sometimes it is necessary to trade protocol scal-
ability for optimality of traffic flow. The side effect of unspecific information can be sub-
optimal routing, as shown in Figure 12.15. Traffic towards 192.168.1.13/32 gets attracted
to the closest L1L2 router, which is Router Barcelona, due to a lower metric of the
default-route 0/0 of 2000, although from a total routing metric perspective, sending the traf-
fic straight to the L1L2 Router Milan would be more optimal. The sub-optimal path-cost
Madrid-Barcelona-Paris-Frankfurt is 22000. The more optimal path would be Madrid-
Milan-Frankfurt with a composite path-cost of 11500. The use of unspecific routing-
information makes IS-IS have a kind of “blind spot” and results in sub-optimal routing.

RFC 2966 lifts that strict requirement to pass just the default 0/0 route down to Level 1 and
allows leaking of prefixes from Level 1 to Level 2. Additionally, RFC 2966 allows external
routes to exist in Level 1, which was strictly forbidden according to RFC 1195. But allowing
the routes to flow from Level 2 to Level 1 is still not enough, as shown in Figure 12.16.

Suppose some router, located beyond Paris in Level 2 originates (among others) its
loopback IP address, either in the internal IP Reachability TLV #128 or the Extended IP
Reachability TLV #135. Barcelona re-distributes the 192.168.1.1/32 prefix into Level 1.
The Level-1 LSP travels through Level 1 finally arriving at Milan. Milan does what every
L1L2 router has to do, and accepts unconditionally all Level-1 IP prefixes and injects
them into Level 2. This creates a wonderful routing loop as from this point on nobody really
knows where the route really did originate. Therefore a Marker Bit is needed to mark
routes that have been marked as Leaked from Level 2 to Level 1. Additionally, all L1L2
routers need to suppress prefixes where the Marker Bit is set and not propagate them fur-
ther. The Marker Bit is called, in RFC 2966 terminology, the Up/Down Bit. The Extended
IP Reachability TLV #135 has had support for the Up/Down Bit from the beginning.

The old (RFC 1195) style TLVs do not have support for the Up/Down Bit in the ori-
ginal specification, because none of the original authors was aware that too much scal-
ability could lead to a problem. RFC 2966 also redefines the MSB of the default-metric
for the two old-style IP Reachability TLVs #128 and #130. Per RFC 1195, the MSB of
the default-metric was specified as Reserved and should therefore be set to zero. See
Figure 12.17 and Figure 12.18 for the revised version of the old-style TLVs.

12.6.1 Leaking Level-2 Prefixes into Level 1
In both IOS and JUNOS the default behaviour of IS-IS is RFC 1195 compliant and does
not leak L2 prefixes from Level 2 to Level 1. When you want certain prefixes to leak
through you have to explicitly configure that.

A
re

a
49

.0
00

1
Le

ve
l 2

-o
nl

y
A

re
a

49
.0

20
0

A
re

a
49

.0
10

0

P
en

n
sa

u
ke

n

F
ra

n
kf

u
rt

L
o

n
d

o
n

W
as

h
in

g
to

n

N
ew

 Y
o

rk

P
ar

is

A
m

st
er

d
am

S
to

ck
h

o
lm

V
ie

n
n

a
M

u
n

ic
h

A
tl

an
ta

M
ia

m
i

S
an

 J
o

se

S
an

 F
ra

n

1

3

1

3

0/
0

0/
0

0/
0

0/
0

FI
G

U
R

E
12

.1
4.

IS
-I

S
su

pp
re

ss
es

 p
er

 d
ef

au
lt

L
ev

el
 2

 r
ou

tin
g

in
fo

rm
at

io
n

to
 L

e v
el

 1

332

Domain-wide Prefix Distribution 333

Area 49.0001
Level 2-only

Area
49.0300

192.168.1.13/32

Barcelona Milan

RomeMadrid

FrankfurtParis

0/0 0/0

10000

1000010000

1500

20002000

1500 1500

FIGURE 12.15. Injection of default routes often causes sub-optimal routings

Area 49.0001
Level 2-only

Area 49.0300

192.168.1.1/32

Barcelona Milan

RomeMadrid

FrankfurtParis

1

3

4

5

2

FIGURE 12.16. Leaked-down prefixes need to get marked, otherwise routing loops will form

334 12. IP Reachability Information

TLV Type

TLV Length

IP Address

128

Bytes

1

1

1

1

1

1

4

4

N*12

Default MetricI/E
0

Delay MetricS
1

I/E
0

Expense MetricS
1

I/E
0

Error MetricS
1

I/E
0

1

1

1

1

Default MetricI/E
0

Delay MetricS
1

I/E
0

Expense MetricS
1

I/E
0

Error MetricS
1

I/E
0

SUbnet Mask

IP Address 4

4SUbnet Mask

U/D

U/D

FIGURE 12.17. RFC 2966 redefines the MSB of the default-metric of TLV #128 to support the
Up/Down Bit

In IOS there are two possible ways to leak prefixes from Level 2 to Level 1. The first
one controls the leaking via an extended access list. The second one controls route leak-
ing via a route-map. In the following examples, depending on the application, both methods
are used. For smaller networks, where the loopback IP addresses of all the routers in a
network fall under a common network prefix, the access-list options is typically good
enough. The following IOS configuration leaks prefixes, which match the extended
access list 166 from Level 2 to Level 1.

IOS configuration
Using the redistribute isis ip level-2 into level-1 distribute-list command
the network administrator can specify an extended IP access list which matches prefixes
based on a simple prefix/wildcard bit scheme for leaking from the Level 2 database into
the Level 1 database.

Amsterdam# show running-config

[…]

Domain-wide Prefix Distribution 335

TLV Type

TLV Length

IP Address

130

Bytes

1

1

1

1

1

1

4

4

N*12

Default MetricI/E
0

Delay MetricS
1

I/E
0

Expense MetricS
1

I/E
0

Error MetricS
1

I/E
0

1

1

1

1

Default MetricI/E
0

Delay MetricS
1

I/E
0

Expense MetricS
1

I/E
0

Error MetricS
1

I/E
0

SUbnet Mask

IP Address 4

4SUbnet Mask

U/D

U/D

FIGURE 12.18. RFC 2966 redefines the MSB of the default-metric of TLV #130 to support the
Up/Down Bit

router isis

redistribute isis ip level-2 into level-1 distribute-list 166

passive-interface Loopback0

net 49.0001.1921.6816.8007.00

metric-style wide

!

access-list 166 permit ip 192.168.0.0 0.0.0.255 any

access-list 166 permit ip 192.168.168.0 0.0.0.255 any

[…]

IOS command output
Using the show isis database command you can spot the leaked prefixes.

Amsterdam# show isis database Amsterdam.00-00 detail

IS-IS Level-1 LSP Amsterdam.00-00

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

Amsterdam.00-00 * 0x00000003 0x94B7 1193 0/0/0

336 12. IP Reachability Information

Area Address: 49.0001

NLPID: 0xCC

Hostname: Amsterdam

IP Address: 192.168.0.166

Metric: 0 IP 192.168.0.166/32

Metric: 10 IP 172.26.26.0/24

Metric: 10 IS-Extended London.00

Metric: 40 IP-Interarea 192.168.168.3/32

Metric: 30 IP-Interarea 192.168.168.4/32

Metric: 20 IP-Interarea 192.168.168.5/32

Metric: 20 IP-Interarea 192.168.168.6/32

Leaked IP prefixes are prepended via the keyword IP-Interarea that is printed if
the Down Bit is found in one of the IP Reach TLVs.

In JUNOS policy processing there is always a default policy for each routing protocol.
The default policy for IS-IS is to reject Level 2 routers from inclusion in the Level 1 data-
base. If you want to change that behaviour then you need to write a policy and call it
using the export statement. This causes your Level 2 prefixes being evaluated before
the default policy has chance to reject it.

JUNOS configuration
In JUNOS the most important task is writing the policy. The policy-statement leak-L2-
to-L1 is a single term policy and it consists of three parts.The from portion reads like “if”
and the keywords route-filter, protocol, level are ANDed together. That is, if the
prefix is originated within protocol isis AND it is Level 2 AND it falls under the route-filter
192.168.0/24 OR 192.168.168/24 THEN put it into the IS-IS Level 1 database.

[edit]

hannes@Frankfurt# show

[…]

protocols {

isis {

export leak-L2-to-L1;

}

}

policy-options {

policy-statement leak-L2-to-L1 {

from {

route-filter 192.168.0.0/24 orlonger;

route-filter 192.168.168.0/24 orlonger;

protocol isis;

level 2;

}

to {

protocol isis;

level 1;

Domain-wide Prefix Distribution 337

}

then accept;

}

}

[…]

Using the show isis database detail command you can verify if your prefixes
have been leaked correctly.

JUNOS command output
In JUNOS the leaked prefixes are marked with the Down Bit.

hannes@Frankfurt> show isis database detail

IS-IS level 1 link-state database:

Frankfurt.00-00 Sequence: 0x7, Checksum: 0x8cbb, Lifetime: 1187 secs

IS neighbor: London.00 Metric: 10

IP prefix: 172.26.26.0/24 Metric : 10 Internal Up

IP prefix: 192.168.0.167/32 Metric : 0 Internal Up

IP prefix: 192.168.168.3/32 Metric : 40 Internal Down

IP prefix: 192.168.168.4/32 Metric : 30 Internal Down

IP prefix: 192.168.168.5/32 Metric : 20 Internal Down

IP prefix: 192.168.168.6/32 Metric : 20 Internal Down

[…]

In the output you can identify leaked prefixes based on the down keyword, which is
printed if the Down Bit is found in one of the IP Reachability TLVs.

12.6.2 Leaking Level-1 External Prefixes into Level 2
RFC 1195 explicitly forbids the use of External IP Reachability TLVs in Level 1. RFC
2966 loosens that restriction as well and allows injecting external information, such as
from another routing protocol (RIP, OSPF, BGP, statics), into IS-IS as well. This is par-
ticular useful when networked-technology does not speak IS-IS or not even a routing
protocol, and the network has to use static routes to inject reachability information. At
this point, the authors do not want to encourage injection of reachability information
(such as customer prefixes or dial-pools) into IS-IS. In modern network designs, all
reachability information is typically carried into BGP, as BGP scales much better with
respect to transporting massive amounts of routes. More consideration of these points
will be covered in Chapter 16, which deals with IS-IS related network design issues and
best current practices. If wide metrics are used in the network then that section can be
skipped: the Extended IP Reachability TLV #135 has no notion of internal versus exter-
nal prefixes and therefore all Level-1 prefixes get leaked to the Level-2 by default.

In IOS you can inject external information from Level 1 to Level 2 via a simple redis-
tribute isis ip level-2 into level-1 command. IOS transfers all routes
that match the access list 155 from Level 1 to Level 2 irrespective of whether it is an
external or an internal route.

338 12. IP Reachability Information

IOS configuration
Like the Level 2 to Level 1 redistribution in IOS you can specify a Level 1 to Level 2 redis-
tribution list which points either to a route-map or to an extented access list.

Amsterdam# show running-config

[…]

router isis

redistribute isis ip level-2 into level-1 distribute-list 155

passive-interface Loopback0

net 49.0001.1921.6816.8007.00

metric-style wide

!

access-list 155 permit ip 10.0.0.0 0.0.255.255 any

[…]

JUNOS makes distinction between internal or external prefixes. If you want to inject
external prefixes into the Level 2 of your network you need to match against the exter-
nal keyword in your routing-policy.

JUNOS configuration
The default policy for leaking external prefixes from Level 1 to Level 2 is reject. If you
want to pre-empt the default policy you have to chain-in a policy called leak-ext-L1-to-
L2 which catches all external Level 1 routes which match the 10.0/16 prefix.

[edit]

hannes@Frankfurt# show

[…]

protocols {

isis {

export leak-ext-L1-to-L2;

}

}

policy-options {

policy-statement leak-ext-L1-to-L2{

from {

route-filter 10.0.0.0/16 orlonger;

protocol isis;

external;

level 1;

}

to {

protocol isis;

level 2;

}

then accept;

}

}

[…]

Domain-wide Prefix Distribution 339

Notice the access lists and route filters that control the leakage between the two levels.
It turned out that managing these access lists is a particular pain for large networks. Every
time you deploy new routers whose loopback IP addresses need to be leaked then you
need to touch all L1L2 routers in your network adjusting the access lists. Most ISPs mit-
igated the problem by assigning blocks of loopback addresses to different POPs. The
access lists on the L1L2 routers therefore only need to be touched if a block in the POP
is fully allocated. Another common practice is to filter based on a prefix length such as
/32. Therefore only the loopback IP addresses get leaked – while this may seem as a
modest approach for medium-sized networks it clearly does not scale for large networks.
The largest networks in the world consist of about 7000–8000 IS-IS speaking routers.
Leaking all 8000 prefixes at every L1L2 router may overwhelm the smaller routers in the
POP. So what is needed is a more selective way of picking off the /32s from Level 2.

12.6.3 Use of Admin Tags for Leaking Prefixes
Most routing protocols support a tagging mechanism to enforce a route-redistribution
policy. IS-IS has a similar extension formulated in draft-martin-neal-policy-isis-admin-
tags.txt. The draft mentions two optional sub-TLVs to the Extended IP Reachability TLV
#135 carrying 32-bit and 64-bit tags. Figure 12.19 shows how these administrative tags
are being used in large-scale deployments. First, each interesting /32 prefix (in the figure
it is Quebec’s prefix 192.168.1.13/32) is tagged on the default leakage from Level 1 to
Level 2. Interesting typically means all those routers that rely on a proper IGP metric like
public Internet routing. In our example, the Tag #200 is used for all Internet routers that
carry Internet routes. The L1L2 routers Boston and Chicago attach the Tag #200 along with
the route. Next, those tagged prefixes travel through the Level-2. On the egress L1L2
routers (Frankfurt and Paris) the leaking policy now gets very simple as all we have to
look for is Tag #200 to find out whether to leak the prefix or not. The policy needs to be
configured only once and then all you have to do is properly tag the prefixes and your
network will act accordingly.

In the following two configurations you will see two configurations for IOS and two
configurations for JUNOS. The first of the two respective configurations does the tagging
and the second one does the leakage based on the existence of a tag.

Applying admin tags is fairly simple in IOS. An admin tag is typically an interface prop-
erty and can be set using the keyword isis tag <tag>.

IOS configuration
In IOS you set the Admin tag typically on the Loopback Interface. Using the show isis
database London.00-00 level-1 verbose you can verify if the Admin tag has been
successfully attached to your Loopback route.

London# show running-config

[…]

interface Loopback0

ip address 192.168.0.166 255.255.255.255

isis tag 200

!

340 12. IP Reachability Information

Area 49.0001
Level 2-only

Ar
ea

 4
9.

03
00

Ar
ea

 4
9.

04
00

Pennsauken

Frankfurt

London

Washington

New York

Paris

 Tag 200

 Tag 200

Barcelona

Milan

Rome

Madrid

Montreal

Chicago

Boston

Quebec

192.168.1.13/32

192.168.1.13/32

�Tag 200

192.168.1.13/32

�Tag 200

FIGURE 12.19. Admin tags are a convenient way of implementing an AS-wide policy for
leaking /32s

IOS command output
London#show isis database London.00-00 level-1 verbose

IS-IS Level-1 LSP London.00-00

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

London.00-00 * 0x00000010 0x574C 819 0/0/0

Area Address: 49.0001

NLPID: 0xCC

Hostname: London

IP Address: 192.168.0.166

Metric: 0 IP 192.168.0.166/32

Route Admin Tag: 200

Domain-wide Prefix Distribution 341

Metric: 10 IP 172.26.26.0/24

Metric: 10 IS-Extended London.00

[…]

The second IOS policy now needs to match against all previously tagged prefixes. See
the example below, which uses a route-map for achieving that purpose.

IOS configuration
To match against the previously tagged prefixes you need to unconfigure the redistribute
isis ip level-2 into level-1 distribute-list 166 command and use the redis-
tribute isis ip level-2 into level-1 route-map command instead. This com-
mands points to a route-map, which has far more fine-grained control than an access list
would offer.

London# show running-config

router isis

redistribute isis ip level-2 into level-1 route-map

leak-tagged-L2-to-L1

passive-interface Loopback0

net 49.0001.1921.6816.8007.00

metric-style wide

!

route-map leak-tagged-L2-to-L1 permit 10

match tag 200

!

[…]

The route-map leak-tagged-L2-to-L1 is fairly simple. It permits all prefixes,
which carry the tag 200 and report it back to the IS-IS redistribution process for inclu-
sion in the Level-1 database.

You can verify the results of your policy by using the show isis database
<lsp-id> verbose command. The verbose modifier also displays the Admin
tags, which the detail modifier does not.

IOS command output
London#show isis database London.00-00 level-1 verbose

IS-IS Level-1 LSP London.00-00

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

London.00-00 * 0x0000000D 0x8140 797 0/0/0

Area Address: 49.0001

NLPID: 0xCC

Hostname: London

IP Address: 192.168.0.166

342 12. IP Reachability Information

Metric: 0 IP 192.168.0.166/32

Metric: 10 IP 172.26.26.0/24

Metric: 10 IS-Extended Frankfurt.00

Metric: 20 IP-Interarea 192.168.168.5/32

Route Admin Tag: 200

[…]

In JUNOS we need to perform the same two steps. First all the routers in the network
need to tag all their loopback networks using the tag #200. This is achieved by applying
the policy tag-lo0.

JUNOS configuration
In JUNOS the tagging is done once again via a policy. The policy tag-lo0 reads as: take
all IP addresses from your logical interface lo0.0 and apply an IS-IS tag #200 to it.

[edit]

hannes@Frankfurt# show

[…]

protocols {

isis {

export tag-lo0;

}

}

policy-options {

policy-statement tag-lo0 {

from {

interface lo0.0;

}

then {

accept;

tag 200;

}

}

}

[…]

You can verify if the tag has been correctly applied using the show isis database
extensive output and spot the TLVs section of that output.

hannes@Frankfurt> show isis database Frankfurt extensive

IS-IS level 1 link-state database:

Frankfurt.00-00 Sequence: 0x5, Checksum: 0x47da, Lifetime: 1171 secs

[…]

TLVs:

Area address: 49.0001 (3)

Speaks: IP

Domain-wide Prefix Distribution 343

Speaks: IPv6

IP router id: 192.168.168.5

IP address: 192.168.168.5

Hostname: Frankfurt

[…]

IP extended prefix: 192.168.168.5/32 metric 0 up

6 bytes of subtlvs

Administrative tag 1: 200

IP extended prefix: 172.16.33.5/30 metric 0 up

No queued transmissions

If your policy is working correctly you should see the tag #200 applied to your loop-
back IP prefix. The tag is encoded using a sub-TLV to the Extended IP Reach TLV #135.

Now if everything is tagged correctly we change our leak-L2-to-L1 policy to match
against the presence of Admin tags rather than specifying a list of cumbersome and error-
prone route-filters.

JUNOS configuration
The old leak-L2-to-L1 policy is renamed to leak-tagged-L2-to-L1 – additionally the
from route-filter statements are removed and the tag statement is inserted as pri-
mary identifier for routes that need to get leaked.

[edit]

hannes@Frankfurt# show

[…]

protocols {

isis {

export leak-tagged-L2-to-L1;

}

}

policy-options {

policy-statement leak-tagged-L2-to-L1 {

from {

tag 200;

protocol isis;

level 2;

}

to {

protocol isis;

level 1;

}

then accept;

}

}

[…]

Using Admin tags for route leaking is a powerful tool that you will not like to miss in
medium-to large-sized networks. Also interoperability between IOS and JUNOS is

344 12. IP Reachability Information

mature now and there are no reasons not to deploy it. As with the introduction of com-
munities for iBGP routing it takes some time to set up all the tagging policies but once
done you will enjoy not needing to administer access lists any more.

12.7 Conclusion

The IP Reachability TLVs have been facing constant evolution and change. First intro-
duced in RFC 1195, later redefined in RFC 2966 and today obsoleted by the traffic engin-
eering drafts, a variety of TLVs conveying IP reachability information is found in today’s
IS-IS networks. There is no indication that this evolution will stop and when looking at
all these changes one thing remains certain: the process of change itself. The open nature
of the Extended IP Reachability TLVs make sure that the protocols can and will be fur-
ther extended. The Admin tag and multitopology drafts continue to further evolve the
IP Reachability TLVs.

Comparing IS-IS based on the root specification ISO 10589 to how IS-IS is deployed
today shows that almost none of the original TLVs are in use anymore. What still is
almost unchanged are the original frame formats and PDU headers, another proof that
IS-IS is an easily extended routing protocol.

In recent years many extensions for a variety of diverse applications have been speci-
fied and then deployed. Those enhancements are sometimes of a very different nature,
ranging from name resolution functions, which are aimed to ease operations and man-
agement, to supporting new network address families like IPv6. There are even exten-
sions that put “band-aids” on general protocol weaknesses like missing checksums in
certain PDU types. Some go as far as to question the suitability of a single SPF calcula-
tion operation for a joint IPv4 and IPv6 topology.

This chapter covers the major IS-IS protocol extensions that have not yet been cov-
ered. It highlights recent enhancements, for example for IPv6, additional checksum pro-
tection, stronger authentication, multitopology SPF and graceful restart capability.

13.1 Dynamic Hostnames

The entity to uniquely describe an IS-IS router in a given topology is the System-ID. The
System-ID is a 48-bit (6 byte) field that really does not fit in anywhere in the IP universe.
This reveals two operational problems regarding the System-ID once deployed:

• It is hard to memorize
• It is hard to translate (resolve) to a name

Consider the CLI output below. If a NOC engineer needs to verify if a certain adja-
cency is up, they need to check lists and manually map the System-IDs to a router name.
Luckily in our example the routers’ loopback addresses are mapped to the System-ID
using a binary coded decimal (BCD) scheme.

JUNOS command output
hannes@Frankfurt> show isis adjacency

Interface System L State Hold (secs) SNPA

so-0/0/0.0 1921.6800.1017 2 Up 25

so-0/2/0.0 1921.6800.1012 2 Up 26

345

13

IS-IS Extensions

so-1/0/0.0 1921.6800.1019 2 Up 22

so-1/1/0.0 1921.6800.1018 1 Up 20

so-1/2/0.0 1921.6800.1021 2 Up 22

so-2/0/0.0 1921.6800.1022 2 Up 24

so-2/1/0.0 1921.6800.1023 1 Up 26

[…]

It is often possible to make the router translate Network Layer addresses to names
using the Domain Name System (DNS). While utilizing the DNS for IPv4 and IPv6
addresses may be a viable solution, it is not for System-IDs. No DNS software today, nor
any client resolver at the router, supports translation for these 48-bit entities.

To get a name translation service up and running, network service providers started to
maintain mapping tables for name resolution.

In IOS you can manually configure those mapping tables using the clns host con-
figuration command.

IOS configuration
The clns host configuration option translates names to a NSAP prefix. If you want to
use it just for System-ID translation then enter the minimal NSAP (8-bytes) and set the
Area-ID (first byte) and Selector Byte (last byte) to zero.

London#show running-config

[…]

clns host Pennsauken 00.1921.6800.1021.00

clns host New-York 00.1921.6800.1021.00

clns host Washington 00.1921.6800.1021.00

clns host Frankfurt 00.1921.6800.1021.00

clns host Paris 00.1921.6800.1021.00

[…]

In JUNOS you can manually configure static name to System-ID mappings using the
static-host-mapping keyword under the system {} stanza:

JUNOS configuration
hannes@Frankfurt> show configuration

system {

[…]

static-host-mapping {

Pennsauken sysid 1921.6800.1017;

London sysid 1921.6800.1012;

New-York sysid 1921.6800.1019;

Washington sysid 1921.6800.1021;

Paris sysid 1921.6800.1022;

}

}

[…]

346 13. IS-IS Extensions

Maintaining a mapping table on all of the routers is an easy thing if the network consists
just of six routers like the example network does. However, over time it is very awkward to
distribute mapping information each time a router is added, changed or removed. Relying on
an external server like the DNS is not a viable choice either. If you troubleshoot your IS-IS
network because there is a problem, then there may be a situation where connectivity to the
name resolution server is disrupted and you have to fall back to manual translation. The best
troubleshooting tool can be a problem if it does not work as expected when you need it most.

The ISIS-WG of the IETF found that the best place for a System-ID to name transla-
tion service is actually the routing protocol itself. RFC 2763 describes a TLV to advertise
hostnames along with a router’s LSP to distribute name to System-ID mapping informa-
tion throughout a given level. The dynamic Hostname TLV is illustrated in Figure 13.1.
The TLV is nothing but a freeform string that conveys the router’s hostname. Usually the
hostname is one of the very first things initially configured on a router.

IOS configuration
Setting of the hostname causes not only the prompt to change. Additionally the host-
name is advertised using TLV #137.

London#show running-config

[…]

hostname London

!

JUNOS configuration
In JUNOS the hostname is set inside the system {} stanza using the hostname key-
word.

hannes@Frankfurt> show configuration

system {

host-name Frankfurt;

[…]

}

Dynamic Hostnames 347

Type

Length

Hostname

137

Bytes

1

1

1–255

FIGURE 13.1. The dynamic Hostname TLV #137 is an envelope for transporting a simple
ASCII string

As soon as you change the router’s hostname two things happen:

• The router prompt changes to use the new name
• A new LSP is issued, and the Hostname TLV #137 contains the new name

Once a router receives an LSP and it detects the presence of a Hostname TLV #137, it
starts to maintain a hostname to System-ID cache. As soon as the router synchronizes
with one of its adjacent routers it learns all LSPs and, as a side benefit, all the known
System-ID to name mapping information is learned.

The tcpdump output shows the Washington LSP.

Tcpdump output
11:36:45.587565 OSI, IS-IS, length: 405

L2 LSP, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

lsp-id: 1921.8900.1021.00-00, seq: 0x000002fd, lifetime: 1198s

chksum: 0xe984 (correct), PDU length: 405, Flags: [L1L2 IS]

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Protocols supported TLV #129, length: 2

NLPID(s): IPv4 (0xcc), IPv6 (0x8e)

Traffic Engineering Router ID TLV #134, length: 4

Traffic Engineering Router ID: 192.168.1.21

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 192.168.1.21

Hostname TLV #137, length: 10

Hostname: Washington

Extended IS Reachability TLV #22, length: 75

IS Neighbor: 2092.1113.4007.00, Metric: 5, sub-TLVs present (64)

IPv4 interface address subTLV #6, length: 4, 172.16.33.6

IPv4 neighbor address subTLV #8, length: 4, 172.16.33.5

[…]

All receiving routers extract the first six bytes of the LSP-ID (System-ID) plus the
content of the Hostname TLV #137 to populate the hostname cache.

You can display the hostname to System-ID mapping cache using the show isis
hostname command which is available both on IOS and JUNOS.

JUNOS command output
In JUNOS you can display the System-ID to name cache using the show isis host-
name command. The output shows if the mapping has been learnt by receipt of
a Hostname TLV #137 (Type � Dynamic) or a static mapping defined under the system
{} stanza (Type � Static). The local router always has its type set to Static.

348 13. IS-IS Extensions

hannes@Frankfurt> show isis hostname

IS-IS hostname database:

System ID Hostname Type

1921.6800.1017 Pennsauken Dynamic

1921.6800.1012 London Dynamic

1921.6800.1019 New-York Dynamic

1921.6800.1021 Washington Dynamic

1921.6800.1008 Frankfurt Static

1921.6800.1022 Paris Dynamic

1921.6800.1018 Stockholm Dynamic

1921.6800.1023 Munich Dynamic

1921.6800.1024 Vienna Dynamic

[…]

IOS command output
IOS lists additionally from which level it learned the hostname mappings. The asterisk
indicates that the information originated locally.

London# show isis hostname

Level System ID Dynamic Hostname (notag)

* 1921.6800.1012 London

2 1921.6800.1017 Pennsauken

2 1921.6800.1019 New-York

2 1921.6800.1021 Washington

2 1921.6800.1008 Frankfurt

2 1921.6800.1022 Paris

1 1921.6800.1018 Stockholm

1 1921.6800.1023 Munich

1 1921.6800.1024 Vienna

If there is no hostname in the hostname cache, then most likely the router in question
does not originate the Hostname TLV as part of its link-state PDU.

Dynamic Hostnames 349

TABLE 13.1. The IS-IS Name Resolver replaces the System-ID by the cached
Hostname string.

Hexadecimal representation Name representation

System-ID 1921.6800.1017 Pennsauken
Node-ID 1921.6800.1017.00 Pennsauken.00
LSP-ID 1921.6800.1017.00-00 Pennsauken.00-00

You can verify that the dynamic Hostname TLV is present by looking into the link-
state database:

JUNOS command output
The presence of a Hostname line in the show isis database extensive output shows
that the originating system did add the Hostname TLV.

hannes@Frankfurt> show isis database extensive

[…]

TLVs:

Area address: 49.0001 (3)

Speaks: IP, IPv6

IP router id: 192.168.1.18

IP address: 192.168.1.18

Hostname: Stockholm

IS neighbor: Frankfurt.00, Metric: 1

IP address: 172.16.33.45

[…]

IOS command output
London#show isis database verbose 1921.6800.1047.00-00

IS-IS Level-2 Link State Database:

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

1921.6800. * 0x00000040 0xD323 491 0/0/0

1047.00-00

Area Address: 49.0001

NLPID: 0x81

IS neighbor: Vienna.02, Metric: 63

[…]

The LSP shown in the IOS command output does not contain the Hostname TLV. As
it does not list any IP-related TLVs it may be that this is a CLNS-only router that is prob-
ably running older software that does not support the Hostname TLV.

If the hostnames made their way into the hostname cache, then all IS-IS occurrences of the
System-ID are replaced using their respective name. See Table 13.1 for how Pennsauken’s
System, Node and LSP-IDs are represented using the new name resolution service.

Today IS-IS is one of the most convenient routing protocols. It aids the network engin-
eer and troubleshooter by offering a kind of distributed name service. All of the IS-IS-
related display functions like displaying adjacencies, examining the link-state database
or logging functions make use of a System-ID to hostname translation cache and display
System-IDs, Node-IDs and LSP-IDs with their name rather than their hexadecimal rep-
resentation.

The next extension to IS-IS will cover the authentication scheme of LSPs and their
implementation.

350 13. IS-IS Extensions

13.2 Authenticating Routing Information

Authenticating routing protocol messages is a basic building block for every network
security strategy. Some people argue that authentication is pushing the envelope for
IS-IS since all the messages run natively on Layer 2, which means that the protocol
cannot be exposed to a remote attack from the Internet because there is simply no possi-
bility for transporting a Layer-2 frame over the Layer-3 infrastructure. This is just
another way to say “you can’t route a frame”.

An attacker needs to have local, physical access to inject malicious information.
Others argue that an additional barrier like authentication helps to keep out the errors
introduced by, for example, unskilled NOC personnel. One application is that new IS-IS
adjacencies cannot be created on an interface without knowing the password beforehand
(this is just one example).

Both attacks and errors are cases where the use of authenticating PDUs makes sense.
ISO 10589 defines a dedicated Authentication TLV for confirming the authenticity of the
PDU. Figure 13.2 shows the structure of this TLV.

The Authentication TLV uses a field called Authentication Type to further indicate
how the password is encoded. Currently there are two encoding methods defined:

• Simple Text Authentication
• HMAC-MD5

The left-hand side of Figure 13.2 shows the formatting of the TLV if Simple Text
Authentication is used. The password is a free-form string that can be between 1 and 254
bytes in size. On the right-hand side there is the formatting of TLV #10 if HMAC-MD5
Authentication is used. The size is fixed to 16 bytes and contains a MD5 sum of the entire
packet.

Authenticating Routing Information 351

Type

Length

Authentication Type

10

Bytes

1

1

1–254

Type

Length

Authentication Type

10

Bytes

1

1

16Plain Text Password HMAC-MD5 Password

1 1

17

171

FIGURE 13.2. The Authentication TLV #10 supports two different authentication types

13.2.1 Simple Text Authentication
Code point 1 indicates simple text encoding of the password. Simple text encoding
means that the password is encoded clear text. The following tcpdump output shows that
the password contained in the IIH is transported clear text over the circuit.

Tcpdump output
11:35:23.248504 OSI, IS-IS, length: 52

p2p IIH, hlen: 20, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 1921.6800.1009, holding time: 27s, Flags: [Level 2 only]

circuit-id: 0x01, PDU length: 52

Point-to-point Adjacency State TLV #240, length: 1

Adjacency State: Up (0)

Protocols supported TLV #129, length: 2

NLPID(s): IPv4 (0xcc), IPv6 (0x8e)

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 172.16.33.6

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Authentication TLV #10, length: 11

simple text password: LeiaOrgana

The dilemma of clear text passwords is obvious, and more so if routers are connected
via broadcast circuits. Consider Figure 13.3 – routers and servers are connected over a LAN
infrastructure like, for example, Ethernet Switches. Recall from Chapter 4, “IS-IS Basics”,
that all the IS-IS messages on LANs are sent using functional MAC addresses AllL1ISs
(0180:c200:0014) for Level 1 PDUs and AllL2ISs (0180:c200:0015) for PDUs aimed at
Level 2. Note that these functional MAC addresses have the lowest bit of their most sig-
nificant byte (MSB) set. The lowest bit of the MSB of the Destination MAC Address is
also the “Broadcast Bit” which makes LAN switches treat it like a broadcast, that is, to
flood it out on all ports. Ultimately all ports on the LAN switch see the Hello with the clear
text password, which makes it far too easy for eavesdroppers to get hold of the password.

If a hacker gets access to a server, all they have to do is run a network analyzer such
as tcpdump to sniff the IS-IS passwords and then the hacker has all they need: direct
network access and the password used for authenticating network updates. Now it is easy
to inject malicious routing updates and to take down the entire network. Therefore sim-
ple text authentication provides just a marginal additional protection.

352 13. IS-IS Extensions

Ethernet
Amsterdam.00 Stockholm.00

IS-IS PDU

Broadcast

Server Server

FIGURE 13.3. Each device connected to the LAN infrastructure receives IS-IS-related messages
because the Destination MAC address has the Broadcast Bit set

13.2.2 HMAC-MD5 Authentication
The second encoding scheme is to use HMAC-MD5 hashes for securing the routing
updates. By using MD5 hashes the password does not travel clear text over the circuit.
The HMAC-MD5 algorithm is documented in RFC 2104. It describes a one-way opera-
tion to get a hash based on a bit field and a shared secret password. One-way function
means that, based on the hash and the bit field, the password cannot be reconstructed.

The authentication type for HMAC-MD5 is 54 and it is always using a fixed length of 16
bytes. The following tcpdump output shows the 16-byte output of the hash. Note the TLV
length is 17 bytes because the first byte is reserved for the Authentication Type field.

Tcpdump output
11:35:27.216425 OSI, IS-IS, length: 58

p2p IIH, hlen: 20, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 1921.6800.1008, holding time: 27s, Flags: [Level 2 only]

circuit-id: 0x01, PDU length: 58

Point-to-point Adjacency State TLV #240, length: 1

Adjacency State: Up (0)

Protocols supported TLV #129, length: 2

NLPID(s): IPv4 (0xcc), IPv6 (0x8e)

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 172.16.33.6

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Authentication TLV #10, length: 17

HMAC-MD5 password: a933242e676df1275e323b648ab5e387

13.2.3 Weaknesses
In contrast to OSPF, IS-IS lacks cryptographic sequence numbers. This means IS-IS is not
prone to so-called “replay attacks”. A replay attack means that an attacker is recording
messages and replaying them at a later time in order to do something harmful. Using
replay attacks it is quite easy to tear down an existing adjacency. Consider Figure 13.4.
The hacker is constantly eavesdropping on a LAN and trying to record IS-IS IIH (Hello)
messages in order to launch a replay attack. The first set of packets for adjacency estab-
lishment are of particular interest. Consider the adjacency finite state machine mentioned
in Figure 5.16 in Chapter 5, “Neighbour Discovery and Handshaking”. The idea is to
catch the message when the router is transitioning from the New to the Init state and to
replay that message at a later time.

Replaying a pre-recorded Hello that reports an Init state when the adjacency is already
established immediately moves it to the Down state. The receiver has no chance of
detecting that this is an attack, as the IIH is properly authenticated.

Of course, a few packet exchanges after the attack, the adjacency would move again to the
Up state as the periodic Hellos from both Amsterdam and Stockholm declare the adjacency
Up again. However, flapping adjacencies have a severe impact on the rest of the network
because new LSPs need to be generated; they need to get flooded throughout the network,
SPF calculations need to be scheduled and finally the new FIB state needs to get propagated

Authenticating Routing Information 353

to the forwarding planes. Even if the router OS supports protection techniques like adja-
cency hold down, the attack disrupts adjacencies for a period of time.

The way to prevent replay attacks is to add an element that is changed for every Hello
that is transmitted. By including a counter or Sequence Number (not to be confused with
the Sequence Number of the LSP) in the hashing, a replay attacker needs to wait 232

IS-IS packets in order to repeat an attack. Depending on the implementation-specific
protection timers, an attacker needs to wait more than a hundred years before he can suc-
cessfully repeat a pre-recorded message. The assumption here is that a router does not
generate more than one IS-IS PDU per second in order not to cycle too fast through the
sequence space. This assumption is absolutely valid, as most of the IS-IS PDU types are
rate-limited by the specification, like the LSP-min-generation-, CSNP- or Hello-Interval.

Up until now, no such sequencing mechanism has been deployed. Naiming Shen, a
development engineer with Redback, came up with a proposal for a new TLV on the IS-
IS-WG list in the IETF. Figure 13.5 illustrates the proposed Sequence Number TLV. The
basis structure of the TLV is to wrap a 32-bit number that is monotonically increasing.

Even if IS-IS is lacking in robustness against replay attacks, it is recommended to use
MD5 authentication when deploying an IS-IS network. Most of the harm that can be done
based on replay attacks can be avoided by network design techniques, such as not using
broadcast circuits in the core. Using replay attacks, an attacker can create some moderate
stress in other parts of the network. After all, modern routers have enough processing
power to withstand such moderate attacks. So the most impacted place in the network will

354 13. IS-IS Extensions

EthernetAmsterdam.00 Stockholm.00

IIH
Amsterdam

AllL1IS

Up

IIH
Stockholm

AllL1IS

Up

IIH
Stockholm

AllL1IS

Init

Server Server

FIGURE 13.4. An attacker replays a previously recorded message where the adjacency was in Init
state to tear it down

Type

Length

Sequence Number

241

Bytes

1

1

4

4

FIGURE 13.5. A monotonically increasing Sequence Number makes sure that the MD5-hash varies
for each transmitted Hello

be where the hacker is trying to cycle adjacencies through the Down state, which puts the
hacker on the spot because he needs to have a direct link to that network.

However, not using authentication may put a hacker in the position to attack any sys-
tem he wants to in the network and cause network-global stress that is not easily detected
in the first place. A nightmare for any NOC team.

13.2.4 Point-to-point Interfaces
Running authentication on point-to-point interfaces requires some explanation and caveats.
First, point-to-point interfaces are different from LAN interfaces regarding their PDU types.
Hello PDUs from the two levels need to share the point-to-point PDU type rather than hav-
ing their own, like LAN IIHs do. Those constraints were further explained in Chapter 5,
“Neighbour Discovery and Handshaking”. The fact that both levels need to share a PDU
type also has implications for authentication. Authentication in IS-IS always applies to the
entire PDU. If the PDU type is shared between levels, then a single password needs to be
shared for both levels as well. There is a potential for conflict in the configuration too, as (for
example) if two passwords (one for each level) are configured, then the router needs to make
a decision. In IS-IS the rule set is simple: for Hello authentication, the Level-1 password is
used. If there is no Level-1 password configured, then no Hello authentication is performed.

In the configuration example authentication for Hellos is turned on for both levels
using different passwords.

JUNOS configuration
The authentication-key HanSolo is configured for Level 2 and LeiaOrgana for Level 1
interface authentication. Because JUNOS scrambles all passwords, in the example we
have written down the password as commentary.

hannes@Frankfurt> show configuration

[…]

protocols {

isis {

[…]

interface so-0/1/2.0 {

level 2 {

hello-authentication-key “9dyVgJiHmTF/.P”; # HanSolo

hello-authentication-type simple; # SECRET-DATA

}

level 1 {

hello-authentication-key “9c-PSvLdVYoZjs25Q”; # LeiaOrgana

hello-authentication-type simple; # SECRET-DATA

}

}

interface lo0.0;

}

}

The tcpdump output reveals that only the Level-1 authentication key is used.

Authenticating Routing Information 355

Tcpdump output
For point-to-point IIH authentication the Level-1 password is used.

20:10:22.699068 OSI, IS-IS, length: 61

point-to-point IIH, hlen: 20, v: 1, pdu-v: 1, sys-id-len: 6 (0),

max-area: 3 (0)

source-id: 1921.6800.1008, holding time: 27s, Flags: [Level 1, Level 2]

circuit-id: 0x01, PDU length: 61

[…]

Restart Signaling TLV #211, length: 3

Flags [none], Remaining holding time 0s

Authentication TLV #10, length: 11

simple text password: LeiaOrgana

Authentication is today imperative for securing routing protocols. Most authentication
migrations have network-wide impact and require a strategy for gradually transitioning
the network.

13.2.5 Migration Strategy
There are three main authentication-related migration scenarios. All three migration sce-
narios have one assumption in common: it is not possible to change the entire network in
one “flag day” and there must not be any outage longer than (to cite a common example)
a single adjacency reset.

13.2.5.1 General Decisions and Routing Software Selection

Before starting to implement authentication in an IS-IS, two questions need to be
answered:

• What IS-IS PDU types need to be authenticated?
• What authentication type should be used?

The most likely answer is that HMAC-MD5 should be used as the authentication method
for all PDU types. Unfortunately, there are some restrictions in older routing software.
Particularly in IOS, IS-IS authentication has been neglected in the past. There are many
caveats as to what PDUs are authenticated and which authentication types are supported
in older releases of the IOS software. That has recently changed – as of 2004 there is full
authentication support for all PDU types and both authentication methods. Full support
has been available in versions equal or higher than IOS:

• 12.0(21)ST
• 12.2(11)S
• 12.0(22)S
• 12.2(13)T
• 12.2(14)S

356 13. IS-IS Extensions

If you do not have the choice, and are tied for some reason to a particularly IOS
software release, then please proceed to Section 13.2.7, “Interoperability”, which will
discuss an approach for making authentication work using older IOS releases.

Here are three authentication migration scenarios for an IS-IS network. The first of
the three migration scenarios is the “Greenfield” approach: transition from an entirely
unauthenticated IS-IS network to an authenticated one.

13.2.5.2 Greenfield Migration

The Greenfield migration strategy uses asymmetric authentication. The term “asymmet-
ric” refers to the ways how and if authentication information is sent and verified.
Asymmetric authentication sends authentication information, but does not verify it. That
way routers can be configured gradually to send their PDUs augmented with authentica-
tion information. But they do not verify if the password is correct upon receipt. Once all
the routers in the network send the correct authentication information, the routers can
gradually switch to symmetric authentication that does check to see if the supplied
authentication string is correct. If it is not, then the PDU is discarded.

The second migration scenario covers the case of changing an authentication key in a
live network.

13.2.5.3 Key Migration

Any good security policy can change passwords over time. A core network – which is
admittedly a cumbersome environment for any change – should change the authentication
on a periodic basis as well. For authentication key migration there are two possibilities:

• Asymmetrical authentication
• Multiple key verification

Asymmetrical key verification is the panacea that works for all migration scenarios. This
may even be a viable solution for the Greenfield scenario; however, for the key migration
method, the drawback is that a door is opened during the migration phase.

An implementation can decide to store many authentication keys on the router. One of
those keys is used for sending authenticated PDUs. The remaining keys represent older
versions of the authentication string and each one is used against an incoming PDU. That
way, network operators do not need to open the security gates for migrating keys.

Multiple key verification is clearly the preferred option to keep the security level of the
network intact. IOS supports keychains with their initial support for HMAC-MD5. JUNOS
6.2 has no multiple keys available which means that as soon as JUNOS is introduced into
the network, the network must fall back to asymmetrical authentication schemes and hope
that during password migration there is no attack on the infrastructure (as slight as this vul-
nerability might be, it is nonetheless real).

The last migration scenario is presented for completeness. It is not even discussed in
the IETF, but is still relevant.

13.2.5.4 Authentication Type Migration

Older IOS software only supports simple text authentication. For the time being this low-
est common denominator (simple text authentication) is what both IOS and JUNOS has

Authenticating Routing Information 357

deployed. Network operators feel increasingly concerned about the non-existent security
that simple text authentication provides and desperately want to switch to HMAC-MD5.

From a protocol perspective, nothing would prohibit the encoding of two versions of
the Authentication TLV #10. The first one would carry the authentication key using MD5
authentication and the second would carry the same authentication key using simple text
authentication. The biggest problem is that the deployed code only expects one
Authentication TLV and there is little research into how the installed base of software
would react to multiple occurrences of Authentication TLVs. The IETF has so far not
coped with the problem, and typically refers inquiring parties to asymmetrical authenti-
cation for solving problems of that kind.

In the next two sections there are practical examples of how to turn on IS-IS authenti-
cation on IOS and JUNOS.

13.2.6 Running Authentication Using IOS
In Cisco IOS there are two general forms of authentication for IS-IS: interface authenti-
cation and per-level authentication. Interface configuration applies to a specific interface
only, and authenticates IIH PDUs. Per-level authentication authenticates LSP and SNP
PDUs. A pair of routers only needs to share the same password to successfully run inter-
face authentication. Per-level authentication makes it necessary for all routers in a given
level to share the same password.

13.2.6.1 Per-interface Authentication

We use a simple networking scenario such as that illustrated in Figure 13.6 for the authen-
tication examples. Two routers are connected via a Gigabit Ethernet interface. Pseudonode
suppression is turned on. The following configures an interface authentication between
Madrid and Rome. All IIHs between the two routers on their Gigabit Ethernet interface
are authenticated using MD5 authentication. Note that because the isis network
point-to-point keyword has been configured, only Level-1 passwords are sent.

In IOS you first need to define a key chain. Key chains are generic IOS functions
used for holding several authentication keys that can be configured for key rollover.
Next, you need to configure the isis authentication mode and point to a key
chain using the isis authentication key-chain command. Optionally, you can con-
figure a level after the two commands. If you omit the level keyword then IOS takes
the key chain for authenticating both IS-IS levels.

358 13. IS-IS Extensions

EthernetMadrid.00 Rome.00

FIGURE 13.6. The simple setup will be used throughout the configuration examples

IOS configuration
Madrid#show running-config

[…]

key chain MY-INTF-PASSWD

key 100

key-string 0 ManInTheM00n

[…]

interface GigabitEthernet4/0

ip address 172.16.34.5 255.255.255.252

ip router isis

isis authentication mode md5

isis authentication key-chain MY-INTF-PASSWD

isis network point-to-point

!

!

router isis

net 49.0300.1921.6800.3003.00

[…]

Now, you need to verify that your IIHs are properly authenticated. If you see debug
messages like

IIH no change, use the same hmac value

then an Authentication TLV #10 containing a HMAC-MD5 value is applied to your
outgoing IIHs.

IOS debug output
If the router emits periodical messages like this after turning debug authentica-
tion information on, then authenticated Hellos are sent.

Madrid#debug isis authentication information

IS-IS authentication information debugging is on

Madrid#

Nov 5 00:48:07.233: ISIS-AuthInfo: IIH no change, use the same hmac value

Nov 5 00:48:16.781: ISIS-AuthInfo: IIH no change, use the same hmac value

Nov 5 00:48:24.609: ISIS-AuthInfo: IIH no change, use the same hmac value

If your adjacency does not come up due to bogus authentication information then the output
of the debug isis authentication information reveals what the problem is.

IOS debug output
The output of the debug isis authentication information command reveals if there
is a password mismatch.

Madrid#debug isis authentication information

IS-IS authentication information debugging is on

snail#

Nov 5 00:48:01.011: ISIS-AuthInfo: Packet failed the md5 check, 77 bytes, type 17

Authenticating Routing Information 359

Nov 5 00:48:09.095: ISIS-AuthInfo: Packet failed the md5 check, 77 bytes, type 17

Nov 5 00:48:17.059: ISIS-AuthInfo: Packet failed the md5 check, 77 bytes, type 17

From a configuration keyword point of view, the per-level authentication is very
similar to the per-interface configuration. The only difference is in what PDU types are
authenticated.

13.2.6.2 Per-level Authentication

Applying per-level authentication authenticates all SNP and LSP PDUs on a per-level
basis. The keywords are similar to the per-interface configuration.

The configuration example shows a simple text authentication for Level-1 SNP and
LSP PDUs and a HMAC-MD5 authentication for Level-2 SNP and LSP PDUs.

IOS configuration
Madrid#show running-config

[…]

key chain MY-LEVEL1-PASSWD

key 100

key-string 0 ObiWanhelpMEyouAREmyLastHope

!

key chain MY-LEVEL2-PASSWD

key 100

key-string 0 DoITorDONTdoitThereisnoTry

!

router isis

net 49.0300.1921.6800.3003.00

authentication mode text level-1

authentication mode md5 level-2

authentication key-chain MY-LEVEL1-PASSWD

authentication key-chain MY-LEVEL2-PASSWD

metric-style wide

passive-interface Loopback0

!

[…]

If an incoming LSP does not contain proper authentication then the output of the
debug isis authentication information commandwill report a Packet
failed the md5 checkmessage. If you receive PDUs containing no authentication
TLV at all then the debug output looks as follows:

IOS debug output
The No auth TLV found debug message indicates that no Authentication TLV #10 is
present in the PDU.

Madrid#debug isis authentication information

IS-IS authentication information debugging is on

360 13. IS-IS Extensions

Nov 5 01:50:25.776: ISIS-AuthInfo: No auth TLV found in received packet

Nov 5 01:50:25.848: ISIS-AuthInfo: No auth TLV found in received packet

Nov 5 01:50:25.900: ISIS-AuthInfo: No auth TLV found in received packet

13.2.6.3 Suppressing Authentication Checks

In the previous migration strategies there was a need to suppress authentication checking.
In IOS suppression can be configured using the isis authentication send-
only configuration keyword under the interface stanza to suppress IIH checking. For
suppressing SNP and LSP checking the authentication send-only command is
applicable in the router isis stanza. Note that the command also suppresses gener-
ation of errors in the log file. So you may run the risk that you mask a security hole.

The configuration of authentication on JUNOS is very similar to IOS.

13.2.7 Running Authentication Using JUNOS
JUNOS also has two ways of authenticating IS-IS messages: per-interface and per-level
configuration. The basic difference is the set of PDU types authenticated. Per-interface
authentication authenticates interface Hellos.

13.2.7.1 Per-interface Authentication

Per-interface authentication is applied using the hello-authentication-key and
hello-authentication-type configuration keyword in the protocols isis
interface level <*> stanza.

JUNOS configuration
The hello-authentication-key and hello-authentication-type configuration
keyword control authentication password and type for IIHs.

hannes@Stockholm> show configuration

[…]

protocols {

isis {

interface ge-4/0/0.0 {

point-to-point;

level 1 {

hello-authentication-key “9/tjmCu1SyK7NbApRSeW-dk.PQz6pu1”; #

ManInTheM00n

hello-authentication-type md5; # SECRET-DATA

}

}

interface lo0.0;

}

}

Authenticating Routing Information 361

13.2.7.2 Per-level Authentication

Unlike Cisco IOS, JUNOS authenticates all three PDU types by default. (Recall Cisco
IOS only authenticates LSPs and SNPs). Because JUNOS per-level authentication also
authenticates IIHs, this is also a convenient way to do per-interface authentication on a
router with many interfaces. (Why only authenticate Hellos?)

JUNOS configuration
The authentication-key and authentication-type configuration keyword control
Authentication-Key and Type for SNPs and LSPs.

hannes@Stockholm> show configuration

[…]

protocols {

isis {

level 1 {

authentication-key “$9$3qTB/CuRhrKWxvW”; #

ObiWanhelpMEyouAREmyLastHope

authentication-type md5; # SECRET-DATA

}

level 2 {

authentication-key “9fT390OReK8QFA0IcvMaZUHkPF39”; #

DoITorDONTdoitThereisnoTry

authentication-type md5; # SECRET-DATA

}

interface lo0.0;

}

}

If the adjacency does not come up, and you suspect an authentication problem, then
you need to set up JUNOS traceoptions. Bogus authentications are logged with an
error flag.

JUNOS configuration
If you want to gather evidence that the authentication is broken you need to configure the
traceptions {} stanza

hannes@Stockholm> show configuration

[…]

protocols {

isis {

traceoptions {

file isis.log;

flag error;

}

}

}

362 13. IS-IS Extensions

Next you need to check the log file or set up a monitor job that displays any recent
additions to the file on the console.

JUNOS debug output
hannes@Stockholm> show log isis.log

Nov 5 04:16:02 trace_on: Tracing to “/var/log/isis.log” started

Nov 5 04:16:05 ERROR: LSP authentication failure

Nov 5 04:16:10 ERROR: LSP authentication failure

Nov 5 04:16:15 ERROR: LSP authentication failure

Nov 5 04:16:20 ERROR: LSP authentication failure

As you have seen in the migration examples, sometimes suppressing authentication
checks is the only transition strategy you have got.

13.2.7.3 Suppressing Authentication Checks

JUNOS offers a single knob for suppressing all IS-IS-related authentication checks per
routing instance. So in JUNOS the provisions for asymmetric authentication are much
more coarse than in IOS, which allows suppression of authentication on a per-interface
and per-level basis.

JUNOS configuration
The no-authentication-check reverts the entire IS-IS process so as to not verify any
authentication information.

hannes@Stockholm> show configuration

[…]

protocols {

isis {

no-authentication-check;

level 1 {

authentication-key “$9$3qTB/CuRhrKWxvW”; #

ObiWanhelpMEyouAREmyLastHope

authentication-type md5; # SECRET-DATA

}

level 2 {

authentication-key “9fT390OReK8QFA0IcvMaZUHkPF39”; #

DoITorDONTdoitThereisnoTry

authentication-type md5; # SECRET-DATA

}

interface lo0.0;

}

}

Unfortunately JUNOS does not feature chaining of several authentication keys. In order
to transition between authentication keys you need to utilize the no-authentication-
check knob to turn authentication on and off during a single key transition.

Authenticating Routing Information 363

IS-IS was often the routing protocol of choice because of its high multivendor inter-
operability, which is no surprise, since the specification was lean and well written.
However, in the field of authentication, IOS and JUNOS were once not interoperable at
all when it came to authentication. That has changed recently, and the next section
explores the remaining interoperability caveats.

13.2.8 Interoperability
JUNOS supports MD5 and simple text authentication from the start, when the software
shipped as JUNOS 3.0. Back in 1998, there was the conviction that authentication always
had to apply for all three PDU types (IIHs, SNPs, LSPs). That behaviour did not match the
IOS behaviour at that time, which only authenticated LSPs. Optionally IOS also allowed
configuration of interface authentication, but that bought authentication of only two out of
the three PDU types involved. JUNOS authenticated symmetrically and expected authen-
tication also on those PDU types that it sends as Authenticated PDUs. This led to a prob-
lem, as IOS had no provision to authenticate SNPs – The only workaround was to
configure no-authentication-check on JUNOS. Juniper Network’s engineers
were thinking of changing the behaviour, but that was not an option, because changing a
default behaviour is always a dangerous thing, and service provider customers are not
very happy if their vendor does change defaults very often. So with JUNOS 5.4, new knobs
were introduced that suppress the all-PDU authentication styles. The three knobs are:

• no-hello-authentication

• no-csnp-authentication

• no-psnp-authentication

Originally, just a no-hello-authentication and no-snp-authentication
knob was planned, but it turned out that there is IOS software deployed in the field that
supports authentication of CSNPs. In order to adapt to any environment, three knobs
were released. An older-IOS compatible configuration turns on all three knobs which
finally sends just authenticated LSPs and also just expects LSPs to be authenticated.

JUNOS configuration
The no-<*>-authentication knobs are used for adapting any sort of IOS behaviour
from past releases.

hannes@Stockholm> show configuration

[…]

protocols {

isis {

level 1 {

authentication-key “$9$3qTB/CuRhrKWxvW”; #

ObiWanhelpMEyouAREmyLastHope

authentication-type md5; # SECRET-DATA

no-hello-authentication;

no-csnp-authentication;

364 13. IS-IS Extensions

no-psnp-authentication;

}

level 2 {

authentication-key “9fT390OReK8QFA0IcvMaZUHkPF39”; #

DoITorDONTdoitThereisnoTry

authentication-type md5; # SECRET-DATA

no-hello-authentication;

no-csnp-authentication;

no-psnp-authentication;

}

interface lo0.0;

}

}

Networking engineers often believe that because IS-IS is still a somewhat “secret”
protocol and that this “security by obscurity” works well. Also, no known hacking tools
are able to handcraft IS-IS packets. But do not be misled! There are packet injection pro-
grams around that can handcraft any IS-IS packet (it’s just that so far hackers have not
used them to attack IS-IS). For example, the Nemesis Project is a toolset suite for craft-
ing routing protocols of all kinds including IS-IS, RIP and OSPF. To learn more about
Nemesis check out the Nemesis homepage at http://sourceforge.net/projects/nemesis/.
While tools like this may be a threat to networks, it is the authors’ opinion that they are
useful tools to harden and secure existing networks. Deploying MD5 authentication is
imperative when running IS-IS. What still needs to be done on the IETF is adding crypto-
graphic sequence numbers to be robust against all sort of attacks.

• A corrupted CSNP may trigger excessive PSNPs and LSPs because the receiver of the
broken CSNP thinks there are lots of unknown LSPs that it has to learn about. See
Chapter 8, “Synchronizing Databases” for the dynamics of SNPs requesting LSPs.

• About the worst thing that can happen is that the corrupt frame does not get detected
for the time being. If routing control traffic gets corrupted, then it is also highly likely
that user payload traffic may be corrupted too. Most likely customer complaints about
bad throughput will hit your desk.

In order to overcome this limitation of the base IS-IS protocol, the IETF has come up
with an optional Checksumming TLV which is defined in RFC 3358. The idea of the
Checksum TLV is to protect IIHs and SNPs. Figure 13.7 shows the basic structure of the

Authenticating Routing Information 365

Type

Length

16 Bit “Fletcher” checksum

12

Bytes

1

1

2

2

FIGURE 13.7. The optional Checksum TLV #12 conveys an additional Fletcher Checksum that
protects IIHs and SNPs

Checksum TLV. The length of the TLV is always two bytes. The payload is a standard
“Fletcher” checksum described in ISO 8473 Annex C, which is calculated over the
entire PDU.

As at December 2003 there is no support of the checksumming TLV in IOS. It is only
available on JUNOS. Using the checksum keyword checksum protection can be acti-
vated on a per-interface basis.

JUNOS configuration
The checksum keyword in the protocols isis interface configuration stanza
causes to send and verify the contents of TLV #12 on IIHs and SNPs.

hannes@Frankfurt# show configuration

[…]

isis {

interface so-1/2/0.0 {

checksum;

level 1 {

hello-interval 10;

hold-time 40;

}

}

[…]

interface lo0.0;

}

}

After configuring and committing your configuration, you should see the additional
checksum TLVs in the tcpdump output.

Tcpdump output
The Checksum TLV #12 augments the missing Checksum field in the IIH and SNP
headers.

21:06:57.889875 OSI, IS-IS, length: 78

L2 Lan IIH, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 1921.6800.1008, holding time: 120s, Flags: [Level 1, Level 2]

circuit-id: 0x01, PDU length: 78

Protocols supported TLV #129, length: 2

NLPID(s): IPv4 (0xcc), IPv6 (0x8e)

[…]

Checksum TLV #12, length: 2

checksum: 0xbfb0 (correct)

366 13. IS-IS Extensions

21:17:30.950224 OSI, IS-IS, length: 135

L2 CSNP, hlen: 33, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 0000.0000.0002.00, PDU length: 135

start lsp-id: 0000.0000.0000.00-00

end lsp-id:ffff.ffff.ffff.ff-ff

Checksum TLV #12, length: 2

checksum: 0x2d8f (correct)

LSP entries TLV #9, length: 96

lsp-id: 1921.6800.1017.00-00, seq: 0x000001a8, lifetime:

63177s, chksum: 0xebb1

13.3 Checksums for Non-LSP PDUs

Almost all kinds of networking protocols protect their message content with checksums.
Protecting messages through a checksum follows a simple recipe. Both the sender and
the receiver of a message have to rely on a common way to build the checksum, the
checksum algorithm. Popular checksum algorithms are CRC16, CRC32 and, for IS-IS,
the ISO X.233/ISO 8473-1 “Fletcher” checksum. Each of these checksum algorithms
has different properties. What they have in common is that all of them can detect at least
one bit error. While the primary purpose of checksums is to detect bit errors, some algo-
rithms, for example, try additionally to balance the proportion of zeros and ones in a
message to help the transmission devices not to lose clock synchronization. Note that all
modern communication infrastructure devices have extra payload scramblers before put-
ting the bit-stream on the wire, so higher layers do not need to care if the frame contains
a healthy proportion of zeros and ones any longer.

This section focuses just on the error-detecting properties of checksum algorithms and
will not further discuss other applications like zero and one balancing. The checksum
procedure works very simply.

First, the field in the message where the checksum is stored needs to be initialized to
a common value, typically zero. Next, the sender and the receiver need to agree what part
of the message needs to be protected. Typically, it is the entire frame excluding Layer-2
encapsulation like MAC addresses or PPP headers. In IS-IS the LSP checksum does not
encompass the entire PDU. The checksumming starts at an offset of 12 bytes relative to
the beginning of the IS-IS common header. This was done to exclude fields like the LSP
Age, which may be subject to local time drift.

Finally, the checksum is calculated and inserted at the previously zeroed position.
The receiver needs to perform the checksum operation in a similar way: First, save the

received checksum for later comparison. Set the original checksum position to zero.
Next, calculate the checksum based on the agreed parts of the frame with the same algo-
rithms that is typically defined in the protocol’s specification. Finally, compare the self-
calculated checksum to the previously saved original checksum that was received with
the frame. If the two checksums match, then pass the frame on for further processing. If
they do not match, discard the frame and increment a counter telling the operator that

Checksums for Non-LSP PDUs 367

there must be something wrong. Not protecting routing protocol messages via check-
sums is a bad idea because it does not give the receiver a chance to differentiate between
good and corrupted messages.

13.3.1 PDUs Missing Checksum?
IS-IS uses a total of five different PDU types (actually, there are nine, but some share the
format like dedicated Level 1 and Level 2 PDUs). Take a look at those five PDU headers
illustrated in Figure 13.8. Only one PDU type, the LSP, contains a Checksum field. All
the other PDU types are not protected by a Checksum field.

Serious harm can result if a corrupt message is not recognized as such. Consider (for
example) an adjacency between two routers. Now suppose a few bits in the arriving
frame got flipped by (for example) a transmission problem. Depending on what TLVs are
corrupted, the adjacency could be at best torn down or, worst, corrupted information is
conveyed, as these examples show:

An adjacency that is reportedly in the Up state could be perceived to be in the Down state
due to corruption of the Adjacency State TLV #240. The result is a broken adjacency
which will trigger a new LSP which is flooded network-wide.

lsp-id: 1921.6800.1012.00-00, seq: 0x0000003c, lifetime: 64166s, chksum: 0x0e2b

lsp-id: 1921.6800.1019.00-00, seq: 0x000001a2, lifetime: 62579s, chksum: 0xba03

lsp-id: 1921.6800.1021.00-00, seq: 0x00000d31, lifetime: 63277s, chksum: 0x1dc4

lsp-id: 1921.6800.1008.00-00, seq: 0x00000124, lifetime: 61291s, chksum: 0xb30f

lsp-id: 1921.6800.1022.00-00, seq: 0x00000117, lifetime: 63277s, chksum: 0x5acf

The use of the Checksum TLV is optional. The only place where the specification is
firm is that as soon as a receiver supports the Checksum TLV and the checksum is cor-
rupt, it must discard the frame. RFC 3358 also discusses the case of a “checksumming
collision”. The collision of checksum occurs if both HMAC-MD5 authentication and
checksumming is configured on an interface. HMAC-MD5 is nothing more than a very
wide checksum under the inclusion of a shared secret. Which checksumming function
should be prioritized? One of the rules of TLV encoding is that each TLV is independent
of any other. In the authentication/checksumming case, the order does matter and would
be a violation to that requirement. Final consensus was either to suppress or set the value
of the Checksum TLV #12 to zero once the router knows that HMAC-MD5 authentica-
tion needs to be added to PDU. This is an acceptable behaviour, and is the mindset of
many network engineers that HMAC-MD5 is nothing but a big checksum that makes sure
that multiple bit flips get detected, which conventional checksumming methods are not
capable of, so there is no problem there. A 128-bit checksum is simply stronger than a 16-
bit one. The tcpdump output shows occurrence of both an Authentication TLV #10 and a
Checksumming TLV #12 in an IIH message. Note that the contents of the Checksum
TLV are set to zero, which is an indication that the receiver does not need to attempt to
verify it. Also, one interesting side effect of the Fletcher sum is that it can never be zero.
Zero is therefore a clear indication of an exception.

368 13. IS-IS Extensions

369

In
tr

a-
do

m
ai

n
R

ou
tin

g
P

ro
to

co
l D

is
cr

im
in

at
or

H
ea

de
r

Le
ng

th
 In

di
ca

to
r

V
er

si
on

/P
ro

to
co

l I
D

 E
xt

en
si

on

0�
83 1

ID
 L

en
gt

h

P
D

U
 T

yp
e

R 0
R 0

R 0

P
D

U
 V

er
si

on

R
es

er
ve

d

M
ax

im
um

 A
re

a
A

dd
re

ss
es

6
(0

) 1

3
(0

)0

R
es

er
ve

d

T
LV

 s
ec

tio
n

L
A

N
 II

H
 P

D
U

15
, 1

627

ci
rc

ui
t

ty
pe

1,
 2

, 3

S
ou

rc
e

ID

H
ol

di
ng

 T
im

e

P
D

U
 L

en
gt

h

P
rio

rit
y

R

D
es

ig
na

te
d

IS
 L

A
N

-I
D

B
yt

es 1 1 1 1 1 1 1 1

0–
14

67

1

ID
 L

en
gt

h
(6

)

2 2 1

ID
 L

en
gt

h
(6

)
�

 1

In
tr

a-
do

m
ai

n
R

ou
tin

g
P

ro
to

co
l D

is
cr

im
in

at
or

H
ea

de
r

Le
ng

th
 In

di
ca

to
r

V
er

si
on

/P
ro

to
co

l I
D

 E
xt

en
si

on

0�
83 1

ID
 L

en
gt

h

P
D

U
 T

yp
e

R 0
R 0

R 0

P
D

U
 V

er
si

on

R
es

er
ve

d

M
ax

im
um

 A
re

a
A

dd
re

ss
es

6
(0

) 1

3
(0

)0

T
LV

 s
ec

tio
n

18
, 2

027

R
em

ai
ni

ng
 L

ife
tim

e

LS
P

-I
D

P
D

U
 L

en
gt

h

S
eq

ue
nc

e
N

um
be

r

C
h

ec
ks

u
m

P

B
yt

es 1 1 1 1 1 1 1 1

0–
14

65

2 2

ID
 L

en
gt

h
(6

)
�

 2

4 2 1
A

T
T

A
T

T
A

T
T

A
T

T
O

L
IS

 T
yp

e

L
S

P
 P

D
U

In
tr

a-
do

m
ai

n
R

ou
tin

g
P

ro
to

co
l D

is
cr

im
in

at
or

H
ea

de
r

Le
ng

th
 In

di
ca

to
r

V
er

si
on

/P
ro

to
co

l I
D

 E
xt

en
si

on

0�
83 1

ID
 L

en
gt

h

P
D

U
 T

yp
e

R 0
R 0

R 0

P
D

U
 V

er
si

on

R
es

er
ve

d

M
ax

im
um

 A
re

a
A

dd
re

ss
es

6
(0

) 1

3
(0

)0

T
LV

 s
ec

tio
n

24
, 2

533

1,
2,

3

S
ou

rc
e

ID

S
ta

rt
 L

S
P

-I
D

P
D

U
 L

en
gt

h

E
nd

 L
S

P
-I

D

B
yt

es 1 1 1 1 1 1 1 1

34
–1

45
9

2

ID
 L

en
gt

h
(6

)
�

 1

ID
 L

en
gt

h
(6

)
�

 2

ID
 L

en
gt

h
(6

)
�

 2

C
S

N
P

 P
D

U

In
tr

a-
do

m
ai

n
R

ou
tin

g
P

ro
to

co
l D

is
cr

im
in

at
or

H
ea

de
r

Le
ng

th
 In

di
ca

to
r

V
er

si
on

/P
ro

to
co

l I
D

 E
xt

en
si

on

0�
83 1

ID
 L

en
gt

h

 P
D

U
 T

yp
e

R 0
R 0

R 0

P
D

U
 V

er
si

on

R
es

er
ve

d

M
ax

im
um

 A
re

a
A

dd
re

ss
es

6
(0

) 1

3
(0

)0

T
LV

 s
ec

tio
n

26
, 2

717

1,
2,

3

S
ou

rc
e

ID

P
D

U
 L

en
gt

h

B
yt

es 1 1 1 1 1 1 1 1

18
–1

47
5

2

ID
 L

en
gt

h
(6

)
�

 1

P
S

N
P

 P
D

U

p
2p

 II
H

 P
D

U

In
tr

a-
do

m
ai

n
R

ou
tin

g
P

ro
to

co
l D

is
cr

im
in

at
or

H
ea

de
r

Le
ng

th
 In

di
ca

to
r

V
er

si
on

/P
ro

to
co

l I
D

 E
xt

en
si

on

0�
83

B
yt

es 1 1 1 1 1 1 1 1

1

ID
 L

en
gt

h

P
D

U
 T

yp
e

R 0
R 0

R 0

P
D

U
 V

er
si

on

R
es

er
ve

d

M
ax

im
um

 A
re

a
A

dd
re

ss
es

6
(0

) 1

3
(0

)0

R
es

er
ve

d

T
LV

 s
ec

tio
n

4–
14

67

1720

ci
rc

ui
t

ty
pe

1,
 2

, 3

S
ou

rc
e

ID

H
ol

di
ng

 T
im

e

P
D

U
 L

en
gt

h

Lo
ca

l c
irc

ui
t I

D

1

ID
 L

en
gt

h
(6

)
�

 1

2 2 1

1,
 2

, 3

FI
G

U
R

E
13

.8
. O

nl
y

th
e

L
SP

 P
D

U
 is

 p
ro

te
ct

ed
 b

y
a

16
-b

it
C

he
ck

su
m

 fi
el

d

Tcpdump output
23:55:58.367717 OSI, IS-IS, length: 97

L1 Lan IIH, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 0000.0000.0003, holding time: 40s, Flags: [Level 1, Level 2]

lan-id: 0000.0000.0003.02, Priority: 64, PDU length: 97

Protocols supported TLV #129, length: 2

NLPID(s): IPv4 (0xcc), IPv6 (0x8e)

[…]

Restart Signaling TLV #211, length: 3

Flags [none], Remaining holding time 0s

Checksum TLV #12, length: 2

checksum: 0x0000 (unverified)

Authentication TLV #10, length: 17

HMAC-MD5 password: 887d36216cc6b0c842b1b25a1b11880d

It is the authors’ opinion that the Checksum TLV should be present per default in IIHs
and SNPs if no authentication or simple text authentication is configured. Users should
not need to configure it as they do now. It should be rather a default option of the router
OS. Once HMAC-MD5 authentication is configured for SNPs and IIHs, the Checksum
TLV #12 should be omitted entirely because the 128-bit MD5 checksum is much
stronger than the Fletcher checksum. Unfortunately not all IS-IS implementations follow
the open spirit of ISO 10589 where an unknown TLV is silently ignored. Those imple-
mentations tend to log error messages about the unknown TLV and refuse to take adja-
cencies up, which left the implementers with not many choices and causes contemporary
IS-IS implementation to be as gentle as possible with introduction of new TLVs.

IS-IS is ignorant of the Network Layer prefixes that it transports. RFC 1195 defined a
set of TLVs that are used to carry IPv4 Prefixes. Similarly, IS-IS needs a set of TLVs for
carrying IPv6 related information. These are discussed in the next section.

13.4 IPv6 Extensions

The most important TLV for multi-protocol operation is the Protocols Supported TLV
#129, illustrated in Figure 13.9. The Protocols Supported TLV #129 lists all the protocols

370 13. IS-IS Extensions

Type

Length

NLPID

129

Bytes

1

1

1

NLPID

0xCC

0x8E 1

FIGURE 13.9. The Protocols Supported TLV #129 lists all protocols that the router supports

that an individual router supports. This TLV is found both in IIHs and LSPs. However, it
will be shown later that the inclusion of this TLV in the router’s LSP is a next to useless
exercise. The TLV contains a list of one-byte Network Layer Protocol ID (NLPID). Each
major Network Protocol has an NLPID assigned. In modern networks, you will most
likely see the NLPID for IPv4 (� 0xCC), CLNS (� 0x81) or IPv6 (� 0x8E).

The IPv6 extensions are specified in draft-ietf-isis-ipv6-06. This Internet draft men-
tions two TLVs which are aligned to their IPv4 counterparts, but just bigger in size. A
nice touch of the IS-IS WG was to emphasize this similarity by picking a similar number
for this TLV. Figure 13.10 illustrates the IPv6 Interface TLV #232. The TLV shares the
semantics of its little sibling, the IPv4 Address TLV #132 that is described in Chapter 5,
“Neighbour Discovery and Handshaking”, in Figure 5.14.

The TLV holds one or several IPv6 addresses that are assigned on the sending inter-
face. Hence the TLV is in multiples of 16 bytes. Typically only a single address, the IPv6
link-local address, is conveyed.

Surprisingly, there is not much to configure in order to run IPv6 over IS-IS. Configuring
an IPv6 Address and activating the IS-IS on that interface is enough. The router starts to
send IIHs that contain the IPv6 address on that interface, plus the IPv6 NLPID in the
Protocol Supported TLV #129. The tcpdump output highlights the IPv6 additions.

Tcpdump output
23:55:58.367717 OSI, IS-IS, length: 72

L1 Lan IIH, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 1921.6800.1008, holding time: 40s, Flags: [L1L2 IS]

lan-id: 1921.6800.1008.02, Priority: 64, PDU length: 72

Protocols supported TLV #129, length: 2

NLPID(s): IPv4 (0xcc), IPv6 (0x8e)

[…]

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 172.16.33.237

IPv6 Interface address(es) TLV #232, length: 16

IPv6 interface address: fe80::7777:69ff:fea0:8001

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

IPv6 Extensions 371

TLV Type

TLV Length

IP6 Address

232

Bytes

1

1

16

16

N * 16

IP6 Address

FIGURE 13.10. The IPv6 Interface Address #232 shares similar semantics to the IPv4 Interface
Address TLV #132

After the adjacency has formed, the router sends an updated LSP that contains the sec-
ond IPv6 TLV that is defined in draft-ietf-isis-ipv6-06. Figure 13.11 illustrates the IPv6
Reachability TLV. The TLV structure does seem similar and is borrowed from the
Extended IPv4 Reachability TLV #135 explained in Figure 12.11 of Chapter 12, “IP
Reachability Information”.

TLV #236 is not as densely packed as TLV #135, but mostly because the maximum
prefix length of an IPv6 prefix (128 bytes) could not be stuffed into a single byte along
with the Flag bit information like the Up/Down bit and Sub-TLV Indicator bit. Tcpdump
output is shown below for the IPv6 Reachability TLV.

372 13. IS-IS Extensions

TLV Type

TLV Length

metric

Reserved

Prefix

optional all-subTLVs Length

optional subTLV Type

U/D

optional subTLV Length

optional subTLV Value

236

Bytes

1

1

4

1

0–16

1

1

1–246

E S

Prefix Length 1

1

metric

Reserved

Prefix

optional all-subTLVs Length

optional subTLV Type

U/D

optional subTLV Length

optional subTLV Value

4

1

0–16

1

1

1�*

E S

Prefix Length 1

1

FIGURE 13.11. The IPv6 Reachability TLV #236 took the Extended IPv4 Reachability TLV #135
as its blueprint

Tcpdump output
01:15:43.232457 OSI, IS-IS, length: 182

L2 LSP, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

lsp-id: 1921.6800.1008.00-00, seq: 0x00000033, lifetime: 65530s

chksum: 0xdde3 (correct), PDU length: 182, Flags: [L1L2 IS]

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Protocols supported TLV #129, length: 2

NLPID(s): IPv4 (0xcc), IPv6 (0x8e)

[…]

IPv6 Reachability TLV #236, length: 22

IPv6 prefix: 2001:600::3/128, Distribution: up, Metric: 0, Internal,

no sub-TLVs

Extended IS Reachability TLV #22, length: 17

IS Neighbor: 1921.6800.1021.00, Metric: 250000, sub-TLVs present (6)

IPv4 interface address subTLV #6, length: 4, 172.16.33.237

In the following two sections there will be IPv6 configuration examples for both IOS and
JUNOS.

13.4.1 IOS Configuration
In IOS the configuration is aligned to the IPv4 style: configuring an IP address and acti-
vating IS-IS on the router is enough. For IPv6, the ipv6 address and the ipv6
router isis configuration command include the IPv6 prefix in the router’s link-state
database and rebuilds the router’s LSP.

IOS configuration
For including an IPv6 Address in IS-IS all you need to do is configure the ipv6 router
isis keyword in the interface stanza.

London# show running-config

[…]

interface FastEthernet0/0

[…]

ipv6 address 2001:708:0:FF19::1/64

ipv6 router isis

!

Next you may want to verify that the prefix gets installed in the link-state database.

IOS command output
You need to spot on IPv6 prefixes in the show isis database detail output.

IPv6 Extensions 373

London#show isis database detail

IS-IS Level-2 LSP

LSPID LSP LSP LSP Holdtime ATT/P/OL

Seq Num Checksum

Frankfurt.00-00 0x00000023 0xBA64 3555 0/0/0

Area Address: 49.0001

NLPID: 0xCC 0x8E

Router ID: 192.168.1.8

IP Address: 192.168.1.8

Hostname: Frankfurt

Metric: 250000 IS-Extended Washington.00

[...]

Metric: 250000 IPv6 2001:708:0:FF19::2/64

[...]

Finally you need to check if the route made its way in the IPv6 routing table.

IOS command output
The show ipv6 route isis command limits the output to the isis installed routes.

London# show ipv6 route isis

IPv6 Routing Table - 9 entries

Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP

U - Per-user Static route

I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea

O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2

I2 2001:708:0:FF19::2/64 [115/13]

via FE80::2A0:A5FF:FE12:3398, GigabitEthernet2/0

[…]

The JUNOS configuration is similar, but simpler than the IOS configuration.

13.4.2 JUNOS Configuration
In JUNOS you need to configure two different stanzas. First, you need to configure the
IPv6 address on a logical interface. Next, you add “family ISO” in order to be able to
exchange IS-IS PDUs over that link. Finally, that interface is added to the interface list
that the IS-IS router builds when IS-IS is enabled.

JUNOS configuration
As soon as family inet6 is configured on a referenced iso interface JUNOS starts to
announce IPv6 Reachability Information.

374 13. IS-IS Extensions

hannes@Frankfurt> show configuration

[…]

interfaces {

so-1/2/0.0 {

unit 0 {

[…]

family iso;

family inet6 {

address 2001:708:0:FF19::2/64;

}

}

}

}

protocols {

isis {

interface so-0/1/2.0;

}

}

JUNOS command output
IP6 Reachability Information are indicated by the V6 prefix string of the show isis
database detail operational command output.

hannes@Frankfurt> show isis database detail

[...]

Frankfurt.00-00 Sequence: 0x23, Checksum: 0xba64, Lifetime: 3433 secs

IS neighbor: Washington.00 Metric: 250000

[…]

V6 prefix: 2001:708:0:FF19::2/64 Metric: 0 Internal Up

Finally you can verify if the route was installed in the main routing table. You can dis-
play the route using the show route table inet6.0 operational level command.

JUNOS command output
The show route table inet6.0 protocol isis limits the output to isis installed routes.

hannes@Frankfurt> show route table inet6.0 protocol isis

inet6.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)

� � Active Route, � � Last Active, * � Both

2001:708:0:FF19::2 *[IS-IS/18] 00:24:29, metric 15 > to

fe80::203:fdff:fec8:3c00 via so-1/2/0.0

So far it was assumed that the router is running IPv4 and IPv6 in dual mode. Dual
mode is a term borrowed from RFC 1195 which means that two protocols share a single
SPF topology calculation and there is an assumption that the topology is congruent. That
assumption may not be always correct, and there are scenarios where the dual assump-
tion breaks even simple things like adjacency formation.

IPv6 Extensions 375

13.4.3 Deployment Scenarios
RFC 1195 introduced the Protocol Supported TLV #129. The TLV is used for two purposes:

• Convey the supported protocols during adjacency formation in IIHs
• Convey the supported protocols for SPF pruning in IIHs

During adjacency formation, both routers verify that they have a common set of protocols
on a link. The reason is simple: if one side supports IPv6 only and the other side supports
IPv4 only then there is no reason to let the adjacency go Up. That behaviour violates ISO
10589, which mandates that adjacency formation should be decoupled from any Network
Layer reachability protocol. However, the deployed reality moves things into a different per-
spective. If there is no common Network Layer protocol then the system does not let the
adjacency come Up. Figure 13.12 illustrates why there are good reasons to do so.

On almost all links in the network in the figure, both IPv4 and IPv6 are supported. But
the link between London and Frankfurt is misconfigured. London only runs IPv6 and
Frankfurt only runs IPv4. Assume for a moment that the routers comply with the spirit of
ISO 10589 and then the adjacency between London and Frankfurt goes Up. From
Washington’s perspective, the shortest path to London is now via Frankfurt (1). However,
if traffic is relayed via Frankfurt then it gets sent back because from Frankfurt’s perspec-
tive the way back to Washington is the shortest path. A routing loop is created.

The JUNOS and IOS implementation of IS-IS both offer protection from such faults.
However, they cannot protect from every fault. Consider what happens if London addi-
tionally activates IPv4 on its link to Frankfurt. Because the adjacency does find a com-
mon protocol, which is IPv4, it takes the adjacency Up. Unfortunately the problem still
persists. There is a routing loop for traffic from Washington to London. More restrictive
adjacency management (for example) could mandate that all NLPIDs inside the
Protocols Supported TLV #129 need to match – however, that might be highly disruptive
when, for example, another Network Layer protocol is added.

The problem is that there is no way for the IS-IS router to tell remote routers that the
underlying link does not support IPv6. That implies that all links need to carry both IPv4
and IPv6. That raises the question if it is necessary to upgrade a network from IPv4 to
IPv6 all at once on a flag day. We want to discourage any flag day transitions – in our pro-
fessional careers, the authors have never, ever seen a flag-day migration that worked
well. Typically what has happened, even in the best-planned migrations, is that one hour
before that maintenance window closes, all the changes have to be undone because of
persistent problems in the network. Even if a decision to go forward was made, then
there were creeping errors in the entire network for the next few days. We still are not
sure if these experiences are related to flaky routing software, or if it is just a fact that
Murphy’s Law always bites on flag days.

There are two approaches to IPv6 and the flag day problem:

• change the protocols and make the SPF calculation aware of a link that supports IPv6
• deploy IPv6 based on a “convex” topology

Changing the underlying protocols to support several SPF calculations is an approach
that is described in the “Multi Topology Extensions” after this section. We focus here on

376 13. IS-IS Extensions

IPv6 Extensions 377

oc192/STM-64

87000

oc12/STM-4

600000

oc192/STM-64

250000

oc768/STM-256

22000

oc768/STM-256

22000

oc48/STM-16

315000

oc48/STM-16

315000

oc192/STM-64

26000

6464

64

64

4

6

64

IPv4 only circuit

IPv6 only circuit

dual circuit

Pennsauken

Frankfurt

London

Washington

New York

Paris

4

664

64

64 64

64 64

6464

12

FIGURE 13.12. Protocol dependent adjacency management is imperative to avoid routing loops

deploying a convex style. Figure 13.13 illustrates how the IPv6 protocol is enabled in
four steps. First, IPv6 is activated on the link between Pennsauken and London (1). Next,
Pennsauken to New York is included (2). In the next two steps, (3) and (4), it is important
to include all nodes in expanding circles. Whenever there is a mesh, it needs to be
included in the circle, otherwise it may be outside the best path.

Convex topologies are not always easy to compute (at least not for humans). In mod-
erate to complex topologies it is recommended to let the router figure out where the link
topology can carry IPv6 and where it can not. A similar problem exists for IPv4 unicast
topologies. There are links and nodes that do support multicast processing and others that

378 13. IS-IS Extensions

New York London

Pennsauken

Frankfurt

London

Washington

New York

Paris

2

3

4

1

FIGURE 13.13. Convex topologies are required to rollout IPv6 in an incremental fashion

do not. For learning about the per-protocol processing capabilities of an IS-IS network
the IETF has defined the multi topology extensions.

13.5 Multi Topology Extensions

The IGP evaluates all the paths in a single topology per level and selects by means of the
SPF algorithm the best path among all the feasible paths. Topology discovery and SPF
calculation is carried out in a protocol neutral fashion because it is done at the OSI-RM
Layer 2. If we load the topology with a certain protocol (for example IP) reachability
information then the assumption is that the circuits that are supposed to provide
reachability between routers can also carry the respective protocol. Since the first IP migra-
tions, it was clear to the ISP community that a new paradigm was needed in order to
avoid flag-day style migrations. What is necessary to get around the assumptions of RFC
1195 is a proper per-address family orientation rather than a pure per-link orientation. As
a result of that, a per-protocol SPF calculation is required also, which means additional
CPU load. Today multiple SPF runs are easy to do because plenty of processing power is
available on router control plane CPUs.

The multi topology extensions remodel existing TLVs and augment them with a
so-called Topology ID. Each router in a given topology maintains its adjacencies and runs
a per-topology SPF calculation. A topology is the set of joined nodes. The specification
mentions a list of well-known topologies, which are:

• IPv4 Unicast (#0)
• In-Band Management (#1)
• IPv6 Unicast (#2)
• Multicast (#3)
• IETF Consensus (#4-#3995)
• Experimental (#3996-#4095)

We will focus here on the IPv4 and IPv6 Unicast topology. Consider Figure 13.14.
The black lines indicate link membership in the IPv6 topology. And the gray line indi-
cates membership to the IPv4 topology. Note that the two topologies are neither con-
gruent nor convex.

Using regular TLVs, it would not be possible to build multiple topologies and run an
SPF calculation based on it. The multi topology extensions first describe an extension to
carry the set of supported protocols in the Hello. Figure 13.15 shows the structure of the
Topology Supported TLV #229, which is a vector of 12-bit wide Topology IDs. After
activating multi topology support on a link, it should carry all the topologies that the
underlying circuit is able to relay. The tcpdump output shows a IIH after multi topology
activation.

IPv6 Extensions 379

380 13. IS-IS Extensions

New York London

Pennsauken

Frankfurt

London

Washington

NewYork

Paris

IPv6
IPv4

FIGURE 13.14. For each network topology a dedicated IS Reach is mesh processed

Multi Topology Extension 381

Tcpdump output
The Multi Topology Supported TLV reports that this link can be a member of both the IPv4
Unicast (0) and the IPv6 Unicast (2) Topology.

02:00:08.223369 Out OSI, IS-IS, length: 82

p2p IIH, hlen: 20, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 1921.6800.1027, holding time: 27s, circuit-id: 0x01, Flags: [L1L2 IS]

circuit-id: 0x01, PDU length: 82

Point-to-point Adjacency State TLV #240, length: 15

Adjacency State: Up

Extended Local circuit ID: 0x00000001

Neighbor SystemID: 1921.6800.1008

Neighbor Extended Local circuit ID: 0x00000100

Protocols supported TLV #129, length: 2

NLPID(s): IPv4, IPv6

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 172.16.33.213

IPv6 Interface address(es) TLV #232, length: 16

IPv6 interface address: fe80::2a0:a5ff:fe12:3398

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Restart Signaling TLV #211, length: 3

Restart Request bit clear, Restart Acknowledgement bit clear

Remaining holding time: 0s

Multi Topology TLV #229, length: 4

IPv4 unicast Topology (0x000), Flags: [none]

IPv6 unicast Topology (0x002), Flags: [none]

The IIH reports that it can run IPv4 and IPv6. It lists valid IPv4 and IPv6 addresses and
therefore the router can create valid next-hop entries. So the protocols are listed in the
MT Topology TLV #229.

Type

Length

229

Bytes

1

1

Topology-ID

O
2

A R R

Topology-ID

O
2

A R R

FIGURE 13.15. The Topologies Supported TLV #229 lists the topologies that the link carries

Each router advertises an adjacency for a common topology adjacency using the Multi
Topology IS-Reachability TLV #222 (see Figure 13.16).

Tcpdump output
02:10:39.192433 OSI, IS-IS, length: 151

L1 LSP, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

lsp-id: 1921.6800.1027.00-00, seq: 0x00000050, lifetime: 1199s

chksum: 0x1477 (correct), PDU length: 151, Flags: [L1L2 IS]

[...]

Multi Topology TLV #229, length: 4

IPv4 unicast Topology (0x000), Flags: [none]

IPv6 unicast Topology (0x002), Flags: [none]

Protocols supported TLV #129, length: 2

382 13. IS-IS Extensions

TLV Type

TLV Length

Neighbor ID

optional subTLV Value

222

Bytes

1

1

ID Length (6) � 1

3

1

1

1

1–240

Metric

subTLVs Length

optional subTLV Type

optional subTLV Length

Neighbor ID

optional subTLV Value

ID Length (6) � 1

3

1

1

1

1�*

Metric

subTLVs Length

optional subTLV Type

optional subTLV Length

Topology-ID
2

Reserved

FIGURE 13.16. The Multi Topology IS Reachability TLV #222 is similar to the Extended IS Reachabil-
ity TLV #22

Multi Topology Extension 383

NLPID(s): IPv4 (0xcc), IPv6 (0x8e)

[...]

Multi-Topology IP6 Reachability TLV #237, length: 16

IPv6 unicast Topology (0x002), Flags: [none]

IPv6 prefix: 2001:708:0:ff19::/64, Distribution: up, Metric: 250000, Internal

Multi Topology IS Reachability TLV #222, length: 13

IPv6 unicast Topology (0x002), Flags: [none]

IS Neighbor: 1921.6800.1008.00, Metric: 250000, no sub-TLVs present

The tcpdump output also shows that the link IPv6 prefix is not encapsulated in the IP6
Reachability TLV #236, but rather in the Multi Topology IP6 Reachability TLV #237.
The structure of that TLV is illustrated in Figure 13.17.

TLV #237 almost looks identical and also shares the semantics of the IP6 Reach TLV.
The only difference is that it gets prepended with the 12-bit Topology ID. A similar clone
for the Extended IPv4 Reachability #135 exists, which is the MT IPv4 Reachability TLV
#235, as illustrated in Figure 13.18.

For the default Topology #0 there is already an IPv4 Reachability TLV, which is #135
hence the usage of the TLV #235 is highly questionable in Topology #0. However, in
other IPv4 related topologies such as the IPv4 multicast topology, usage of the MT IPv4
Reach TLV #235 does make sense.

13.5.1 JUNOS Configuration
Per JUNOS 6.2 the multi topology extensions are available. The configuration is a “one-
liner” which turns on multi topology support on all interfaces that have family iso
and family inet6 configured and are listed in the protocols isis inter-
face {} stanza. If you do not want to run multi topology support for a given Topology
/Adress Family on a given interface, then you can disable multi topology generation by
configuring no-ipv6-unicast or no-ipv6-unicast under the protocols
isis interface {} stanza.

JUNOS configuration
The topologies ipv6-unicast configuration string turns on MT generation on all inter-
faces. The no-ipv6-unicast command under the protocols isis interface stanza
disables MT generation for the IPv6 topology.

hannes@Frankfurt> show configuration

[...]

protocols {

isis {

topologies ipv6-unicast;

[...]

interface fe-0/3/3.0 {

no-ipv6-unicast;

}

interface lo.0;

}

}

384 13. IS-IS Extensions

Next you need to verify if your neighbour also supports multi topology. This gets
revealed in the show isis adjacency command output.

TLV Type

TLV Length

metric

Reserved

Prefix

optional all-subTLVs Length

optional subTLV Type

U/D

optional subTLV Length

optional subTLV Value

237

Bytes

1

1

4

1

0–16

1

1

1–244

E S

Prefix Length 1

1

metric

Reserved

Prefix

optional all-subTLVs Length

optional subTLV Type

U/D

optional subTLV Length

optional subTLV Value

4

1

0–16

1

1

1�*

E S

Prefix Length 1

1

Topology-ID
2

Reserved

FIGURE 13.17. The Multi Topology IPv6 Reachability TLV #237 shares the semantics of the IP6
Reachability TLV #236

JUNOS command output
The neighbour also supports multi topology for the IPv6 Unicast topology.

hannes@Frankfurt> show isis adjacency detail

[…]

London

Interface: so-1/2/0.0, Level: 2, State: Up, Expires in 23 secs

Priority: 0, Up/Down transitions: 11, Last transition: 00:24:12 ago

Circuit type: 3, Speaks: IP, IPv6

Topologies: Unicast, IPV6-Unicast

Restart capable: Yes

IP addresses: 172.16.33.29

IPv6 addresses: fe80::203:fdff:fec8:3c00

[…]

Multi Topology Extension 385

TLV Type

TLV Length

metric

Prefix Length

Prefix

optional all-subTLVs Length

optional subTLV Type

optional subTLV Length

optional subTLV Value

metric

Prefix Length

Prefix

optional all-subTLVs Length

optional subTLV Type

optional subTLV Length

optional subTLV Value

135

U/D sub

Bytes

1

1

4

1

0–4

1

1

1–245

4

1

0–4

1

1

1�*

U/D sub

1

1

Topology-ID
2

Reserved

FIGURE 13.18. The Multi Topology IPv4 Reachability TLV #235 shares the semantics of the
Extended IP Reachability TLV #135

386 13. IS-IS Extensions

The router has now received LSPs from neighbouring routers and processed them in a
per-protocol SPF calculation. The output of all the show isis spf <*> commands
has changed. It now displays the statistics and results on a per-topology breakdown.

JUNOS command output
The output of the show isis spf log command encompasses results for each topology.

hannes@Frankfurt> show isis spf log

IS-IS level 2 SPF log:

Start time Elapsed (secs) Count Reason

Fri Nov 7 01:58:29 0.000120 1 Updated LSP Paris.00-00

Fri Nov 7 01:58:33 0.000141 1 Updated LSP Frankfurt. 00-00

Fri Nov 7 01:58:38 0.000118 1 Updated LSP London.00-00

Fri Nov 7 01:59:54 0.000114 1 Updated LSP London.00-00

Fri Nov 7 01:59:59 0.000219 2 Lost adjacency London on so-1/2/0.0

Fri Nov 7 02:45:22 0.000084 1 Reconfig

IPV6 Unicast IS-IS level 2 SPF log:

Start time Elapsed (secs) Count Reason

Fri Nov 7 01:58:15 0.000066 7 Lost adjacency Pennsauken on so-7/0/0.0

Fri Nov 7 01:58:16 0.000095 2 Updated LSP Frankfurt. 00-00

Fri Nov 7 01:58:19 0.000098 1 Lost adjacency London on so-1/2/0.0

Fri Nov 7 01:59:54 0.000084 1 Updated LSP London.00-00

Fri Nov 7 02:23:46 0.000202 1 Periodic SPF

Fri Nov 7 02:34:45 0.000113 1 Reconfig

Fri Nov 7 02:45:22 0.000267 1 Reconfig

The configuration in IOS is equally simple.

13.5.2 IOS Configuration
IOS now supports per-address family configuration. By configuring the multi-
topology command under the address-family ipv6 stanza, multi topology
support is turned on all interfaces that have the ipv6 router isis command listed.

IOS configuration
London# show running-config

[…]

router isis

net 49.0001.1921.6800.1012.00

metric-style wide

passive-interface Loopback0

!

address-family ipv6

multi-topology

exit-address-family

!

Multi Topology Extension 387

Next you may want to verify that the peer supports multi topologies as well. Similar to
the JUNOS example, in IOS the show clns neighbors detail command your
neighbour states.

IOS command output
London# show clns neighbors detail

System Id Interface SNPA State Holdtime Type Protocol

Frankfurt POS2/0 PPP Up 25 L2 M-ISIS

Area Address(es): 49.0001

IP Address(es): 172.16.33.213*

IPv6 Address(es): FE80::2A0:A5FF:FE12:3398

Uptime: 00:13:42

NSF capable

Topology: IPv4, IPv6

Finally, you want to check how the processing of the IPv6 topology went. You can see the
log for the IPv6 MT Topology using the show isis ipv6 spf-log command.

IOS command output
The show isis ipv6 spf-log command shows the SPF duration and reason for the
last calculations based on the IPv6 Unicast Topology.

London#show isis ipv6 spf-log

IPv6 level 2 SPF log

When Duration Nodes Count First trigger LSP Triggers

01:03:10 8 6 3 Frankfurt.00-00 NEWADJ DELADJ LVCONTENT

00:53:03 4 6 1 PERIODIC

00:52:49 5 1 2 London.00-00 DELADJ TLVCODE

00:52:34 4 6 2 London.00-00 NEWADJ TLVCODE

00:38:01 4 6 1 PERIODIC

00:28:24 4 6 1 Frankfurt.00-00 TLVCODE

00:22:57 4 6 1 PERIODIC

00:17:46 4 2 2 London.00-00 DELADJ TLVCODE

00:07:54 4 1 1 PERIODIC

13.5.3 Summary and Conclusion
Because of the stringent requirements of RFC 1195, which requires that all routers
support all Network Layer protocols, it is hard to deploy IPv6 (for example) increment-
ally. Convex migration schemes help to avoid routing loops during a network rollout.
However, if there is mis-configuration then it is relatively easy to break a multi protocol
environment in IS-IS. For that purpose, the IS-IS WG defined four additional TLVs that
make each router build distinct topologies and perform a per Network Layer protocol
SPF calculation. Multi topologies are a viable solution for deploying IPv6 incrementally

388 13. IS-IS Extensions

in the network, however, there is serious concern in the Service Provider community as
to whether this complexity is necessary at all.

Most service providers have MPLS as the uniform transport vehicle, and MPLS is
already deployed in their networks. The idea is that the inner core topology runs on IPv4
only and IPv6 Reachability Information is exchanged via BGP. BGP uses IPv4 to resolve
the next-hops and then traffic is relayed between a pair of BGP speakers using the MPLS
magic carpet. It is the authors’ opinion that if there is a possibility to re-use that MPLS
magic carpet, then there should be serious consideration whether an IPv6 control plane
is required, necessary and worth the hassle.

13.6 Graceful Restart

The Internet is about to become the new public infrastructure. When the Internet will
replace today’s communication infrastructure is not as easy to predict. Common sense
says that you can pull the plug when the new infrastructure is better, faster and more
resilient than the old infrastructure. However, especially in terms of availability and soft-
ware stability, IP switching platforms in the past lacked the resiliency and redundancy of
the old infrastructure, like TDM multiplex networks and voice switches. Typically it is
the software that makes systems fail (assuming that the hardware designers have done
their job well). When it comes to software, TDM multiplexers do not expose any weak-
nesses due to their almost static configuration and so naturally avoiding any complex
signalling software. On the other hand, voice switches have to rely on signalling proto-
cols like SS7. Unfortunately, stability and “feature velocity” negatively impact each
other. It is relatively easy to freeze code and do some bug fixing in order to get to stable
signalling code and release the stable code in the hope that it does not break in the live
network. In a fast progressing world like the IP world, that approach is not feasible
because there will be always further enhancements/bug fixes to the base protocol.
Modern software release models apply careful testing to the code base before it is
released to the public. However, it turned out that there is a no more brutal reality-check
to verify if the code works than exposing it to the live Internet. Furthermore, the support
teams of the vendors had to be very responsive to fix any kind of problem really fast. Due
to the 24 � 7 nature of the Internet (non-business hours traffic is just 70 per cent of the
peak traffic during business hours) almost no maintenance window can be established.
The necessary software upgrades are really painful for the users and operators, as a soft-
ware upgrade always means about 60–180 seconds outage until the entire router complex
(control plane and forwarding plane) is rebooted. A reboot of a routing node results in a
changed topology. This topology change will have a negative impact on other routers,
entailing AS-global SPF runs, BGP route flaps and subsequent route damping by external
BGP peering partners.

Modern routers are based upon a clear separation between the control plane and
forwarding planes. The two entities can work independently from each other for a short
period of time. For example, the forwarding plane can easily keep forwarding state while
the control plane (in Cisco, it is the Route-Processor; Juniper Networks calls it the
Routing Engine) is rebooting. Keeping forwarding state means that the forwarding plane

Graceful Restart 389

forwards packets based on the last good routing information, effectively freezing the for-
warding table. The control plane can next reboot, while the forwarding engine is still
passing traffic.

The trouble starts when the control processor is coming up again. Because it just
rebooted, it does not have any state knowledge of its adjacencies nor does it have any
topological insight (that is, the link-state database is empty). If a router is in that state and
it generates an IIH and does not demonstrate that it has achieved 3-way state by listing
its neighbour’s adjacency state or SNPA (for more on adjacency management see
Chapter 5, “Neighbour Discovery and Handshaking”), then the adjacency will be imme-
diately disrupted and global SPF recalculation will occur.

Graceful restart attempts to fix the problem of missing state during reboot. It does
not make a difference why the control plane processor has been rebooted. It could be
because of a software crash or due to a controlled operation like a software upgrade.
Figure 13.19 illustrates the timing after a reboot.

Router B requests Router A to stay quiet for 180 seconds. In that 180 seconds it needs
to re-instate all adjacencies, bring up the BGP mesh and recalculate its routes. Finally it
needs to compare the previously frozen forwarding plane information with the new cal-
culated prefix list and apply, if necessary the required changes.

Amsterdam Stockholm

tt

IIH

Restart Request,
New holdtime180 s

IIH

Restart Acknowlegement,
Newholdtime180 s

FIGURE 13.19. Router Stockholm requests a grace period of 180 seconds

390 13. IS-IS Extensions

RFC 3847 describes the optional Restart Signaling TLV #211 that can be used to sig-
nal a grace period until adjacency formation is completed. Figure 13.20 illustrates the
3-byte fixed length TLV. The first byte contains the Restart Request and the Restart
Acknowledge Flag. The remaining 16-bits contain the hold time that a node sets itself for
performing the reboot.

Both IOS and JUNOS generate the Restart Signaling TLVs per default to indicate to
remote neighbours that they support graceful restart in general.

Tcpdump output
TLV #211 under normal working conditions has the RR and RA Bits cleared and the
remaining Hold timer set to 0s.

02:00:08.223369 Out OSI, IS-IS, length: 82

point-to-point IIH, hlen: 20, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 1921.6800.1027, holding time: 27s, circuit-id: 0x01, Flags: [L1L2]

[…]

Restart Signaling TLV #211, length: 3

Restart Request bit clear, Restart Acknowledgement bit clear

Remaining holding time: 0s

In both IOS and JUNOS the restart capability is indicated in the detailed adjacency output.

IOS command output
The show clns neighbors detail command shows if the neighbour supports graceful
restart.

London# show clns neighbors detail

System Id Interface SNPA State Holdtime Type Protocol

Frankfurt POS2/0 PPP Up 25 L2 M-ISIS

Area Address(es): 49.0001

IP Address(es): 172.16.33.213*

IPv6 Address(es): FE80::2A0:A5FF:FE12:3398

Uptime: 00:15:41

NSF capable

Topology: IPv4, IPv6

Type

Length

Reserved

211

Bytes

1

1

1

3

Remaining Holdtime 2

RA RR

FIGURE 13.20. The Restart Signaling TLV is used for requesting an granting a new Hold timer

Graceful Restart 391

In the IOS terminology Non Stop Forwarding (NSF) is an alternative term for graceful
restart.

JUNOS command output
hannes@Frankfurt> show isis adjacency detail

[…]

London

Interface: so-1/2/0.0, Level: 2, State: Up, Expires in 23 secs

Priority: 0, Up/Down transitions: 11, Last transition: 00:24:12 ago

Circuit type: 3, Speaks: IP, IPv6

Topologies: Unicast, IPV6-Unicast

Restart capable: Yes

IP addresses: 172.16.33.29

IPv6 addresses: fe80::203:fdff:fec8:3c00

[…]

Graceful restart will be the foundation for higher availability in core networks. It is not
a single technology, but rather a concept that allows a node to still forward during con-
trol plane failure or intended downtime like router software upgrades. Because graceful
restart is a cooperative technology (that means it needs to rely on the fact that all of its
neighbours support it) it is recommended to deploy it on a broad scale on every network.

13.7 Summary

The last 10 years were filled with extensions to the IS-IS protocol. Deficits like missing
checksums in certain PDU types got fixed. TLV #10, one of the original ISO 10589
TLVs, is used as an envelope to convey HMAC-MD5 strong authentication information.
IPv6 routing has been introduced albeit with the same deployment restriction that RFC
1195 suffered from. Multi topology IS-IS attempts to solve that problem by defining
extra TLVs and introduction per-protocol SPF runs. However, due to broad MPLS
deployment, IPv6 for control plane purposes may become obsolete. BGP in conjunction
with MPLS as a forwarding magic carpet may finally make MT-ISIS obselete. Finally,
IS-IS got the ability for gracefully restarting a control plane processor without churning
the network at all. Extensions like this are the prerequisite for the Internet becoming the
dominant public infrastructure some day (soon).

14

Traffic Engineering and MPLS

393

At the end of the 1990s, the Internet was expanding at a breathtaking speed. Both capacity
and geographic spread grew by factors of 2 to 4 per year. It appeared that capacity could not
be provisioned in time and the network could suffer congestion anytime. Service providers
needed to re-route traffic onto paths in the network that had been underutilized in order to
take some of the load off the congested links. It quickly became evident that the IP world
until this time lacked a sound load-balancing tool to adapt the traffic to the underlying
topology in the most rational manner.

MPLS provided for the first time source routing intelligence to the Internet and, due to
its path orientation, the necessary control to guide traffic. However, provisioning the label
switched paths manually proved to be a daunting task and service providers and router
vendors co-developed a kind of distributed traffic control system whereby MPLS paths
can be brought up, loaded with traffic, and torn down based on constraints like bandwidth
and hop count limits between POPs. The network service provider is now, for the first
time, fully in control about the flow of transit traffic, based on high-level constraints likes
hop-count, bandwidth utilization, and so on.

In this chapter the original motivations and problems for Internet traffic engineering,
the limits of IGP metric balancing the rise of MPLS and the role that IS-IS plays in the
distributed traffic control system will be highlighted. In addition, this chapter covers
more advanced topics like DiffServ traffic engineering and forwarding adjacencies.

14.1 Traffic Engineering by IGP Metric Tweaking

In the IP world, routing protocols try to compute the shortest path between a pair of sub-nets.
A common sense example from the real world says that the shortest path may not be the best
path, as everybody getting stuck in the Monday morning and Friday evening traffic jams
on the highways knows. The shortest path from a distance perspective means nothing if the
load on that path is too high and therefore causes queuing delays. Consider Figure 14.1,
where we have one “hot” link between Frankfurt and London suffering from 110 per cent
loading and so dropping traffic. Historically network engineers tried to load balance traf-
fic by modifying the IGP costs of the links to try and get some of the load off the “hot” link.

IGPs calculate their topology in a highly distributed fashion. If a single link cost is
modified, this may have global impact in the IGP domain. This is not that much of a prob-
lem in small networks. On a small network, even a human brain can process the topology
and estimate all the consequences resulting from an IGP link cost change manually.

394

A
re

a
49

.0
00

1
Le

ve
l 2

-o
nl

y

o
c-

48
m

et
ri

c
4

70
%

 lo
ad

o
c-

48
m

et
ri

c
6

60
%

 lo
ad

o
c-

48
m

et
ri

c
4

F
ra

n
kf

u
rt

L
o

n
d

o
n

W
as

h
in

g
to

n
N

ew
 Y

o
rk

P
ar

is

o
c-

48
m

et
ri

c
4

o
c-

48
m

et
ri

c
4

70
%

 lo
ad

o
c-

48
m

et
ri

c
4

40
%

 lo
ad

20
%

 lo
ad

11
0%

 lo
ad

FI
G

U
R

E
14

.1
. T

he
 s

eg
m

en
t b

et
w

ee
n

Fr
an

kf
ur

t a
nd

 L
on

do
n

is
 c

on
ge

st
ed

Traffic Engineering by Layer-2 Overlay Networks 395

However, in moderately sized networks where the number of routers and links exceeds the
processing capability of human operators, the IGP acts as a complex system and therefore
produces undesired side effects during route calculations.

A change in the IGP cost may result in a too drastic change of load patterns across the
network. It is almost like people jumping from one side of the bus to the other and almost
tipping the bus over. Consider Figure 14.2, where the traffic engineer tries to offload some
traffic on the Frankfurt to London link by changing the link-metric from 4 to 11. Now three
links (Frankfurt–Paris, Frankfurt–London, Frankfurt–Washington) become unattractive for
many routers in the network, and the traffic jumps onto the Washington–London path. In
the end, nothing is gained, as there is still an imbalance, however, this time on a different
link in the core network. In this example the change resulted in an even worse overall utili-
zation because now two network segments are congested.

The main problem here is the granularity in controlling the traffic. Often the only granu-
larity the IGP gives to the traffic engineers is loading or unloading an entire trunk line.
Loading and unloading in smaller increments, for example, in 5 per cent incremental steps
would be much better. Network operators need a tool where traffic engineering does
not interfere with routing decisions. The first solution for decoupling routing and traffic
engineering was achieved using so called Layer-2 overlay network, a popular technique
during the mid-1990s.

14.2 Traffic Engineering by Layer-2 Overlay Networks

Figure 14.3 shows the basic structure of a Layer-2 overlay network. The core of the net-
work is composed of a set of circuit-oriented Layer-2 switching devices (for example,
ATM or Frame Relay switches). Routers sitting at the edge of the network surround the
overlay network core. In the mid-1990s, when this type of network was popular, there was
relatively little Layer-3 forwarding power. This was the heydays of the Cisco 7500 Series,
which could forward at best 200 MBit/s of traffic. Therefore there was a lot of interest to
keep the traffic as long as possible in the Layer-2 switching domain. Consequently, a full-
mesh of VCs between the routers was built up. Now, traffic engineering is relatively easy:
the traffic engineer simply needs to rearrange the VCs of the core network if a trunk is
becoming congested, or in service provider speak, getting hot.

The bottom of Figure 14.3 shows the router’s viewpoint from a logical perspective.
Basically, each router sees each other router. This in turn severely stresses the flooding
sub-system of link-state routing protocols enormously. Chapter 6, “Generating, Flooding
and Ageing LSPs”, presented more details as to the catastrophic effects such full-mesh
setups have during re-routing conditions. Ultimately, the flooding-explosion described in
Chapter 6 were solved by a technique called mesh-groups.

What remained was not a technical but an administrational problem. In order to manage
the router network, service providers needed to run two teams. The ATM team running the
core network was responsible for traffic engineering, and the IP team was responsible for
running the router infrastructure. Unfortunately, those two responsibilities cannot be strictly
separated. Traffic engineering in the core is one thing, the other (and more important) aspect
is interdomain traffic engineering, which controls the entrance point where traffic enters the

396

A
re

a
49

.0
00

1
Le

ve
l 2

-o
nl

y

18
0%

 lo
ad

o
c-

48
m

et
ri

c
6

0%
 lo

ad

o
c-

48
m

et
ri

c
4

0%
 lo

ad

o
c-

48
m

et
ri

c
11

0%
 lo

ad
o

c-
48

m
et

ri
c

4

F
ra

n
kf

u
rt

L
o

n
d

o
n

W
as

h
in

g
to

n
N

ew
Y

o
rk

P
ar

is

90
%

 lo
ad

o
c-

48
m

et
ri

c
4

17
0%

 lo
ad

o
c-

48
m

et
ri

c
4

FI
G

U
R

E
14

.2
. A

 c
ha

ng
e

of
 a

 s
in

gl
e

IG
P

co
st

 m
ay

 h
av

e
a

gl
ob

al
 im

pa
ct

 o
n

th
e

ut
ili

za
tio

n
of

 o
th

er
 tr

un
ks

 in
 th

e
ne

tw
or

k

IP Network. Consider Figure 14.4, where router New York becomes very attractive by
advertising a lower MED value than router London, and now large traffic volumes are
relayed to router New York. As soon as the traffic arrives at New York, it may become a prob-
lem because the only thing left to do is balancing over the existing, internal VC infrastruc-
ture. In order to balance traffic efficiently, traffic engineers need to also control the external
link with regard to how much traffic is flowing into the network. This is not an unsolvable
problem; it is a matter of coordination between departments inside a service provider. But
experience has shown that even this level of minimal coordination is often lacking or just did
not work out very well. Aside from those coordination issues, service providers wanted to
have an integrated solution so that they could perform both traffic engineering and routing
on a single platform if for no other reason than cost.

The lack of router knowledge of the underlying topology also causes sometimes weird
re-routing behaviour. Consider Figure 14.5, where the direct VC between Paris and
Frankfurt fails. In the IGP topology every VC has a cost of 1. Because there is no direct
alternate path (cost 1) available, the network takes the next best path which is at a cost of 2.
Unfortunately, there are now a whole set of feasible paths available:

• Via Washington DC
• Via New York
• Via London

Traffic Engineering by Layer-2 Overlay Networks 397

Physical Topology

Logical Topology

Seattle

San Fran

Atlanta

Seattle

San Fran

Atlanta

FIGURE 14.3. In overlay networks all routers are directly connected to each other from a network
layer perspective

Depending on the Paris router configuration, either a random single path or limited set
of paths will be picked. In the example, New York has been elected as the backup path,
which causes an additional trans-Atlantic delay. The customers were used to having
delays of about 5 ms between Paris and Frankfurt, and not the resulting 40 ms. And the

398 14. Traffic Engineering and MPLS

AS 65001
Area 49.0001
Level 2-only

AS 1239

Frankfurt

London

Washington NewYork

Paris

NewYork

London

105% load
oc-48
MED 4

20% load
oc-48
MED 6

FIGURE 14.4. Interdomain traffic engineering cannot be done using local VC path changes and
hence the IP group of a Network Service Provider still has traffic engineering responsibilities

Area 49.0001
Level 2-only

1

1

1

1

1

1 11

1

Frankfurt

Washington NewYork

Paris London

1

FIGURE 14.5. Because of lack of topological insight a single failing VC may impose additional delay

trans-Atlantic routes are, by the way, very expensive because this capacity comes at a
premium. The other constraint is that routers limit the number of equal cost paths that
they use for path calculation. IOS used to limit this to six equal cost paths, and JUNOS
limits it to 16 equal cost paths. Now, consider a full-mesh between 40 POPs and only the
first 6 or 16 equal cost paths are being considered once a single VC fails. This results in
completely unpredictable backup behaviour and is a capacity planner’s nightmare.

In addition to those cost and delay problems, there is also the problem of the Layer-2
overhead in ATM networks. An ATM cell consists of a 5-byte header and a 48-byte pay-
load. IP packets need to get chopped into pieces to fit in those ATM payload bytes. A
sequencing scheme which numbers the fragments and detects the start and end of an IP
packet is needed to reassemble the packet at the end of the cell-switching domain. In the
ATM world those functions are performed by the ATM Adaptation Layer 5 (AAL-5).
Before the IP packet is passed to the segmentation and reassembly (SAR) chip for gen-
eration of an ATM AAL-5 compliant cell-stream, a Layer-2 header has to be prepended
for Layer-2 demultiplexing. Recall that at least two protocols are necessary in the net-
work: IPv4 and OSI (for conveying the non-IP IS-IS packets). Typically, Layer-2 is
implemented by prepending a Sub Network Access Protocol (SNAP) header for mux-
ing/demuxing purposes. A SNAP header ensures that the receiver can differentiate
between IPv4 and IS-IS packets on the wire. The SNAP, plus the AAL-5 information,
represents a certain level of static overhead. However, there is also a dynamic overhead
that results from inefficient packaging of IP packets into cells. Figure 14.6 shows a
histogram of the packet size distribution on the Internet as measured by probes on pub-
lic peering points. There is a peak of 35.5 per cent at the 40 bytes mark, which accounts
for all the TCP Acknowledgements (ACKs). This is no big surprise as the majority of IP
applications (and hence the majority of traffic) are based on TCP as the transport proto-
col. And that is where the problem begins.

Figure 14.7 shows a very good example of the inefficiencies resulting from the dynamic
overhead contribution. Consider a TCP ACK of 40 bytes (20 bytes IP header plus 20 bytes
of TCP header) that needs to have a SNAP header prepended, an AAL-5 trailer appended,
and finally packaged in ATM cells. A single 40-byte packet with the entire static overhead
contributed by the SNAP header and AAL-5 trailer cannot be squeezed into a single cell,
and therefore has to use a second cell. However, in the second cell the majority of infor-
mation is padding information. Clearly this is an extreme situation, in the sense that a
single 40-byte packet consumes 106 bytes on the carrying media, which is an overhead of
63 per cent! However, there are dynamic overhead peaks resulting from “cell-ification” every
48 bytes across the entire packet size distribution histogram. Common experience is that
the nominal overhead on an Internet traffic mix is about 20 per cent. In other words, only
115 MBit/s out of the potential channel capacity of an 148.5 MBit/s SONET/SDH pipe
can only be used for transporting IP data. Extrapolating those numbers shows that on an
OC-48/STM-16 trunk, roughly 500 MBits of capacity is burned due to cell-ification. That
represents a lot of extra traffic, and also a lot of extra money that service providers could
earn, if they could transport that traffic and not needing to purchase higher-speed trans-
mission links, ATM and router equipment.

The third big problem resulting from ATM overlay cores is the reality that router
vendors did not make ATM-interfaces with speeds higher than OC-12/STM-4 available.

Traffic Engineering by Layer-2 Overlay Networks 399

Although ATM engineers often claim that this is purely the result of a conspiracy from
the router vendors (!); the reality is that on the semiconductor supplier market today there
are still no SAR chips available that can segment and reassemble IP packets/cell-streams
with a speed higher than OC-12/STM-4. The main reason for ATM SAR chips trailing
behind the Internet growth curve is due to the technical complexity of generating AAL-5
frames at higher wire-speeds.

From an overhead and speed reality point of view, service providers quickly decided
that the ATM road was a dead-end and provisioned their cores mainly using IP over
SONET/SDH technology, thus making the ATM layer essentially obsolete. Somewhat
ironically, Layer-2 overlay networks were not that bad from a control perspective. The
nicest feature was the level of granularity available to control traffic flow in the core. The
service provider could easily relay a single portion of City A to City B traffic, without hav-
ing any impact on the AS-wide traffic distribution. This can be mainly accounted for by
the path-orientation of ATM VC and Frame Relay DLCIs. It was now clear from this
experience that any potential integrated traffic engineering solution for IP had to have a
path orientation as well.

400 14. Traffic Engineering and MPLS

Internet traffic mix
Packet size

(Bytes) Proportion of total Bandwidth (Load)

28 1,20% 0,08%
40 35,50% 3,51%
44 2,00% 0,22%
48 2,00% 0,24%
52 3,50% 0,45%

552 0,80% 1,10%
576 11,50% 16,40%
628 1,00% 1,50%

1420 3,00% 10,50%
1500 10,00% 37,10%

Internet packet size/Bandwidth distribution

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

28 40 44 48 52 55
2

57
6

62
8

14
20

15
00

Proportion of Total Bandwidth (Total)

FIGURE 14.6. The majority of packets in the Internet are 40-byte sized

401

T
C

P
 A

C
K

 (
40

)
A

T
M

 H
d

r
(5

)

A
A

L
-5

T
ra

ile
r

(8
)

L
L

C
H

ea
d

er
 (

3)

A
T

M
 H

d
r

(5
)

(l
as

t
ce

ll)
A

A
L

5
p

ad
 (

40
)

53

S
N

A
P

H
ea

d
er

 (
5)

5340

40
/1

06
�

 3
7%

T
C

P
 A

C
K

 (
40

) T
C

P
 A

C
K

 (
40

)
48

L
3

L
2

A
A

L
5

T
C

P
 A

C
K

 (
40

)
A

A
L

-5
T

ra
ile

r
(8

)
p

ad
p

ad
N

x4
8

A
T

M

L
L

C
H

ea
d

er
 (

3)
S

N
A

P
H

ea
d

er
 (

5)

L
L

C
H

ea
d

er
 (

3)
S

N
A

P
H

ea
d

er
 (

5)

FI
G

U
R

E
14

.7
. T

he
 w

or
st

 c
as

e
sc

en
ar

io
 is

 a
 4

0-
by

te
 p

ay
lo

ad
 s

iz
e,

w
hi

ch
 r

eq
ui

re
s

tw
o

A
T

M
 c

el
ls

14.3 Traffic Engineering by MPLS

The first big application for MPLS is traffic engineering. Service providers should be
able to guide traffic between any two points inside their network. To deviate from the
prevailing hop-by-hop routing paradigm that always guides the traffic along the shortest
path through a network, a new forwarding paradigm had to be introduced.

14.3.1 Introduction to MPLS
The forwarding decisions in ATM and Frame Relay networks are truly independent from
the Network Layer protocol. The forwarding engine itself does not see the Network
Layer protocol; all it sees is the ATM cell or Frame Relay header. Based on the VPI/VCI
or DLCI field, the Layer-2 switch looks up the outgoing port and just as importantly, an
outgoing VPI/VCI or DLCI. Based on this information, the VPI/VCI or DLCI is rewrit-
ten before the cell or the packet leaves the router. The VPI/VCI or DLCI field has purely
local meaning and is only valid on the interface downstream to the receiver. The concept
of label swapping comes from the original ability of ATM and Frame Relay Switches
to change the VPI/VCI or DLCI descriptor as the traffic leaves the chassis. It was clear to
the designers of the new MPLS suite of protocols that each IP packet and frame had to be
preceded by an MPLS header in order to support label swapping in the IP protocol family.

The big question today is at what layer the MPLS header needs to exist. There are
roughly two, unfortunately, fundamentally different views in the industry:

• MPLS is a Layer-2 technology
• MPLS is a Layer-3 technology

In order not to further confuse readers with multiple layering terminologies (ISO layers,
ATM layers, IP layers, MPLS layers), this book will typically use the terms cell-based
MPLS for the ATM switch vendors’ view of MPLS as a Layer-2 technology, and packet-
based MPLS for the router vendors’ view of MPLS being a Layer-3 technology.

14.3.1.1 Cell-based MPLS

The proponents of MPLS as a Layer-2 technology argue that this transition path for exist-
ing ATM networks is the smoothest. The vision is that an existing ATM network which
runs Q.2931 signalling and PNNI for internal routing will be replaced by an IP stack of
signalling protocols. Figure 14.8 illustrates the control plane transformation of an ATM
network to running IS-IS and the combination of one or both of the two major signalling
protocols used with MPLS: LDP and RSVP-TE. As the combination of Q.2931 and PNNI
established VCIs in the ATM world, now an IP stack sets up the labels in MPLS.

So the main question here is: what is a label in the cell-based MPLS world? In the con-
trol plane, much has been changed by radically replacing the prevailing ATM control
plane with an IP one. However, on the forwarding plane, almost nothing has changed.
Figure 14.8 shows that cell-based MPLS makes use of the VPI/VCI fields for MPLS as
well. The label will be written into the VPI/VCI fields and the forwarding paradigm stays
the same. The label look up determines the outgoing port and outgoing label, with which
the cell will be rewritten upon transmission.

402 14. Traffic Engineering and MPLS

403

P
N

N
I

Q
.2

93
1

R
ou

tin
g

S
ig

na
lli

ng

C
el

l H
ea

de
r

O
S

P
F

/IS
-I

S

R
S

V
P

/L
D

P

G
F

C

V
P

I

V
C

I
P

T
C

L
P

H
E

C

G
F

C

L
ab

el

P
T

C
L

P
H

E
C

FI
G

U
R

E
14

.8
. I

n
th

e
ce

ll-
ba

se
d

M
PL

S
w

or
ld

,I
P

pr
ot

oc
ol

s
do

 th
e

la
be

l s
et

up

Although cell-based MPLS may sound as being the panacea for smoothly rolling over to
MPLS, there are important caveats to consider. First, cell-Based MPLS cores still need a
SAR function at the ingress point of the network for converting IP frames to cells. And the
semiconductor supplier market still lacks SAR chips faster than OC-12/STM-4. So the
conclusion is that cell-based MPLS precludes itself for consideration as backbone technol-
ogy for high-speed cores. The second important point is that, due to the finite size of the
cell-header, there is no possibility for label stacking where multiple path labels are “pushed”
and “popped” onto and off packets as they flow in an MPLS network. In large networks it
turned out that label stacking is the foundation for scaling the distribution mesh for MPLS-
based services. As a brief example, consider Figure 14.9, where for each customer VPN a
set of LSPs is set up in the core. To add another customer, another distribution mesh that
connects all the Provider Edge devices through the core network is needed. Although ATM
vendors tune their control planes to process thousands of label setups per second, the sys-
tem does not scale in the long run due to its label forwarding state explosion in the core.
Consider, for example, 64 customers needing 10 applications which results in more than
20,000 connected paths – that amount of customers and paths will stress the control plane
severely and in the long run will exhaust the label space due to the finite cell-header size.

Today, cell-based networks are rarely used for IP transport. Network operators mainly
share the router vendors’ view that MPLS and its stacking ability are the foundation for
scaling services across the network.

14.3.1.2 Packet-based MPLS

In the packet-based MPLS world, MPLS is a fully fledged protocol type that runs on top of
link-layers such as ATM, C-HDLC, Ethernet and PPP. Figure 14.10 shows examples of
how MPLS is encapsulated on those link-layer protocols. After the Link-Layer Header, a
4-byte MPLS “shim header” is added. Interestingly, the MPLS shim header can also be
present on ATM frames. The nature of MPLS is packet based, however the link-layer is
MPLS. Note that packet-based MPLS does not modify the VPI/VCI labels of the ATM
header. The only information that a packet-based MPLS router modifies is the shim header.
The MPLS shim header consists of a 20-bit label value plus EXP, S and TTL bits. The label
information inside the MPLS shim header is constantly rewritten along the switching path
as in ATM or Frame Relay switch networks. The TTL field carries the same semantics as
the IP TTL field. The main purpose is to prevent harm resulting from persistent forwarding
loops. The Experimental or short EXP bits typically carry COS-related information like
Forwarding Class Name and drop probability. The last piece of information is only a single
bit, but it gives MPLS its scaling abilities. The Bottom of Stack bit, if set, indicates that
after the MPLS shim header the Payload (typically the IP packet) is stored. Reverse logic
implies that if the Bottom of Stack bit is not set, then an additional MPLS shim header is
found inside. In other words, MPLS supports label stacking. Those stacking capabilities
are used for a variety of applications such as VPNs, and also for Traffic Engineering tun-
nels for LDP over RSVP-TE tunnelling, which are typically used in large-scale networks.

In order for IP to take advantage of MPLS, IP packets need to get wrapped in MPLS
packets by prepending an MPLS shim header before the IP packet. Adding an MPLS shim
to the potential stack of MPLS shims is called a push operation. Consequently, taking off

404 14. Traffic Engineering and MPLS

405

S
ha

re
d

LS
P

 d
is

tr
ib

ut
io

n
m

es
h

P
en

n
sa

u
ke

n

F
ra

n
kf

u
rt

W
as

h
in

g
to

n
N

ew
 Y

o
rk

P
ar

is

P
en

ns
au

ke
n

Lo
nd

on
F

ra
nk

fu
rt

P
ar

is

L
o

n
d

o
n

P
er

 a
pp

lic
at

io
n

di
st

rib
ut

io
n

m
es

h

P
en

n
sa

u
ke

n

F
ra

n
kf

u
rt

W
as

h
in

g
to

n
N

ew
 Y

o
rk

P
ar

is

P
en

ns
au

ke
n

Lo
nd

on
F

ra
nk

fu
rt

P
ar

is

L
o

n
d

o
n

FI
G

U
R

E
14

.9
. C

el
l-

ba
se

d
M

PL
S

re
qu

ir
es

 f
or

 e
ac

h
se

rv
ic

e
a

de
di

ca
te

d
la

be
l s

w
itc

he
d

pa
th

 m
es

h

406

E
th

er
ne

t
D

es
ti

n
at

io
n

 M
ac

S
o

u
rc

e
M

ac
E

th
er

ty
p

e
0x

88
48

48
48

16

P
ro

to
co

l
0x

88
48

16

H
D

L
C

0x
00

F
F

H
D

L
C

0x
F

F
03

P
ro

to
co

l
0x

02
81

16 16
16

L
ab

el
E

X
P

S
T

T
L

20
3

1
8

L
ab

el
E

X
P

S
T

T
L

20
3

1
8

L
ab

el
E

X
P

S
T

T
L

20
3

1
8

C
is

co
 H

D
LC

P
P

P

16

L
ab

el
E

X
P

S
T

T
L

20
3

1
8

su
b

P
ro

to
-I

D
0x

88
48

O
U

I
0x

0
P

ro
to

-I
D

0x
A

A
A

A
03

24
24

A
T

M
 S

N
A

P

M
P

L
S

 s
h

im
 h

ea
d

er

FI
G

U
R

E
14

.1
0.

 T
he

 M
PL

S
sh

im
 h

ea
de

r
is

 tr
ea

te
d

lik
e

an
 O

SI
-R

M
 L

ay
er

-3
 p

ro
to

co
l a

nd
 c

an
 b

e
ru

n
o v

er
 a

 v
ar

ie
ty

 o
f

lin
k-

la
ye

r
pr

ot
oc

ol
s

a label from the MPLS shim stack is called a pop operation. Just changing a label value
and not adding or removing a label off or on the stack is called a swap operation. Figure
14.11 shows where those three operations are applied to IP transit traffic.

Consider an MPLS label switched path from Frankfurt to Washington DC. Frankfurt is
the Ingress or Head End of the label switched path. The Ingress router performs a push
operation, which adds a label #397 to the IP payload and passes off the packet to the next
downstream router, which is London. London’s lookup table maps incoming labels #397
to the outgoing port facing Pennsauken and swaps label #397 to label #512. Pennsauken
maps label #512 to its outgoing port facing New York and swaps the label to #438.

Traffic Engineering by MPLS 407

Pennsauken

Frankfurt

London

Washington

New York

Paris

label

397

label

512

label

438

label

0

FIGURE 14.11. Each MPLS router along a label switched path changes, swaps the label

Pennsauken is the penultimate router on the forwarding path and therefore it has to tell the
egress router to unwrap the packet. It does so by swapping the label to zero and forward-
ing it to Washington. The Egress or tail end router in Washington knows now to POP the
top label off the stack and do a regular IP lookup on the packet inside.

14.4 MPLS Signalling Protocols

Now the next big question is: how are label switched paths established? As in the routing
protocol world, there are generally two ways to bring up label switched paths:

• Static setup
• Dynamic (signalled) setup

Static setups have no real practical relevance: they are difficult to coordinate and to set
up and cumbersome to maintain. Additionally they do not have the possibility to re-route
traffic in case the primary path fails. The majority of network operators deployed sig-
nalled setup of label switched paths using one or both of the following protocols: LDP
and RSVP-TE.

Path control is one of the prime necessities of traffic engineering. LDP is not directly
related to traffic engineering because LDP lacks support for traffic path control. Although
there is an extension to LDP that allows traffic path control based on constraints called
CR-LDP the new extensions never materialized in real networks. Finally the CR-LDP got
abandoned by the IETF. Today’s protocol of choice for traffic-path control is RSVP, aug-
mented with a Traffic Engineering Extension, called RSVP-TE. This chapter covers only
LDP basics, and just to provide a better understanding about how LDP fits in with more
advanced concepts like LDP over RSVP-TE tunnelling, which is related to traffic engin-
eering and IS-IS.

14.4.1 RSVP-TE
RSVP was originally defined in RFC 2205, however, with completely different intentions
than using it for traffic engineering purposes. Originally it was thought of as being the tool
to make the Internet CoS aware. The application running on End Systems should be made
CoS aware and signal bandwidth and delay requirements to the network, which was
expected to provide for these requirements. The RSVP message travels throughout the
network and, if the receiver confirms that it is willing to accept traffic according to the
flow request, then admission is granted. Then all routers across the path are required to set
up per-flow schedulers to guarantee that the individual application can transmit the traffic
with the requirements granted by the network. The per-flow model failed due to the inher-
ent scaling problems of implementing it in hardware. This was to some degree compar-
able to ATM networks, where a similar mistake was made – dynamic signalling of ATM VCs
and the subsequent introduction of forwarding state does not scale. Consider that today on
an OC-192c circuit there are typically millions of flows transported, then the limits of the
design are immediately apparent. A hardware-scheduling engine that operates at such high
speeds on so many flows cannot be built. RSVP was considered dead by the mid-1990s

408 14. Traffic Engineering and MPLS

MPLS Signalling Protocols 409

and there was no broader deployment of flow-aware networks. Finally, the vision of a
flow-aware Internet was abandoned for the time being. However, there were three things
about RSVP that still attracted interest within the developer community.

1. Extensibility. First of all, RSVP is a very extensible protocol. Like IS-IS, the RSVP
header is quite generic and all the information is encoded using TLV containers called
Objects. More about the advantages of TLV encoding were discussed in Chapter 13.
Virtually all successful networking protocols have a TLV orientation. RSVP is actu-
ally a very good example of a protocol that, if it is just extensible enough, can be used
for a totally different purpose many years later. All that is required is to define a dif-
ferent set of TLVs, and functionality is added as developers move forward with the
protocol.

2. Forwarding State Model. RSVP uses two basic messages for requesting and granting
forwarding state: the PATH and the RESV messages. The Path message describes
what the sender wants to transmit to the receiver, and the RESV message describes
what the receiver is willing to accept. The PATH message travels hop-by-hop down-
stream to the receiver and the RESV message travels upstream from the receiver to the
sender along the path established. The receiver can set up forwarding state in a step-
by-step fashion and, as soon the RESV message arrives at the requester, everything is
ready and then the forwarding path can immediately be used. That property is a wide
deviation from the usual “signalling” and routing paradigm found in IP networks.
Routing typically does not get any feedback – at best a routing protocol tells its neigh-
bour that it has received the routing update by sending back an Acknowledgement.
However, the router cannot tell if the path will ever be used. RSVP is different. The
router that requests a certain forwarding state from the network also gets immediate
feedback that the network has set up the requesting state and now it is ready for use.
For fast converging networks especially, fast feedback about whether a path can be
used or not is imperative.

3. Unidirectional Notion. A flow was originally thought of as a unidirectional path between
two nodes. Also, routed paths in the IP world are always unidirectional relationships.
Therefore the IETF similarly defined a label switched path as a unidirectional rela-
tionship. As the RSVP flow-based model implied unidirectional operation as well, it
was a natural choice for setting up label forwarding state between a pair of routers.

14.4.2 Simple Traffic Engineering with RSVP-TE
RSVP had a lot of interesting ingredients to serve as the protocol for setting up label
switched paths across the Internet. However, a few changes and extra objects had to be
defined before RSVP could be used to set up label switched paths. The most important
change was that RSVP is not run between a pair of End Systems. Rather, RSVP-TE for
MPLS is run between a pair of routers. The next evolutionary step was to get rid of some
of the per-flow objects and to define a set of new objects that could be used for traffic
engineering purposes. In RSVP, Objects is the term that is interchangeably used for TLVs.

Table 14.1 shows the additional RSVP-TE objects that are defined in RFC 3209 and
used with MPLS.

All the objects in Table 14.1 are used for Signalling Traffic Engineering LSPs. Most of
them appear in RSVP RESV or PATH messages. The tcpdump output shows how these
attributes look on the wire.

Tcpdump output
In the tcpdump output you see the contents of a PATH and RESV message of a RSVP
call that requests and assigns a label. Many TE objects are embedded in the two
messages.

12:35:47.351675 IP 209.211.134.9 > 209.211.134.8: RSVP

v: 1, msg-type: Path, length: 216, ttl: 255, checksum: 0x4406

Session Object (1) Flags: [reject if unknown], Class-Type: Tunnel IPv4 (7),

length: 16

IPv4 Tunnel EndPoint: 209.211.134.8, Tunnel ID: 0x0011,

Extended Tunnel ID: 209.211.134.9

RSVP Hop Object (3) Flags: [reject if unknown], Class-Type: IPv4 (1), length: 12

Previous/Next Interface: 10.154.1.6, Logical Interface Handle: 0x0853f4c8

Time Values Object (5) Flags: [reject if unknown], Class- Type: 1 (1), length: 8

Refresh Period: 120000ms

Session Attribute Object (207) Flags: [ignore and forward if unknown],

Class-Type: Tunnel IPv4 (7), length: 28

Session Name: juncore02-juncore01

Setup Priority: 7, Holding Priority: 0, Flags: [none]

Sender Template Object (11) Flags: [reject if unknown], Class-Type:

Tunnel IPv4 (7), length: 12

IPv4 Tunnel Sender Address: 209.211.134.9, LSP-ID: 0x0007

Sender TSpec Object (12) Flags: [reject if unknown], Class-Type: IntServ (2),

length: 36

Msg-Version: 0, length: 28

Service Type: Default/Global Information (1), break bit not set,

Service length: 24

Parameter ID: Token Bucket TSpec (127), length: 20, Flags: [0x00]

Token Bucket Rate: 0 Mbps

Token Bucket Size: 0 bytes

Peak Data Rate: inf Mbps

Minimum Policed Unit: 20 bytes

Maximum Packet Size: 1500 bytes

410 14. Traffic Engineering and MPLS

TABLE 14.1. The major traffic engineering objects
for RSVP-TE.
Code point Object name

16 Label object
19 Label request object
20 Explicit route object
21 Record route object
22 Hello

207 Session attribute object

Adspec Object (13) Flags: [reject if unknown], Class-Type: IntServ (2),

length: 48

Msg-Version: 0, length: 40

Service Type: Default/Global Information (1), break bit not set,

Service length: 32

Parameter ID: IS hop cnt (4), length: 4, Flags: [0x00]

IS hop cnt: 1

Parameter ID: Path b/w estimate (6), length: 4, Flags: [0x00]

Path b/w estimate: 0 Mbps

Parameter ID: Minimum path latency (8), length: 4, Flags: [0x00]

Minimum path latency: don’t care

Parameter ID: Composed MTU (10), length: 4, Flags: [0x00]

Composed MTU: 1500 bytes

Service Type: Controlled Load (5), break bit not set, Service length: 0

ERO Object (20) Flags: [reject if unknown], Class-Type: IPv4 (1), length: 28

Subobject Type: IPv4 prefix, Strict, 10.154.1.5/32, Flags: [none]

Subobject Type: IPv4 prefix, Strict, 10.154.6.1/32, Flags: [none]

Subobject Type: IPv4 prefix, Strict, 10.254.1.45/32, Flags: [none]

Label Request Object (19) Flags: [reject if unknown], Class- Type: without

label range (1), length: 8

L3 Protocol ID IPv4

RRO Object (21) Flags: [reject if unknown], Class-Type: IPv4 (1), length: 12

Subobject Type: IPv4 prefix, Strict, 10.154.1.6/32, Flags: [none]

This is the response to the previous Label Setup Message. Note that the Session object
contents need to match in order for the router to match the RSVP message to a certain
session.

12:35:51.199611 IP (tos 0xc0, ttl 255, id 6344, offset 0, flags [none], length: 164)

10.154.1.5 > 10.154.1.6: RSVP

v: 1, msg-type: Resv, length: 144, ttl: 255, checksum: 0x2efc

Session Object (1) Flags: [reject if unknown], Class-Type: Tunnel IPv4 (7),

length: 16

IPv4 Tunnel EndPoint: 209.211.134.10, Tunnel ID: 0x0013, Extended

Tunnel ID: 209.211.134.9

RSVP Hop Object (3) Flags: [reject if unknown], Class-Type: IPv4 (1), length: 12

Previous/Next Interface: 10.154.1.5, Logical Interface Handle: 0x0853f4c8

Time Values Object (5) Flags: [reject if unknown], Class-Type: 1 (1), length: 8

Refresh Period: 30000ms

Style Object (8) Flags: [reject if unknown], Class-Type: 1 (1), length: 8

Reservation Style: Fixed Filter, Flags: [0x00]

Flowspec Object (9) Flags: [reject if unknown], Class-Type: IntServ (2),

length: 36

Msg-Version: 0, length: 28

Service Type: Controlled Load (5), break bit not set, Service length: 24

Parameter ID: Token Bucket TSpec (127), length: 20, Flags: [0x00]

Token Bucket Rate: 0 Mbps

Token Bucket Size: 0 bytes

Peak Data Rate: inf Mbps

Minimum Policed Unit: 20 bytes

Maximum Packet Size: 1500 bytes

MPLS Signalling Protocols 411

FilterSpec Object (10) Flags: [reject if unknown], Class-Type: Tunnel IPv4 (7),

length: 12

Source Address: 209.211.134.9, LSP-ID: 0x0005

Label Object (16) Flags: [reject if unknown], Class-Type: Label (1), length: 8

Label 12324

RRO Object (21) Flags: [reject if unknown], Class-Type: IPv4 (1), length: 36

Subobject Type: IPv4 prefix, Strict, 10.154.1.5/32, Flags: [none]

Subobject Type: IPv4 prefix, Strict, 10.154.6.1/32, Flags: [none]

Subobject Type: IPv4 prefix, Strict, 10.254.1.45/32, Flags: [none]

Subobject Type: IPv4 prefix, Strict, 10.254.1.2/32, Flags: [none]

The Label Request Object is embedded in a RSVP-TE PATH message and gives RSVP-
TE the ability to request a label and subsequently return a label using the Label Object in
a RSVP-TE RESV message. The Explicit Route Object (ERO) allows RSVP-TE to spec-
ify a set of nodes that an RSVP-TE message has to traverse. Figure 14.12 shows sample
EROs modelled using the Loose and Strict (L/S) path constraint. A Strict hop indicates
that the next hop must be directly connected to the previous hop. The first example of
Figure 14.12 shows a set of strict hops that specify a path. A sequence of strict hops is
often used to nail down a path – that is, when the network administrator wants to enforce
a certain path. A Loose hop means that the node has to be present in the path before the
next hop, but does not have to be the next-hop. The second example of Figure 14.12
shows that only a subset of the nodes is listed in the ERO. With the Loose attribute, this
means that there is some room for re-routing this path. The path could potentially run
directly from Washington via Frankfurt to Pennsauken. In practice, the Loose option
causes more problems than it solves. The network is not in full control of the traffic path
anymore and in more complex topologies this may lead to strange results with long delay
paths. The third example in Figure 14.12 shows a mix between loose and strict hops. The
semantics of the ERO Objects allows for the combination of loose and strict hops in an
arbitrary fashion.

There are two general ways to create an ERO. The first is a manual specification and
the second, more sophisticated way, is automated computation. The manual configur-
ation will be discussed first.

You can configure a label switched path using an ERO in similar ways on IOS and
JUNOS. First you need to specify the ERO and next you need to link the ERO to a label
switched path.

IOS configuration
In IOS you can specify an ERO manually using the ip explicit-path statement. The
next-address specifies the next-element in the ERO. By default all hops in the ERO are
strict except when you supply the loose keyword.

ip explicit-path identifier name via-Penssauken enable

next-address 192.168.1.1

next-address loose 192.168.2.1

[…]

!

412 14. Traffic Engineering and MPLS

MPLS Signalling Protocols 413

Area 49.0001
Level 2-only

ERO

Paris strict;
Frankfurt strict;
London strict;
Pennsauken strict;

Area 49.0001
Level 2-only

ERO

Frankfurt loose;
Pennsauken loose;

Area 49.0001
Level 2-only

ERO

Frankfurt strict;
Pennsauken loose;

Pennsauken

Frankfurt London

Washington New York

Paris

Pennsauken

Frankfurt London

Washington New York

Paris

Pennsauken

Frankfurt London

Washington New York

Paris

FIGURE 14.12. The ERO consists of a mix and match list of Strict and/or Loose Hops

After defining the ERO you need to link it to an existing tunnel using the path-
option explicit argument to the tunnel mpls traffic-eng command.

IOS configuration
In order to switch from dynamic computation to an explicit execution use the tunnel mpls
traffic-eng path-option 5 explicit command.

interface Tunnel0

description TE Tunnel to Washington via Penssauken

ip unnumbered Loopback0

tag-switching ip

tunnel destination 192.168.20.1

tunnel mode mpls traffic-eng

tunnel mpls traffic-eng autoroute announce

tunnel mpls traffic-eng path-option 5 explicit name via-Penssauken

!

In JUNOS the configuration is very similar – first you specify the ERO.

JUNOS configuration
In JUNOS you configure manual EROs under the protocols mpls path {} configura-
tion branch.

protocols {

mpls {

path via-Penssauken {

192.168.1.1 strict;

192.168.2.1 loose;

}

}

}

Next you link the ERO into an existing label switched path. You need to declare the
path as a primary or secondary path.

JUNOS configuration
The tunnel is configured under the protocols mpls label-switched-path {} state-
ment. JUNOS has the notion of a primary/secondary path where you can specify a
backup path that is immediately used if the primary path fails.

protocols {

mpls {

label-switched-path “TE Tunnel to Washington via Pennsauken” {

to 192.168.20.1;

primary via-Pennsauken;

}

}

}

414 14. Traffic Engineering and MPLS

After you have configured your tunnels, you need to verify if the TE tunnel is up and if
the tunnel is following the desired path. Because awkward combination of the Loose and
Strict Hop option can cause unexpected results – the Record Route Object (RRO) pro-
vides better visibility for troubleshooting purposes. The Record Route Object is embed-
ded in the RSVP-TE RESV messages. During its journey from the egress router to the
ingress router all IP addresses are recorded and stored at the ingress router. On IOS, you
have to explicitly turn on generation to the RRO object using a Tunnel Interface path
option, in JUNOS it is automatic.

IOS configuration
In IOS the Record Route Object (RRO) is not automatically generated for a TE tunnel. It
needs to get configured explicitly using the tunnel mpls traffic-eng record-route
command.

interface Tunnel0

[…]

tunnel mpls traffic-eng record-route

!

The contents of the RRO Object can be displayed using the show mpls traffic-
eng tunnels command in IOS.

IOS output
The show mpls traffic-eng tunnels command contains all the information around a
tunnel. The configured ERO, the tunnel’s bandwidth, outgoing labels and more of interest
is included in the Route Record Object (RRO).

London#show mpls traffic-eng tunnels

Name: TE Tunnel to Washington via Pennsauken (Tunnel0) Destination: 192.168.20.1

Status:

Admin: up Oper: up Path: valid Signalling: connected

path option 1, type explicit via-Pennsauken (Basis for Setup,path weight 10)

Config Parameters:

Bandwidth: 1 kbps (Global) Priority: 7 7 Affinity: 0x0/0xFFFF

Metric Type: TE (default)

AutoRoute: enabled LockDown: disabled Loadshare: 1 bw-based

auto-bw: disabled

InLabel : -

OutLabel : POS4/1, 100016

MPLS Signalling Protocols 415

RSVP Signalling Info:

Src 192.168.1.2, Dst 192.168.20.1, Tun_Id 0, Tun_Instance 511

RSVP Path Info:

My Address: 192.168.1.2

Explicit Route: 192.168.1.1 192.168.168.3

Record Route:

Tspec: ave rate�1 kbits, burst�1000 bytes, peak rate�1 kbits

RSVP Resv Info:

Record Route: 172.16.33.1 172.16.38.1

Fspec: ave rate�1 kbits, burst�1000 bytes, peak rate�1 kbits

History:

Tunnel:

Time since created: 12 days, 17 hours, 39 minutes

Time since path change: 1 minutes, 13 seconds

Current LSP:

Uptime: 1 minutes, 13 seconds

Most often you will notice a difference between the configured ERO and the recorded
PATH. It is common practice to use a router’s loopback ID as the address for a loose
hop. However, the route recorder in the PATH message thinks entirely in terms of link
addresses. So even if we used in our example the 192.168/16 addresses, the ones actually
reported back in the RRO are from the link-address space 172.16/16.

In JUNOS you can also display the recorded path using the show mpls lsp
ingress detail command.

JUNOS output
hannes@Frankfurt> show mpls lsp ingress detail

Ingress LSP: 1 sessions

192.168.1.1

From: 192.168.1.2, State: Up, ActiveRoute: 0, LSPname: to-Washington

ActivePath: (primary)

LoadBalance: Random

Encoding type: Packet, Switching type: Packet, GPID: IPv4

*Primary State: Up

Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 20)

192.168.1.1 192.168.168.3 S

Received RRO (ProtectionFlag 1�Available 2�InUse 4�B/W 8�Node):

172.16.33.1 172.16.38.1

Total 1 displayed, Up 1, Down 0

JUNOS behaves similarly to IOS, where the Route Path Recording is done using link
addresses.

If you want to achieve any-to-any MPLS connectivity between all routers in your
network, then the consequence is to deploy a full-mesh of RSVP-TE tunnels. However,
there are severe scaling implications with that approach. To overcome these scaling
limitations a more lightweight MPLS label setup protocol called the Label Distribution
Protocol (LDP) is used.

416 14. Traffic Engineering and MPLS

14.4.3 LDP
LDP is defined in RFC 3036 and it describes a lean, lightweight protocol that brings up a
full-mesh of connectivity to all LDP speakers in the network. Generally, the term full-
mesh raises warning flags in every network engineer’s head due to the perceived scaling
problems. However, LDP uses a technique called label-merging which is very conserva-
tive with label allocation. Consider the right-hand side of Figure 14.13. There are five
drawings inside the figure, one for each possible egress router. The egress router is marked
with an E, and the metric on each link is 4.

MPLS Signalling Protocols 417

Frankfurt

Pa

LDP label allocation

6

4

4

4

4

4

6

4

4

4

4

4

6

4

4

4

4

4

6

4

4

4

4

4

6

4

4

4

4

4

RSVP label allocation

6

4

4

4

4

4

6

4

4

4

4

4

6

4

4

4

4

4

6

4

4

4

4

4

6

4

4

4

4

4

Frankfurt

London

Washington NewYork

Paris

E

E

Frankfurt

London

Washington New York

Paris

Frankfurt

London

Washington NewYork

Paris

Frankfurt

London

Washington NewYork

Paris

Frankfurt

London

Washington New York

Paris

Frankfurt

London

Washington New York

Paris

Frankfurt

London

Washington NewYork

Paris

Frankfurt

London

Washington NewYork

Paris

Frankfurt

London

Washington New York

Paris

Frankfurt

London

Washington NewYork

Paris

E

E

E E

E

E

E

E

FIGURE 14.13. LDP consumes less forwarding state per link than RSVP does

The figure describes the LSPs and the necessary forwarding state to set up full-mesh
connectivity between all five routers in the core network. Using RSVP-TE, we would
need at least N * (N – 1)/2 � 10 explicitly configured tunnels. Because LDP supports label
merging, some labels can be re-used by other label switched paths. Unlike RSVP-TE,
LDP signals its label using a mode called downstream unsolicited, which means that
the labels are signalled from the egress router to the ingress router. Each LDP speaker
advertises prefixes according to the egress policy. In JUNOS, the default egress policy is
just to advertise the loopback IP address. The IOS default egress policy is to advertise both
the loopback and all the directly connected interfaces. Upstream nodes create MPLS
SWAP states and pass on the label-mapping message to their upstream nodes, which cre-
ate again MPLS SWAP states, and pass them on to further upstream nodes, and so on. The
resulting shape of the merged tree is called a sink tree. (In datacom speech the egress or
destination point is sometimes called the sink.) And because the root of the tree is at the
egress router, it is therefore a sink tree.

Figure 14.14 shows the number of forwarding entries (FE) that the sum of all label
switched paths generates. Even in the small topology, LDP behaves better than
RSVP-TE. LDP has an average of 3 FEs per link versus RSVP-TE, which consumes an
average of 4.33 FEs per link. LDP is therefore the protocol of choice for edge systems
like VPN and/or customer access routers, due to LDP’s ability to supply a full-mesh con-
nectivity to all the other LDP speakers with no setup complexity at all.

The configuration of LDP is a simple one: just enable it on a per-interface basis. An
LDP configuration for router London on IOS could look like the following:

IOS configuration
In IOS two configuration lines are necessary for running LDP. First turn on MPLS pro-
cessing on an interface plus the necessary Layer-2 Supporting Protocols like MPLSCP
over PPP using the tag-switching ip keyword. The mpls label protocol ldp key-
word tells the system to run LDP rather than TDP (Cisco’s proprietary predecessor
to LDP).

London#sh running-config

[…]

!

interface POS4/1

ip address 172.17.0.5 255.255.255.252

ip router isis

encapsulation ppp

mpls label protocol ldp

tag-switching ip

!

Shortly after configuration, a remote LDP neighbour should be detected and an LDP
session is then set up automatically. You can verify the neighbour state using the show
mpls ldp neighbor operational level command.

418 14. Traffic Engineering and MPLS

419

F
o

rw
ar

d
in

g
 s

ta
te

/L
D

P
 la

b
el

 a
llo

ca
ti

o
n

F
o

rw
ar

d
in

g
 s

ta
te

/R
S

V
P

 la
b

el
 a

llo
ca

ti
o

n

8
F

E

4
F

E

4
F

E

4
F

E

3
F

E

3
F

E

4
F

E

2
F

E

3
F

E

3
F

E

3
F

E

3
F

E

av
g

. 3
 F

E
/L

IN
K

av
g

.
4.

33
 F

E
/L

IN
K

F
ra

n
kf

u
rt

L
o

n
d

o
n

W
as

h
in

g
to

n
N

ew
 Y

o
rk

P
ar

is

F
ra

n
kf

u
rt

L
o

n
d

o
n

W
as

h
in

g
to

n
N

ew
 Y

o
rk

P
ar

is

FI
G

U
R

E
14

.1
4.

 T
he

 s
um

 o
f

al
l f

or
w

ar
di

ng
 s

ta
te

s
sh

ow
 th

at
 L

D
P

is
 m

or
e

fr
ug

al
 th

an
 R

SV
P

IOS output
Under the show mpls ldp <*> hierarchy several commands are available to verify neigh-
bour state and timers.

London#show mpls ldp neighbor

Peer LDP Ident: 192.168.0.1:0; Local LDP Ident 192.168.13.8:0

TCP connection: 192.168.0.1.646 - 192.168.13.8.11000

State: Oper; Msgs sent/rcvd: 207/179; Downstream

Up time: 00:28:43

LDP discovery sources:

POS4/0, Src IP addr: 172.16.0.2

Addresses bound to peer LDP Ident:

172.16.0.2

The display output shows whether the session is up and what IP addresses are being
used. LDP uses link IP addresses for discovery and loopback IP addresses for session
setup. If a session does not come up due to addressing conflicts the output of this com-
mand is providing valuable information for troubleshooting.

In JUNOS we need to make sure that family mpls is configured under the logical
interface branch. In addition we add a list of interfaces where we want to speak LDP
under the protocols ldp stanza.

JUNOS configuration
In JUNOS you need to specify the interface where you want to run LDP both under the
protocols mpls {} and protocols ldp {} stanza. Alternatively you can set the mpls
interface list to all which allows allocation of labels on all interfaces. In addition every
logical interface needs to have the family mpls configured.

hannes@Frankfurt# show

[…]

interface ge-0/0/0 {

unit 0 {

family mpls;

}

}

protocols {

mpls {

interface all;

}

ldp {

interface so-0/1/2.0;

}

}

[…]

It remains unknown why mpls interface all {} is not the default option,
since this does not break anything by being turned on. On the other hand, it does break

420 14. Traffic Engineering and MPLS

proper label allocation if the interfaces are not listed under this command hierarchy. Not
all default decisions are obvious.

The neighbour state is verified using the show ldp neighbor command.

JUNOS output
You can verify the neighbour state using the show ldp neighbor detail operational
level command.The output displays the session IP addresses plus the neighbour’s link IP
address.

hannes@Frankfurt> show ldp neighbor detail

Address Interface Label space ID Hold time

10.0.0.5 so-0/1/2.0 62.154.13.8:0 11

Transport address: 62.154.13.8, Configuration sequence: 0

Up for 01:33:30

LDP is very much dependent on a working IGP. LDP itself cannot be run in stand-
alone mode. Like BGP it is topology agnostic and cannot assert which label is better over
another. LDP picks the label of the outgoing interface based on the best IGP distance. If
the LDP topology is non-congruent than the IGP topology then LDP paths might get
black holed.

One of the most frequent configuration mistakes is that the list of interfaces that run IS-IS
and the list of interfaces which run LDP are not the same. Consider Figure 14.15. All links
in the core network have IS-IS and LDP enabled, except the link between Washington and
New York, which lacks LDP due to a configuration mistake. Paris learns the /32 FEC of the
New York router via the London, Frankfurt, Washington path and selects the path via
Washington because it is on the shortest path tree. The traffic gets labelled to Washington
where it gets black holed because no valid MPLS labelled switched paths to the FEC of
New York are available.

MPLS Signalling Protocols 421

10 IS-IS

LDP

4 IS-IS

LDP

12 IS-IS

4 IS-IS
LDP

4 IS-IS

LDP

Frankfurt

London

Washington NewYork

Paris

4 IS-IS

LDP

FIGURE 14.15. If the IS-IS and LDP topology is non-congruent Washington is black holing traffic

If you are troubleshooting an MPLS reachability problem, the first thing to check is if
the IS-IS adjacencies match the LDP session. It remains problematic why router vendors
do not change their default behaviour. LDP should be automatically brought up as soon
as you enable IS-IS on an interface. If someone does not want to run LDP, they could
then explicitly turn it off. That way you can prevent a network from black holing traffic.

14.4.4 Conclusion
Clients often ask what the “signalling protocol of choice” is. In 99 per cent of the cases,
the answer is: both (LDP and RSVP-TE). Both protocols augment each other. LDP lacks
path control, however. It is very frugal in its label usage and therefore inherently scalable.
RSVP-TE is a heavyweight both from an administrative point of view as well as from a
label allocation perspective; however, RSVP-TE has sound path control properties. So in
general, networks use LDP, but once they need to offload some traffic from hot trunks,
they use RSVP-TE in addition. There is no need to build full-mesh, explicitly configured
RSVP-TE tunnels. First, pick a careful IGP metric scheme that provides good-enough
routes, and then on top of that use RSVP-TE established TE-tunnels to take some heat off
the hot trunks.

14.5 Complex Traffic Engineering by CSPF Computations

Traffic engineering is deployed in two general ways: the first option is when the network
administrator wants to have the maximum level of control and explicitly configures all the
label switched paths, plus the EROs. In moderately complex topologies, however, manu-
ally writing up tens to hundreds of EROs is a daunting task and almost certainly over-
whelms the processing capabilities of humans. This is especially true if constraints like
hop count and backup path diversity need to be considered; in these cases, automatic com-
putation of EROs is the preferred choice. The computation of the EROs is done using a
distributed traffic engineering database called the TED. The contents of this database are
carried in IS-IS or OSPF. Figure 14.16 shows the differences between the two models.

422 14. Traffic Engineering and MPLS

Extended IS-IS

Routing Table
Traffic Engineering

Database (TED)

Constrained
Shortest Path First

(CSPF)
User constraints

ERO

RSVP Signalling

2

1

FIGURE 14.16. The RSVP Call Manager gets its input from the outcome of the CSPF calculation
which is influenced by User Constraints and Topological Input

In the first method, the network administrator supplies the ERO data, and in the second the
EROs are calculated using a Constrained Shortest Path First Calculation (CSPF) based on
user constrained TED input from the routers. The final result is an ERO which gets passed
to RSVP-TE for LSP setup.

You can display the contents of the TED database using the show mpls traffic-
eng topology command in IOS and show ted database extensive com-
mand in JUNOS.

IOS command output
London#show mpls traffic-eng topology
My_System_id: 1921.6800.1008.00 (isis level-2)

Signalling error holddown: 10 sec Global Link Generation 5

IGP Id: 1921.6800.1012.00, MPLS TE Id:192.168.0.12 Router Node (isis level-2)
link[0]: Point-to-Point, Nbr IGP Id: 1921.6800.1008.00, nbr_node_id:1, gen:2

frag_id 0, Intf Address:172.16.0.2, Nbr Intf Address:172.16.0.1
TE metric:10, IGP metric:10, attribute_flags:0x0
physical_bw: 2488320 (kbps), max_reservable_bw_global: 2488320 (kbps)
max_reservable_bw_sub: 0 (kbps)

Global Pool Sub Pool
Total Allocated Reservable Reservable
BW (kbps) BW (kbps) BW (kbps)
--------------- ----------- ----------

bw[0]: 0 2488320 0
bw[1]: 0 2488320 0
bw[2]: 0 2488320 0
bw[3]: 0 2488320 0
bw[4]: 0 2488320 0
bw[5]: 0 2488320 0
bw[6]: 0 2488320 0
bw[7]: 0 2488320 0

The TED database contains all IP addresses, links and current bandwidth reservation
states. The data found here is the foundation for the CSPF calculation which produces a
path described by an ERO.

JUNOS command output
hannes@Frankfurt> show ted database extensive

TED database: 3 ISIS nodes 3 INET nodes

NodeID: Frankfurt.00(192.168.0.8)

Type: Rtr, Age: 189 secs, LinkIn: 1, LinkOut: 1

Protocol: IS-IS(2)

To: London.00(192.168.0.8), Local: 172.16.0.1, Remote: 172.16.0.2

Color: 0 <none>

Metric: 10

Static BW: 2488.32Mbps

Reservable BW: 2488.32Mbps

Complex Traffic Engineering by CSPF Computations 423

Available BW [priority] bps:

[0] 2488.32Mbps [1] 2488.32Mbps [2] 2488.32Mbps [3] 2488.32Mbps

[4] 2488.32Mbps [5] 2488.32Mbps [6] 2488.32Mbps [7] 2488.32Mbps

Interface Switching Capability Descriptor(1):

Switching type: Packet

Encoding type: Packet

Maximum LSP BW [priority] bps:

[0] 2488.32Mbps [1] 2488.32Mbps [2] 2488.32Mbps [3] 2488.32Mbps

[4] 2488.32Mbps [5] 2488.32Mbps [6] 2488.32Mbps [7] 2488.32Mbps

Why isn’t the data for CSPF calculations taken straight from the link-state database of
the routing protocol? Well, there still may be OSPF deployed in parts of the network. The
TED is a unified view to the topology of the network, so no matter which IGP (OSPF,
IS-IS, or even vendor-proprietary protocols) supplied the topology data. The TED is a
unified, abstracted view and knows only about nodes, links and link attributes.

How does IS-IS generate and encode the data in the TED output? How does it know
that a certain interface is an OC-48 interface? As soon as RSVP-TE is enabled on an
interface, a lot of extra information is generated and conveyed using IS-IS.

Consider the following tcpdump output of a LSP before RSVP-TE has been
turned on.

Tcpdump output
If RSVP-TE is not enabled on a core interface then no bandwidth relevant information is
generated inside the Extended IS Reach TLV.

00:27:20.871975 OSI, IS-IS, length: 104

L2 LSP, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

lsp-id: 0620.0000.0001.00-00, seq: 0x00000030, lifetime: 1196s

chksum: 0x1d9d (correct), PDU length: 104, L1L2 IS

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Protocols supported TLV #129, length: 1

NLPID(s): IPv4

Traffic Engineering Router ID TLV #134, length: 4

Traffic Engineering Router ID: 62.0.0.1

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 62.0.0.1

Hostname TLV #137, length: 9

Hostname: Frankfurt

Extended IS Reachability TLV #22, length: 23

IS Neighbor: 0621.5401.3008.00, Metric: 10, sub-TLVs present (12)

IPv4 interface address subTLV #6, length: 4, 10.0.0.2

IPv4 neighbor address subTLV #8, length: 4, 10.0.0.1

Extended IPv4 Reachability TLV #135, length: 18

IPv4 prefix: 62.0.0.1/32, Distribution: up, Metric: 0

IPv4 prefix: 10.0.0.0/30, Distribution: up, Metric: 10

424 14. Traffic Engineering and MPLS

Complex Traffic Engineering by CSPF Computations 425

Next, traffic engineering and RSVP-TE is configured on IOS and JUNOS and the
resulting LSP structure is examined.

IOS configuration
In IOS you need to enable traffic-eng globally and under the router isis stanza.
Additionally you need to enable it on each interface using the mpls traffic-eng tunnels
command plus the ip rsvp bandwidth keyword specifies how much bandwidth can be
reserved.

London#sh running-config

[…]

mpls traffic-eng tunnels

!

interface POS4/1

[…]

ip router isis

mpls traffic-eng tunnels

tag-switching ip

ip rsvp bandwidth 2488320 2488320

!

router isis

mpls traffic-eng router-id Loopback0

mpls traffic-eng level-2

metric-style wide level-2

[…]

!

The ip rsvp bandwidth statement takes two parameters. The first is the max-
imum amount of bandwidth that is reservable on the interface, and the second is the max-
imum amount of bandwidth that is available for a single reservation. Typically those two
values are the same, which means that a single reservation can eat up all the interface’s
bandwidth. Under the router isis stanza you need to specify the IS-IS level to which
you want to send traffic engineering information. Unfortunately, you need to decide for
Level-1 or Level-2. Both levels are not yet supported. Typically Level-2 is configured, and
that is done here.

In JUNOS the sending of traffic engineering sub-TLV parameters is the default behav-
iour and there is no need to configure any further global options. All that needs to be con-
figured is to add the interface under the protocols rsvp stanza.

JUNOS configuration
In JUNOS you need to specify the interface where you want to send bandwidth and reser-
vation state both under the protocols mpls {} and protocols rsvp {} stanza.
Alternatively you can set the mpls interface list to all. You can change the

426 14. Traffic Engineering and MPLS

oversubscription of RSVP bandwidth by changing the default value of 100% using the
subscription keyword.

hannes@Frankfurt# show

[…]

protocols {

mpls {

interface all;

}

rsvp {

interface so-0/1/2.0 {

subscription 120;

}

}

}

[…]

As soon as you enable RSVP-TE on an interface on which the router has established
an adjacency, then the LSP gets updated with a lot of extra information, encoded by
adding several sub-TLVs to the extended IS Reachability TLV #22.

Tcpdump output
An RSVP-TE enabled IS-IS adjacency shows the interface speed plus current reservation
state using 8 pre-emption classes.

00:28:20.760649 OSI, IS-IS, length: 156

hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0), pdu-type: L2 LSP

lsp-id: 0620.0000.0001.00-00, seq: 0x00000031, lifetime: 1196s

chksum: 0x2674 (correct), PDU length: 156, L1L2 IS

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Protocols supported TLV #129, length: 1

NLPID(s): IPv4

Traffic Engineering Router ID TLV #134, length: 4

Traffic Engineering Router ID: 62.0.0.1

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 62.0.0.1

Hostname TLV #137, length: 9

Hostname: Frankfurt

Extended IS Reachability TLV #22, length: 75

IS Neighbor: 0621.5401.3008.00, Metric: 10, sub-TLVs present (64)

IPv4 interface address subTLV #6, length: 4, 10.0.0.2

IPv4 neighbor address subTLV #8, length: 4, 10.0.0.1

Unreserved bandwidth subTLV #11, length: 32

priority level 0: 2488.320 Mbps

priority level 1: 2488.320 Mbps

priority level 2: 2488.320 Mbps

priority level 3: 2488.320 Mbps

Complex Traffic Engineering by CSPF Computations 427

priority level 4: 2488.320 Mbps

priority level 5: 2488.320 Mbps

priority level 6: 2488.320 Mbps

priority level 7: 2488.320 Mbps

Reservable link bandwidth subTLV #10, length: 4, 2488.320 Mbps

Maximum link bandwidth subTLV #9, length: 4, 2488.320 Mbps

Administrative groups subTLV #3, length: 4, 0x00000000

Extended IPv4 Reachability TLV #135, length: 18

IPv4 prefix: 62.0.0.1/32, Distribution: up, Metric: 0

IPv4 prefix: 10.0.0.0/30, Distribution: up, Metric: 10

Figure 14.17 shows the contents of the Traffic Engineering Router ID TLV #134. It
basically contains a single unique 32-bit ID in order to uniquely identify a router in the
TED. The TE Router ID TLV #134 corresponds to the OSPF Router-ID and puts the
topology gathered by the two protocols into a relationship in the TED. The underlying
problem is that IS-IS identifies its nodes through System-IDs (48-bit) and OSPF does it
using Router-IDs (32-bit). By issuing a TLV #134 the IS-IS speaker tells other routers
what would be the corresponding OSPF router-ID in case one router is running both
OSPF and IS-IS for transition purposes.

In Table 14.2 there is a list of sub-TLVs to the extended Reachability TLV #22. These
are used for conveying various pieces of link information like Admin (Affinity) Groups,
bandwidth parameters and IPv4 endpoint addresses. Chapter 11 “TLVs and Sub-TLVs”
explores more about TLVs and sub-TLV nesting.

TLV Type

TLV Length

Traffic engineering router ID

132

Bytes

1

1

4

4

FIGURE 14.17. The Traffic Engineering TLV #134 contains a unique ID which identifies a TE
speaker throughout disjoint TE domains

TABLE 14.2. Sub-TLV code points.
Sub-TLV Sub-TLV name

3 Administrative (Affinity) Group
4 Link Local ID
5 Link Remote ID
6 IPV4 Interface Address
8 IPV4 Remote Interface Address
9 Maximum Link Bandwidth

10 Reserve Able Bandwidth
11 Unreserved Bandwidth
18 TE-Metric
20 Link Protection Type (GMPLS)
21 Switching Capability (GMPLS)
Not yet assigned by IANA Bandwidth Constraints

428 14. Traffic Engineering and MPLS

After the TED has been populated with the above link-related information, the routers
engage in a CSPF calculation based on the network operator’s constraints. The CSPF is
a two-pass calculation where in the first pass all the links that do not fit a certain con-
straint are removed, and the second pass is a vanilla SPF calculation as was described in
Chapter 10, “SPF and Route Calculation”.

See Figure 14.18 for an example of CSPF. The network needs to compute a label
switched path between Washington and New York which can only run on links carrying
the “Internet” Link Colour (Affinity Group) and must not run on links carrying the
“Maintenance” Link Colour (Affinity Group). The amount of reserved bandwidth is
600 MBit/s. In the first pass of the CSPF calculation all the links that do not belong to the
required “Internet” administrative group are removed. The direct link between Washington
and New York does not fit the constraint because it carries the “Maintenance” Link Colour.
Next, all the links that do not have sufficient bandwidth are removed. The reservation of
additional 600 MBit/s would oversubscribe the link between Washington and Frankfurt and
is removed as well.

Based on the resulting “skeleton”, the routers run an SPF calculation and try to find the
shortest path node between the source and the destination point. In our example, the path
via Paris, Frankfurt and London fits all the constraints and therefore the tunnel comes up.
The result of the SPF calculation does not really matter because in this case there is only
a single path left which fulfils all constraints.

If there are too many constraints during the first pass and there are no feasible paths at
all, then the result of the SPF calculation will be that there is no shortest path between a
pair of nodes. Note that in CSPF calculations, there is not any type of crank-back proced-
ure where the systems try to find a path at all costs. This was common practice for voice
networks, but crank-back schemes run the risk of sending traffic around the continent sev-
eral times, like the overlay networks of the 1990s did. Sometimes the result of the CSPF
calculation is even no result at all and then no tunnel will be signalled.

14.6 LDP over RSVP-TE Tunnelling

Which signalling protocol (LDP or RSVP-TE) to use is one of the first questions that net-
work operators raise when deploying MPLS. Many people like the “call-oriented” notion
of RSVP-TE and the amount of control the network operator has over traffic. On the other
hand, LDP works like a charm – you turn it on and seconds later you have got label
switched paths to every corner of your network at almost no cost and with nice scaling
properties. To achieve the same connectivity matrix that LDP creates, one would have to
deploy RSVP-TE in a full-mesh fashion with a dedicated tunnel between all the MPLS
edge routers. In moderate size networks full-mesh RSVP-TE may be a design choice, how-
ever, in medium-to large-sized networks, this may be a scaling nightmare. Recall that in a
full-mesh network with 1000 edge routers, one would need 1000 * (1000 – 1)/2 � 499,500
label switched paths! The refresh noise alone from repeating each reservation every 30 sec-
onds, which will be processed twice (PATH and RESV messages from all the core routers
along the label switched path), would result in approximately 30,000 messages per second
being processed by each core router. Although there are extensions to aggregate refreshes

LDP over RSVP-TE Tunnelling 429

0 MBit/s rsvd.

Internet, Maintenance
400 MBit/s rsvd.

Internet

280 MBit/s rsvd.

Internet

1900 MBit/s rsvd.

Internet

1250 MBit/s rsvd.

Internet

1100 MBit/s rsvd.

Internet

4

4

6

4

4

4

400 MBit/s rsvd.

Internet

280 MBit/s rsvd.

Internet

1900 MBit/s rsvd.

Internet

1250 MBit/s rsvd.

Internet

1100 MBit/s rsvd.

Internet

4

4

4

4

4

Prune all links that do not have Internet and Maintenance set1

Prune all links that do not fit Bandwidth requirements2

280 MBit/s rsvd.

Internet

4 4

1100 MBit/s rsvd.

Internet

4

1250 MBit/s rsvd.

Internet

Frankfurt

London

Washington New York

Paris

Frankfurt

London

Washington New York

Paris

Frankfurt

London

Washington New York

Paris

400 MBit/s rsvd.

Internet

4

FIGURE 14.18. In the CSPF calculation all paths that do not meet any of the constraints are pruned
off the final topology

430 14. Traffic Engineering and MPLS

LDP

RSVP

POP

POP

POP

POP POP

LDP over RSVP tunneling
3

Frankfurt

London

Washington NewYork

Paris

TE Tunnel 2

1

FIGURE 14.19. Traffic from Paris to London does not take the TE tunnel path

(see RFC 2961 for details), and thereby reduce the refresh noise, the underlying problem
(which is the familiar networking “N^2” problem) is not addressed by aggregation alone.
For scalability reasons, network operators are tempted to use the more scaleable LDP,
which sets up a kind of full-mesh matrix (based on sink trees). But LDP label selection is
dictated by the IGP, and that translates to a lack of traffic path-control because no one wants
to tweak IGP metrics anymore.

So the answer to the signalling protocol question is most often to use both protocols
where they fit best. LDP is used for setting up lightweight labels switched paths across
the network, and RSVP-TE is used for traffic engineering.

Consider Figure 14.19, where both protocols are deployed. LDP is deployed across
the core for establishing label switched paths between all routers in the network (1).
Additionally, there is a Traffic Engineering Tunnel between the core router in Paris and
London (2). If traffic is loaded on that path, then all the traffic will be guided through
LDP paths and the single RSVP-TE TE tunnel in the core is completely ignored. Why?
Because MPLS is a source routing technique. The ingress router makes the choice as to
which label switched path is used for traffic forwarding. If an edge (ingress) router does
not know about a TE tunnel path in the core, then it will not use it.

The trick is now to make LDP use the TE tunnel in the core for forwarding. A tech-
nique called LDP over RSVP-TE tunnelling is used for that purpose. Previously, LDP
was deployed in a hop-by-hop fashion – the LDP speakers propagate their label mapping
messages from node to adjacent node. In order to make LDP use the TE tunnel, an add-
itional LDP session is brought up between the Paris and London core router (3). For set-
ting up a session between a pair of non-adjacent routers, an LDP option called targeted
Hellos is used. Targeted Hellos are similar to internal BGP sessions. The two LDP speak-
ers at the edge send a Hello across several hops. If the two speakers at the edge agree on
the capabilities reported in the Hello message, then an LDP session (using TCP) is estab-
lished to advertise label mappings. All label advertisements learned via the multi-hop

LDP over RSVP-TE Tunnelling 431

LDP session are now associated with the TE tunnel and then used for traffic forwarding.
When Paris advertises a label back to its local POP routers, then a SWAP/PUSH state on
the forwarding plane is generated. The label of the TE tunnel is PUSHed as top level
label and the label learned via the multi-hop LDP session is the SWAPed label. The edge
routers send their traffic down the LDP established paths and do not even know that their
traffic is being engineered in the core topology. As soon as the traffic arrives at the
ingress of the TE tunnel (Paris), an additional label is PUSHed on top of the label stack
and the traffic is sent down the TE tunnel. The penultimate TE tunnel router (New York)
removes the top label and the LDP label underneath becomes visible and is used for fur-
ther relaying traffic towards the LDP egress router.

Configuration of LDP over RSVP-TE tunnelling is done using the mpls ldp
neighbor <address> targeted ldp keyword in IOS and the ldp-tunneling
keyword in JUNOS.

IOS configuration
In IOS LDP tunnelling is a global option which can be configured using the mpls ldp
neighbor <address> targeted statement.

London# show running-config

[…]

mpls ldp neighbor 192.168.1.1 targeted ldp

[…]

!

If the multi-hop LDP session comes up and there is an RSVP-TE tunnel to this des-
tination, then the resolver will automatically set up the SWAP/PUSH state. In JUNOS
LDP over RSVP-TE tunnelling is a property of the TE tunnel and is configured under the
protocols mpls label-switched-path <name> {} stanza.

JUNOS configuration
In JUNOS the ldp-tunneling keyword automatically sets up a session between two
ends of a TE tunnel.

[edit]

hannes@Frankfurt# show

[…]

protocols {

mpls {

label-switched-path to-London {

to 192.168.0.8;

ldp-tunneling;

}

interface so-1/2/0;

interface l00.0;

}

[…]

432 14. Traffic Engineering and MPLS

It is imperative that the loopback interface lo0.0 or interface all is listed when config-
uring LDP tunnelling. LDP multi-hop sessions are sourced using the IP address of the
lo0.0 interface. If it is not listed, then the tunnelled LDP session stays down.

LDP over RSVP-TE tunnelling is a good example of how label stacking contributes to
better scalability of the network. The LDP over RSVP-TE tunnelling example just needed
to set up one additional forwarding state at the TE tunnel ingress router. The rest of the
core topology was unaffected by the LDP tunnelling change. An additional advantage of
the clear layering is that once the tunnel goes down, immediately alternate paths (that is,
the LDP-only paths that are available) are available. Also, the churn for changing the label
state is almost zero, because only the TE ingress routers need to change forwarding state
to use the IGP guided paths.

Unfortunately LDP over RSVP-TE tunnelling does not solve the label selection issue
for all topologies. Typically, it only attracts traffic being sourced from directly attached
routers in the POP. For any edge router that is at least 2 hops upstream, it is not possible
to force traffic onto a certain path. Figure 14.20 illustrates the problem.

The links from Paris to Washington, Washington to New York, and Paris to Frankfurt
are congested. Frankfurt and Paris are major traffic sources. There is a TE tunnel between
Frankfurt and New York (1) – LDP tunneling is turned on. Now, all the Frankfurt POP
traffic is using the tunnel. What would be best is to also attract the traffic from Paris.
But this is not possible in this topology because Paris selects the label switched path to
New York via Washington, which is the shortest path.

In this simple topology the easiest fix would be to install another TE tunnel from Paris
to New York. However, in complex topologies, often the administrative overhead of man-
aging several local tunnels outweighs the convenience of having fewer tunnels to manage.
It would be nice if there was a tool where networks could gradually suck traffic to the

RSVP

2

1

LDP

POP

POP

POP

POP POP

Frankfurt

London

Washington NewYork

Paris

120% load

95% load

25% load4

4

4

6

4

1-10

30% load

20% load

110% load4
2

FIGURE 14.20. For traffic engineering of upstream routers forwarding adjacencies need to be
configured

LDP over RSVP-TE Tunnelling 433

head-end of a TE tunnel. But to affect non-local forwarding decisions, the network needs
to find a way to modify the route computation. And there is one. Forwarding adjacencies
are a way of re-advertising a label switched path in the IS-IS database.

14.7 Forwarding Adjacencies

The Edge MPLS routers, which speak LDP, have to rely on the IGP (IS-IS) to find the
shortest path to the destination. Recall that the general problem of traffic engineering is that
the shortest path is not always the best path. The tunnel must be made somewhat attractive
to the edge systems’ traffic. One way of doing this is to model the core TE tunnel as a direct
link and make the tunnels cost a little better than the resulting IGP cost. Because of that
slight difference, the edge systems will prefer to load traffic onto the tunnel.

A decade ago it was common to run IGPs over a tunnel. But running dynamic routing
protocols over a tunnel is almost always a recipe for disaster. Things behave really badly
if the total IGP cost over the tunnel undermines the total topologies’ cost. What happens
next is that the tunnel “wraps” around itself, ultimately causing a meltdown of the entire
network. Having those glorious meltdowns in mind, designers put a few restrictions on
re-advertising a TE tunnel as part of the IS-IS topology. First of all, no IS-IS Hellos are sent
down a tunnel. The router considers this forwarding adjacency to be up when the tunnel is
up. If there is a change in topology and the tunnel goes down, then the forwarding adja-
cency will go down as well. Because no Hellos are sent down the tunnel there is no infin-
ite recursion problem as there was when tunnelling IGPs in the 1990s. Still, there are
some things to watch out for. If the cost of the forwarding adjacency becomes too low
(that is, more attractive to the rest of the topology) then too much traffic is sucked towards
that tunnel. This could even totally mess up the IGP routing.

Reconsider Figure 14.20. If the TE tunnel is advertised with IS reach information in
the IS-IS database, then it seems as if there is now a direct, additional link between
Frankfurt and New York (2). The nice thing is that the metric of this “virtual” adjacency
can be configured arbitrarily. It can be set to a metric of 10, which makes the link totally
unattractive because there are shorter paths available. However, if the forwarding adja-
cency metric is set (for instance) to 1, then even non-local traffic is sucked into the tun-
nel, including all the POP traffic from (for example) Paris. Depending on the IGP metric
design, the power of forwarding adjacencies can do severe damage to the network.
Consider the IGP metric proposal in Figure 12.10. A metric of 1 is not used today, mainly
to leave some headroom for high speed links like OC768/STM-256 pipes. But if the
advertised metric of the tunnel is 1, even regional traffic between cities can be sucked
across the Atlantic. A common design rule is to keep the IGP cost slightly above the cost
of the real topology, and it should not exceed the typical link-metric inside the POP. The
idea is to suck the entire POP destinations across the tunnel, but keep the sucking-
distance low enough not to affect other region’s traffic.

In IOS forwarding adjacencies are a property of a TE tunnel and can be configured
using the tunnel mpls traffic-eng forwarding-adjacency parameter in
the tunnel interface configuration.

434 14. Traffic Engineering and MPLS

IOS configuration
In IOS you need to tell the tunnel interface that it has to re-advertise the TE tunnel into IS-
IS using the tunnel mpls traffic-eng forwarding-adjacency statement.
Additionally the resulting IS-IS metric needs to be specified using the regular isis
metric <*> statement.

London# show running-config

[…]

interface Tunnel0

mpls traffic-eng tunnels

tag-switching ip

tunnel mode mpls traffic-eng

tunnel mpls traffic-eng forwarding-adjacency

isis metric 200 level-2

!

In JUNOS, a forwarding adjacency is an IS-IS property and is configured under the
protocols isis label-switched-path {} stanza.

JUNOS configuration
In JUNOS you need to reference a valid label switched path which needs to exist under
the protocols mpls {} stanza plus the IS-IS level and metric.

hannes@Frankfurt> show configuration

[…]

protocols {

isis {

[…]

label-switched-path Paris-to-London {

level 2 metric 200;

}

}

}

[…]

How do the other routers know that an IS-IS adjacency is real (over physical links) or the
result of a forwarding adjacency (over a TE tunnel)? In order not to run into recursive tun-
nel loop problems, there is a differentiation. If you consider the tcpdump output, then you
can easily see the difference between a physical link adjacency and a forwarding adjacency.

Tcpdump output
A forwarding adjacency enabled IS reachability information does not carry any traffic engi-
neering sub-TLVs.

00:28:20.760649 OSI, IS-IS, length: 156

hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0), pdu-type: L2 LSP

lsp-id: 1921.6800.1014.00-00, seq: 0x0000df31, lifetime: 1196s

chksum: 0x2674 (correct), PDU length: 156, L1L2 IS

[…]

Hostname TLV #137, length: 5

Hostname: Paris

Extended IS Reachability TLV #22, length: 86

physical link → IS Neighbor: 1921.6800.1008.00, Metric: 10, sub-TLVs present (64)
IPv4 interface address subTLV #6, length: 4, 172.16.0.2

IPv4 neighbor address subTLV #8, length: 4, 172.16.0.1

Unreserved bandwidth subTLV #11, length: 32

priority level 0: 2488.320 Mbps

priority level 1: 2488.320 Mbps

priority level 2: 2488.320 Mbps

priority level 3: 2488.320 Mbps

priority level 4: 2488.320 Mbps

priority level 5: 2488.320 Mbps

priority level 6: 2488.320 Mbps

priority level 7: 2488.320 Mbps

Reservable link bandwidth subTLV #10, length: 4, 2488.320 Mbps

Maximum link bandwidth subTLV #9, length: 4, 2488.320 Mbps

Administrative groups subTLV #3, length: 4, 0x00000000

Forw. Adjacency → IS Neighbor: 1921.6800.1012.00, Metric: 200, no sub-TLVs present
Extended IPv4 Reachability TLV #135, length: 18

IPv4 prefix: 62.0.0.1/32, Distribution: up, Metric: 0

IPv4 prefix: 172.16.0.0/30, Distribution: up, Metric: 10

The forwarding adjacency gets advertised as simply Extended IS Reach Adjacency
with no sub-TLVs at all attached to it. Therefore, the adjacency does not get moved to the
TED. It is almost as if this virtual “link” does not exist for the TED. If a link does not exist
in the TED, then no adjacency can be established over it, and the tunnel recursion prob-
lem is fixed. One of the key concepts of forwarding adjacencies is that the resulting vir-
tual link should always be worse than a real link. Chapter 17, “Future of IS-IS”, will
extend the forwarding adjacency concept to several switching layers and examine how
forwarding adjacencies can be utilized for G-MPLS applications.

Forwarding adjacencies are a nice tool to offload traffic from the shortest path with
minimal configuration and maximum impact. However, one problem remains: if the
path’s physical characteristics change, the delay characteristics of that path may also
change. In order to modify traffic paths for only some classes of traffic, DiffServ Traffic
Engineering needs to be deployed.

14.8 DiffServ Aware Traffic Engineering

Originally, traffic engineering was used to offload just best-effort traffic. This was fine,
because at that time, only best-effort traffic was routed. In recent years, however, there has

Forwarding Adjacencies 435

been a shift from routing pure best-effort traffic toward multi-service networks, which
could route voice, video and data. It turned out that the granularity of traffic engineering
may be a bit too coarse, because it affects all the traffic between a pair of locations and
does not offer a per-class granularity that would take voice traffic over a different path
than for best-effort traffic. Consider Figure 14.21 for an illustration of the dilemma. There
is a capacity problem between Frankfurt and Washington, so a TE tunnel between via
London is applied. However, now the throughput was optimized at the expense of delay.
Now voice traffic from London to Washington has an extra delay of 20 ms due to the
traffic-engineering imposed delay. The good news is that typically voice applications do
not consume much bandwidth. What is needed is to keep the London to Washington voice
traffic untouched, and only route best-effort traffic across the alternate path.

DiffServ TE allows the network operator to engineer class-specific LSPs. In the above
example, the traffic engineer could leave voice traffic on the direct link between
Frankfurt and Washington and make sure that, as long the traffic does not violate the traf-
fic contract, it gets through even if the interface is 120 per cent congested in the best-
effort class (this means bandwidth guarantees get enforced).

DiffServ TE-capable software has not yet been released by the two major router vend-
ors. Meanwhile, there are pre-standard implementations available, but given that the
IETF has not yet agreed on a single TE standard and the necessary code-points, it will
probably take another year until interoperable software is available.

14.9 Changed IS-IS Flooding Dynamics

IS-IS is the driver behind the TED. It carries dynamic information about the current net-
work reservation state. In order to make good routing decisions one needs to make sure
that a change in bandwidth reservation is propagated as quickly as possible. On the other
hand, frequent LSP updates stress the flooding sub-system. Vendors need to make sure

436 14. Traffic Engineering and MPLS

RSVP

45% load

40% load

30% load

80% load4

4

4

6

4

120% load4

20% load

Frankfurt

London

Washington NewYork

Paris

1

2

FIGURE 14.21. Bandwidth utilization optimization often makes delay characteristics of a path
worse

that in the event of many LSPs flapping (down/up), the update in reservation does not
churn the network. JUNOS and IOS support throttling mechanisms in order to hold down
quick reservation changes. In IOS, those throttling timers are configurable on a per inter-
face basis.

JUNOS Configuration Snippet
In JUNOS the update-threshold parameter to control IGP updates based on reservation
is a function of the rsvp interface {} stanza.

hannes@Frankfurt# show configuration

[…]

protocols {

rsvp {

interface so-7/0/0.0 {

update-threshold 10;

}

}

}

You can verify your setting by issuing the show rsvp interface <if-name> detail command.

14.10 Conclusion

IS-IS has become far more than just an IP routing protocol. It is now being used for traffic
engineering purposes by sending a lot of extra topology-related information like band-
width, link colours and additional TE metrics. All this information is conveyed using sub-
TLVs to the Extended IS Reach TLV #22 and stored in a unified form in the TED. Based
on the TED contents, Explicit Route Objects (ERO) are pre-determined, which will then be
embedded in RSVP-TE path messages. The calculations are done using a CSPF calculation,
which is a modified version of the SPF algorithm. The constrained SPF algorithm first
prunes off links that do not follow certain constraints before doing a regular SPF. Setting
up just the tunnel is not enough; one needs to care also about loading traffic on the tunnel.
Re-advertising TE tunnels back into IS-IS is the way to attract enough traffic from other
hops further downstream from the head of the TE tunnel. Optimizing for the best network
utilization may not be desirable, especially for voice traffic, which requires low and stable
delays. DiffServ TE allows the calculation and setup of per-traffic-class tunnels for opti-
mizing the different goals of each class: best-effort traffic is optimized for bandwidth
utilization and voice traffic is optimized for the shortest delay. Changes in bandwidth
reservations also cause an extra amount of LSP updates, which need to be taken into
account for assessing the overall scalability of large networks. Meanwhile, code supporting
traffic engineering has been in the field now for 3–4 years and is in a mature state now.
DiffServ Traffic Engineering Code has not been deployed yet in production networks, but
is expected to be the “Swiss Army knife” of traffic engineering, fulfilling the purpose for
all traffic types.

DiffServ Aware Traffic Engineering 437

15

Troubleshooting

439

Now you know almost everything there is to know about IS-IS and you can go and con-
figure it in your network. Seriously, IS-IS is quite easy to configure on router OSs. Most
likely, a pair of routers will immediately start exchanging PDUs and then do an SPF cal-
culation on the common set of entries in the IS-IS link-state database. If they don’t, well,
just continue reading. This chapter is all about IS-IS troubleshooting. First, this chapter
will develop a common flowchart-like methodology that allows us to hunt down almost
any IS-IS related problem. Next, the chapter explores the troubleshooting tools that are
available on the router OS for gathering the information required by the troubleshooting
methodology. Finally, the chapter will end by exploring real-world case studies of IS-IS-
related problems in the areas of adjacency management, database overloading, and SPF
calculations.

15.1 Methodology

Any good troubleshooting process starts with a step-by-step plan and an iterative
comparison between the desired state of the network and the actual state. For example, it
does not make sense to examine the contents of the link-state database if no adjacency is
up to supply the LSDB with data. The starting assumption for this troubleshooting plan
of attack is that the router has a working physical circuit, free of bit errors and other
transmission-related faults.

Figure 15.1 illustrates a generic troubleshooting plan for IS-IS problems. The heart of
the plan is an iterative comparison between results from the router’s observed operation
to the intended behaviour, typically the behaviour defined in the configuration file. In the
illustrations in this chapter, configuration-related information (what the router should
be doing) is indicated by light bubbles. Facts gathered from command outputs confirms
what the router is actually doing, which is indicated by dark bubbles.

You start a troubleshooting session by verifying that adjacencies to other routers are
up. If they are not, then there are three main sources of trouble. First, the problem could
be related to the interface configuration (1). For example, an interface might not be
included in the router’s IS-IS interface list or it carries wrong IS-IS level information.
The problem could even be buried at lower layers in the OSI reference stack: too small a
protocol MTU or lack of OSI-CP support on point-to-point interfaces prevent IS-IS con-
trol planes from exchanging any information. Next, a good place to look is the address-
ing information like IPv4, IPv6 and OSI NLRIs. Most importantly, you first need to look

440 15. Troubleshooting

OK

OK

OK

Troubleshooting
Start

Problem
resolved

Verify
Interface
Config

Verify
Adjacency

Table

Verify
IPv4/IPv6/OSI

Protocol
Config

Verify
Topology

Config

Verify
Link-State
Database

Verify
Protocol

Preference
Config

Verify
SPF

results

Verify
Authenti-

cation
Config

Verify
IP Routing

Table

1

2

3

4

FIGURE 15.1. At the heart of the troubleshooting process are iterations between comparisons of
configuration information and the actual state of the network

at the OSI router configuration, because that encompasses IS-IS Area- and System-ID
configuration. If the System-ID and or Area-IDs are not configured, or wrongly defined,
then any IS-IS network is condemned to failure. Unfortunately, adjacency management
is no longer a protocol-neutral function in IS-IS. Many IS-IS implementations require a
match for the IPv4 or IPv6 sub-nets in order to complete the IS-IS adjacency handshake.
Also, a broken authentication configuration is a frequent reason why an adjacency does
not come up.

The next major step is to check to see if the link-state database is filled with informa-
tion (2). The major stumbling blocks here are duplicate System-IDs and mismatched
authentication strings. After the router executes the SPF calculation, it shows you the cal-
culated topology and the attached prefixes. If a node is missing in the SPF result list (3),
we examine the link-state database to check for node isolation or unidirectional links and
may even spot a problem on a remote router in the network. In the age of multi-topology
IS-IS, it may be necessary to revisit the topology information and check to see if a given
interface is in the required topology. A double check in the link-state database helps to
spot missing IS Reachability Announcements and the like. If a node finally shows up
in the SPF result list, and it has attached prefixes, those prefixes need to compete with
prefixes from other routing protocols to become active routes. Because of its role as a
topology discovery tool, IS-IS does not carry customer routes, but rather infrastructure
routes. So IS-IS routes are typically preferred to routes from other routing protocols like
BGP. However, in IOS, for example, external BGP paths have an administrative dis-
tance, which has a route preference of 20 versus an IS-IS route that ranks only at distance
115 of the route selection process. Particularly during routing protocol migrations (for
example from EIGRP to IS-IS) it may be the case that the other routing protocol is still
masking the routes from the new routing protocol. A modification of the protocol prefer-
ence configuration helps to unveil the IS-IS routes. If the IP routes finally show up in the
main IP routing table, the troubleshooting process may end.

In our explanation of the troubleshooting process, we already mentioned two tools for
information gathering: Examining the router configuration and looking at the output of
show commands are important tools during the troubleshooting process. In the next sec-
tion we will explore those tools and more, tools that help operators examine, understand
and resolve IS-IS problems.

15.2 Tools

IS-IS troubleshooting quality and the accuracy of problem assessments is based on one
main factor: the tools that supply the network engineer with information. Based on the
information derived from good tools, the network engineer makes a decision regarding
the parts of the configuration and the environment that are broken.

The first and most important troubleshooting tools are the show commands that the
router OS offers. Show command outputs are used on a daily basis and therefore it is
imperative that each network engineer knows the meaning of each output field of these
commands.

Tools 441

15.2.1 Show Commands
Following our troubleshooting plan illustrated in Figure 15.1, we need show commands
to supply the current state of the network. The five main commands that we will use
shortly to examine JUNOS and IOS are in the areas of:

• Displaying the IS-IS related interface properties
• Displaying the adjacency table
• Displaying the link-state database
• Displaying the results of the SPF calculation
• Displaying the routing table

First, the show commands for IOS will be discussed. In IOS, all five commands are not
in the same command hierarchy. Some commands are tucked beneath the show clns,
some in the show isis and others in the show ip command keyword hierarchy.

15.2.1.1 IOS Show Commands

In the IOS command line hierarchy all commands that deal with adjacency management
and interface-related configuration are under the show clns branch. The two main
commands to display IS-IS interface properties and adjacency tables are the show
clns interface and show clns neighbor command.

IOS command output
The output of the show clns command contains many OSI-related fields which reveals
that the initial purpose for IS-IS was to route OSI traffic. Below the routing protocol stanza
the output shows level, metric and number of active adjacencies information.

London#show clns interface

POS4/0 is up, line protocol is up

Checksums enabled, MTU 4470, Encapsulation PPP

ERPDUs enabled, min. interval 10msec.

RDPDUs enabled, min. interval 100msec., Addr Mask enabled

Congestion Experienced bit set at 4 packets

CLNS fast switching enabled

CLNS SSE switching disabled

DEC compatibility mode OFF for this interface

Next ESH/ISH in 38 seconds

Routing Protocol: IS-IS

Circuit Type: level-1-2

Interface number 0x0, local circuit ID 0x100

Neighbor Extended Local Circuit ID: 0x1

Neighbor System-ID: Frankfurt

Level-1 IPv6 Metric: 10

Number of active level-1 adjacencies: 1

Level-2 IPv6 Metric: 10

442 15. Troubleshooting

Number of active level-2 adjacencies: 1

Next IS-IS Hello in 4 seconds

if state UP

[…]

IOS command output
The show clns neighbors commands may be qualified using the detail option,
which lists IP and Area addresses. Comparing addressing information against your neigh-
bour’s is an important step in troubleshooting adjacencies.

London#show clns neighbors detail

System Id Interface SNPA State Holdtime Type Protocol

Frankfurt Fa0/0 00a0.a512.339 Up 22 L1L2 IS-IS

Area Address(es): 49.0002

IP Address(es): 172.26.26.213*

Uptime: 04:30:54

NSF capable

[…]

After initial adjacency establishment, the link-state database needs to get filled with
LSPs. The output of the show isis database lists the contents of the link-state
database. Each line of the output represents a TLV. The keyword Extended indicates
that this is a wide-metric style TLV.

IOS command output
The show isis database plus the optional detail or verbose command displays the
LSP header and TLV contents of the LSPs in the link-state database.

London#show isis database verbose

IS-IS Level-1 Link State Database:

LSPID LSP Seq Num LSP Checksum LSP Holdtime ATT/P/OL

Frankfurt.00-00 0x000000BB 0x34F5 2503 1/0/0

Area Address: 49.0002

NLPID: 0xCC 0x8E

Router ID: 192.168.0.8

IP Address: 192.168.0.8

Hostname: Frankfurt

Metric: 250000 IS-Extended Washington.00

Interface IP Address: 172.16.4.13

Metric: 250000 IP 172.16.4.12/30

[…]

After so-called “trigger” events like an LSP content (TLV) change, an SPF run is trig-
gered. It is recommended that you keep an eye on the frequency of those SPF runs using
the show isis spf-log command for IPv4 and the show isis ipv6

Tools 443

spf-log command for IPv6. If there are no topology changes like metrics changes or
link flaps then you should only see the periodical SPF runs executed every 900 seconds
(15 minutes).

IOS command output
In a quiet environment without link flaps a periodic SPF run is triggered every 15 minutes.

London#show isis spf-log

IP level 1 SPF log

When Duration Nodes Count First trigger LSP Triggers

04:34:52 12 8 2 Frankfurt.00-00 ATTACHFLAG LSPHEADER

04:29:33 8 8 1 PERIODIC

04:14:30 0 8 1 PERIODIC

03:59:26 4 8 1 PERIODIC

03:44:25 4 8 1 PERIODIC

03:29:25 12 8 1 PERIODIC

03:14:24 12 8 1 PERIODIC

[…]

After the SPF calculation is finished a sorted list of nodes plus their associated neigh-
bours (next-hops) is generated. The show isis topology command displays each
node in the network plus the calculated cost to get there.

IOS command output
The show isis topology output displays the result of the IPv4 calculation. The show
isis ipv6 topology provides the results of the IPv6 calculation in case that multi topol-
ogy has been deployed.

London#show isis topology

[…]

IS-IS IP paths to level-2 routers

System Id Metric Next-Hop Interface SNPA

Frankfurt 22000 Frankfurt POS4/0

Washington 272000 Frankfurt POS4/0

New York 294000 Frankfurt POS4/0

Pennsauken 315000 Pennsauken POS5/0

London —

[…]

The last step is to verify if the route in question has been inserted in the IP routing table.
The output of the show ip route command shows if the IS-IS supplied route is the
best in the system. If it is not, then we need to adjust protocol preferences.

444 15. Troubleshooting

IOS command output
The show ip route command displays all the contents of the IPv4 Unicast Routing
Table. Alternatively, you can append the isis qualifier to the commands, which displays
only the IS-IS supplied routes.

London#show ip route

[…]

171.16.0.0/16 is variably subnetted, 2 subnets, 2 masks

i L2 171.16.33.0/29 [115/34] via 172.16.33.213, POS4/0

i L2 171.16.33.16/30 [115/18] via 172.16.33.213, POS4/0

172.16.33.0/24 is subnetted, 1 subnets

C 172.16.33.0 is directly connected, POS5/0

172.16.34.0/24 is variably subnetted, 16 subnets, 4 masks

i L2 172.16.34.8/30 [115/24] via 172.16.33.213, FastEthernet0/0

i L2 172.16.34.0/22 [115/34] via 172.16.33.213, FastEthernet0/0

i L1 172.16.34.12/30 [115/25] via 172.16.33.213, FastEthernet0/0

i L1 172.16.34.8/30 [115/15] via 172.16.33.213, FastEthernet0/0

JUNOS supplies similar command output to IOS.

15.2.1.2 JUNOS Show Commands

JUNOS does not carry any OSI forwarding legacy. As visible property of that “clean-
sheet” design all the relevant IS-IS commands are under the show isis command
hierarchy. The two most important commands are again to display the current adjacency
state and the interface list with parameters.

JUNOS command output
The show isis interface detail command displays all parameters of an IS-IS circuit.
Optional qualifiers are the detail and extensive keyword. On a broadcast circuit the
command additionally lists the designated router plus a hint if it’s us.

hannes@stockholm> show isis interface detail

IS-IS interface database:

e3-0/0/0.0

Index: 64, State: 0x46, Circuit id: 0x1, Circuit type: 2

LSP interval: 100ms, CSNP interval: 15s

Level Adjacencies Priority Metric Hello (s) Hold (s)

Designated Router

2 1 64 14 9.000 27

fe-0/3/3.0

Index: 69, State: 0x6, Circuit id: 0x2, Circuit type: 1

LSP interval: 100 ms, CSNP interval: 10 s

Level Adjacencies Priority Metric Hello (s) Hold (s)

Designated Router

1 1 64 5 3.000 9

Stockholm.02 (us)

Tools 445

The show isis adjacency command provides you with a list of the active adja-
cencies on a given router. The optional command qualifiers detail and extensive
provide more insight, such as a detailed property and timer breakdown plus an adjacency
transition table.

JUNOS command output
The show isis adjacency command plus the optional detail and extensive
qualifiers provide detailed addressing, topology and state machine output based on the
current Adjacency Table.

hannes@Frankfurt> show isis adjacency extensive

London

Interface: so-0/0/0.0, Level: 2, State: Up, Expires in 22secs

Priority: 0, Up/Down transitions: 3, Last transition: 3d 04:43:07 ago

Circuit type: 2, Speaks: IP, IPv6

Topologies: Unicast, IPV6-Unicast

IP addresses: 172.16.33.29

IPv6 addresses: fe80::203:fdff:fec8:3c00

Transition log:

When State Reason

Tue Nov 11 16:45:17 Up Seenself

Thu Nov 13 17:12:26 Down Interface Down

Thu Nov 13 17:13:04 Up Seenself

The output of the show isis database command lists the contents of the LSP
header and payload entries including a list of all the encoded TLVs.

JUNOS command output
The output of the show isis database extensive gives a detailed breakdown on the
LSP plus all associated internal timers like garbage collection and refresh.

hannes@Frankfurt> show isis database extensive
IS-IS level 2 link-state database:

Stockholm.02-00 Sequence: 0x13, Checksum: 0, Lifetime: 0 secs

Header: LSP ID: Stockholm.02-00, Length: 37 bytes
Allocated length: 1492 bytes, Router ID: 192.168.0.17
Remaining lifetime: 0 secs, Level: 2,Interface: 0
Estimated free bytes: 1416, Actual free bytes: 1455
Garbage collection timer expires in: 1116 secs

Packet: LSP ID: Stockholm.02-00, Length: 37 bytes, Lifetime : 0 secs
Checksum: 0, Sequence: 0x13, Attributes: 0x3 <L1 L2>
NLPID: 0x83, Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
Packet type: 20, Packet version: 1, Max area: 0

TLVs:
Authentication data: 8 bytes

No queued transmissions

446 15. Troubleshooting

London.00-00 Sequence: 0xb8, Checksum: 0x10a, Lifetime: 546secs
IS neighbor: Pennsauken.00 Metric: 315000
IS neighbor: Frankfurt.00 Metric: 22000
IP prefix: 192.168.0.12/32 Metric: 0 Internal Up
IP prefix: 172.16.33.0/30 Metric: 22000 Internal Up
IP prefix: 172.16.33.4/30 Metric: 315000 Internal Up

Header: LSP ID: London.00-00, Length: 119 bytes
Allocated length: 1492 bytes, Router ID: 192.168.0.12
Remaining lifetime: 546secs, Level: 2,Interface: 0
Estimated free bytes: 1373, Actual free bytes: 1373
Aging timer expires in: 546secs
Protocols: IP, IPv6

Packet: LSP ID: London.00-00, Length: 119 bytes, Lifetime : 3598secs
Checksum: 0x10a, Sequence: 0xb8, Attributes: 0xb <L1 L2 Attached>
NLPID: 0x83, Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
Packet type: 18, Packet version: 1, Max area: 0

TLVs:
Area address: 49.0002 (3)
Speaks: IP
Speaks: IPv6
IP router id: 192.168.0.12
IP address: 192.168.0.12
Hostname: London
IS extended neighbor: Frankfurt.00, Metric: default 22000

IP address: 172.16.33.2
IS extended neighbor: Pennsauken.00, Metric: default 315000

IP address: 172.16.33.5
Neighbor’s IP address: 172.16.33.6

IP extended prefix: 172.16.33.0/30 metric 22000 up
IP extended prefix: 172.16.33.4/24 metric 315000 up

No queued transmissions

To check the frequency, trigger and duration of the SPF calculation, use the show
isis spf log command. The optional keyword topology displays the SPF calcu-
lation for the IPv6 Unicast or IPv4 Multicast Topology. Note that for Multi Topology
IS-IS, all the other configured topologies (such as IPv4 Multicast and IPv6 Unicast) are
displayed as well.

JUNOS command output
hannes@Frankfurt> show isis spf log

IS-IS level 2 SPF log:

Start time Elapsed (secs) Count Reason

Mon Nov 17 22:17:42 0.000170 1 Updated LSP Frankfurt.00-00

Mon Nov 17 22:17:44 0.000043 1 Updated LSP Frankfurt.00-00

Mon Nov 17 22:17:52 0.000246 1 Reconfig

Mon Nov 17 22:18:01 0.000166 3 New adjacency London on so- 7/0/0.0

Mon Nov 17 22:31:50 0.000180 1 Periodic SPF

Tools 447

The output of the show isis spf results displays both the nodal as well as
the per-prefix result of the SPF calculation.

JUNOS command output
In contrast to IOS, JUNOS also includes the per-prefix metrics in the output of the topo-
logical results shown by the show isis spf results command. If Multi Topology is
turned on, several SPF results are displayed.

hannes@Frankfurt> show isis spf results

IS-IS level 2 SPF results:

Node Metric Interface Via SNPA

London.00 22000 so-7/0/0.0 London

22000 192.168.0.12/32

22000 172.16.33.4/30

337000 172.16.33.12/30

Pennsauken.00 315000 so-7/1/0.100 Pennsauken

315000 192.168.0.17/32

341000 172.16.33.16/30

630000 172.16.33.24/30

[…]

14 nodes

The command for verifying if a route is present in the main routing tables is the show
route command. It displays both the IPv4 Unicast Routing Table (inet.0) as well as the
IPv6 Unicast Routing Table (inet6.0).

JUNOS command output
hannes@Frankfurt> show route

inet.0: 48 destinations, 58 routes (48 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

[…]

192.168.0.12/32 *[IS-IS/15] 04:51:45, metric 22000

> to 172.26.26.29 via so-7/0/0.0

172.16.33.0/30 *[IS-IS/18] 5d 10:42:00, metric 315000

> to 10.0.2.5 via so-7/1/0.0

192.168.0.19/32 *[IS-IS/18] 5d 10:44:05, metric 22200

> to 10.0.2.5 via so-7/1/0.0

172.16.33.16/30 *[IS-IS/18] 3d 04:52:56, metric 395000

> to 10.0.2.9 via so-7/1/0.0

172.16.33.20/30 *[IS-IS/15] 5d 11:25:08, metric 22000

> to 10.0.4.10 via so-7/1/0.0

[…]

448 15. Troubleshooting

Based on the output of the show commands, network engineers often develop a theory
as to what may be wrong. In order to harden the suspicion, more evidence is collected.
Debug outputs often provide more detailed insight why a given configuration is not work-
ing as expected. An understanding of debug outputs is important to better understand
what the router does not like about a given adjacency or configuration.

15.2.2 Debug Logs
IOS and JUNOS provide debugging functionalities for every IS-IS relevant function
ranging from parsing PDUs to internal timing and scheduling. Figure 3.6 and Figure 3.13
in Chapter 3 “Introduction to the IOS and JUNOS Command Line Interface” shows the
debug options that you have in IOS and JUNOS. The most notable differences between
IOS and JUNOS is that in JUNOS, debugging functionality needs to be configured under
the protocols isis traceoptions {} stanza. In IOS, debugging output is
turned on using the operations level debug isis command that requires additional
qualifiers as shown in Figure 3.6.

15.2.2.1 IOS Debugging

In IOS the most important debug isis command is the adj-packets qualifier. The
command displays a line each time it sends and receives a Hello. You see additional lines
that contain parsing results if, for example, the router does not like a certain parameter in
the Hello message.

IOS debug output
The output of the debug isis adj-packet command points to a Level and Area ID mis-
match.

London#debug isis adj-packets

IS-IS Adjacency related packets debugging is on

*Nov 18 19:54:25: ISIS-Adj: Rec serial IIH from *PPP* (POS4/1), cir type L1,

cir id 01, length 48

*Nov 18 19:49:03: ISIS-Adj: rcvd state DOWN, old state INIT, new state INIT

*Nov 18 19:49:03: ISIS-Adj: No matching areas

*Nov 18 19:49:03: ISIS-Adj: Action = GOING DOWN

For additional authentication information debugging output you may add the authen-
tication information qualifier to the debug isis command. The command provides
you with more specific information about what it did not like during processing authen-
tication information. In the example below, the router complains that there is no
Authentication TLV present in the incoming Hello.

Tools 449

IOS debug output
London#debug isis adj-packets

IS-IS Adjacency related packets debugging is on

London#debug isis authentication information

IS-IS authentication information debugging is on

*Nov 19 22:56:48: ISIS-Adj: Rec serial IIH from *PPP* (POS4/1), cir type L1,

cir id 01, length 58

*Nov 19 22:56:48: ISIS-AuthInfo: No auth TLV found in received packet

*Nov 19 22:56:48: ISIS-Adj: Authentication failed

Once the adjacency has been established it is also interesting to check if the LSP data
exchange works and find out if Acknowledgements (PSNPs) are properly sent. The debug
isis update-packets provides information about the parsing of LSP and building
of PSNP packets.

IOS debug output
London#debug isis update-packets

IS-IS Update related packet debugging is on

*Nov 20 12:52:06: ISIS-Update: Rec L1 LSP 1921.6800.0021.00-00, seq 46, ht 65533,

*Nov 20 12:52:06: ISIS-Update: from SNPA *PPP* (POS4/1)

*Nov 20 12:52:06: ISIS-Update: LSP newer than database copy

*Nov 20 12:52:06: ISIS-Update: TLV code mismatch (2, 80)

*Nov 20 12:52:06: ISIS-Update: TLV code mismatch (2, 80)

*Nov 20 12:52:06: ISIS-Update: TLV contents different, code 0x2

*Nov 20 12:52:06: ISIS-Update: TLV code mismatch (16, 87)

*Nov 20 12:52:06: ISIS-Update: TLV contents different, code 0x16

*Nov 20 12:52:06: ISIS-Update: TLV code mismatch (80, 2)

*Nov 20 12:52:06: ISIS-Update: TLV contents different, code 0x80

*Nov 20 12:52:06: ISIS-Update: TLV code mismatch (87, 16)

*Nov 20 12:52:06: ISIS-Update: TLV contents different, code 0x87

*Nov 20 12:52:06: ISIS-Update: full SPF required

*Nov 20 12:52:06: ISIS-Update: IPv6 no change

*Nov 20 12:52:07: ISIS-Update: Build L1 PSNP entry for 1921.6800.0021-00, seq 46

*Nov 20 12:52:07: ISIS-Update: Sending L1 PSNP on POS4/1

15.2.2.2 JUNOS Debugging

JUNOS reveals its debugging output indirectly. You first need to configure the events you
are interested in using the flag keyword underneath the protocols isis traceop-
tions {} stanza. The output is then written to a file which can be specified using the
file qualifier.

JUNOS configuration
In JUNOS the flag keyword determines the amount of information that is written into the
isis-trace.log file.

450 15. Troubleshooting

hannes@Frankfurt> show configuration

[…]

protocols {

isis {

file isis-trace.log size 1m microsecond-stamp;

flag lsp receive detail;

flag lsp-generation detail;

flag error;

flag hello detail;

flag csn detail;

flag psn detail;

}

}

}

You can specify a further qualifier after each flag. The receive or send qualifier
lets you control the output of the debug log depending on the packets direction. The
optional detail qualifier makes the output very verbose by giving you TLV and sub-TLV
details. JUNOS offers you a nice tool when, for example, debugging LSP specific
properties – you can differentiate between self-originated LSPs and LSPs that you flood
further. The above combination of the lsp receive detail and lsp-generation
detail knob does the trick. It displays all incoming LSPs and suppresses unnecessary
output once it floods it out on every core-facing interface (which can involve massive
output). On the other hand, outgoing self-originated LSPs are indeed interesting. If
JUNOS would just trace down LSPs and not make the differentiation between self-
originated and flooded, then your debug file would get overwhelmed after a LSP storm.
If you want to see a detailed breakdown of all the packets, then just setting the flag
packets detail can replace the lsp, hello, csn, psn flags.

JUNOS debug output
The detail qualifier after each flag in the JUNOS traceoptions generates a wealth of
information. You can see the TLV contents of an outgoing Hello message plus the TLV
Length of a Level 1 LSP build.

hannes@Frankfurt> monitor start isis-trace.log

*** isis-trace.log ***

Nov 20 18:47:03.340358 Sending P2P IIH on so-0/0/0.0

Nov 20 18:47:03.340431 max area 0, circuit type l1l2

Nov 20 18:47:03.340463 hold time 27, circuit id 0x01

Nov 20 18:47:03.340490 neighbor 0:2:b3:2b:e:7

Nov 20 18:47:03.340513 neighbor 0:2:b3:2b:e:52

Nov 20 18:47:03.340537 speaks IP

Nov 20 18:47:03.340557 speaks IPv6

Nov 20 18:47:03.340583 IP address 172.16.33.236

Nov 20 18:47:03.340617 IPv6 address fe80::7777:69ff: fea0:8002

Nov 20 18:47:03.340650 area address 49.0001 (3)

Tools 451

Nov 20 18:47:03.340680 restart RR reset RA reset holdtime 0

Nov 20 18:47:03.340711 1386 bytes of total padding

Nov 20 18:47:03.340752 checksum 0x6b7f

Nov 20 18:47:03.360591 Rebuilding L1 fragment Frankfurt.00-00, sequence 0x69

Nov 20 18:47:03.361195 Rebuilding LSP Frankfurt.00-00, free bytes 1320

Nov 20 18:47:03.361310 Next type: 1, estimated free bytes 1455,

free bytes 1455

Nov 20 18:47:03.361463 Next type: 129, estimated free bytes 1449,

free bytes 1449

Nov 20 18:47:03.361795 Next type: 134, estimated free bytes 1445,

free bytes 1445

Nov 20 18:47:03.361880 Next type: 137, estimated free bytes 1433,

free bytes 1433

Nov 20 18:47:03.362003 Next type: 22, estimated free bytes 1424,

free bytes 1424

Nov 20 18:47:03.362100 Next type: 128, estimated free bytes 1353,

free bytes 1353

Nov 20 18:47:03.362149 IP TLVs generated, used 29 bytes

Nov 20 18:47:03.362195 Rebuilt L1 fragment Frankfurt.00-00, size 168

After acquiring an understanding of what the network is doing wrong, perhaps the pre-
requisite for further troubleshooting is to know what the network is supposed to do. As
such, you need to know where the router keeps IS-IS-related configurations and how to
modify them.

15.2.3 Configuration File
The IS-IS-related configuration is scattered across many places in a router configuration.
There is interface related configuration, router process related configuration, authentica-
tion information and finally routing-policies, route-maps and access-lists that deal with
prefix exchange with other protocols.

In IOS most of the relevant IS-IS configuration is accommodated in the router
isis and interface section. Authentication information (key chains) is present in
the top level context and policies are defined as route-maps. In the configuration out-
put below you can see an example of a full-blown IOS IS-IS configuration.

IOS configuration
In the IOS configuration most command parameters are set in the interface and router
isis command hierarchy. Policies are defined inside route-maps and access-lists.
The Authentication strings are stored within a key chain. Static host-name mapping is
stored at the end of the configuration file underneath the clns host prefix.

London#show running-config

[…]

key chain MY-SECRET-KEYSTRING

key 100

key-string 7 0702244B4F0F16171417

452 15. Troubleshooting

!

interface FastEthernet0/0

ip address 172.16.33.29 255.255.255.252

ip router isis

ipv6 router isis

[…]

isis authentication mode md5

isis authentication key-chain MY-SECRET-KEYSTRING

isis network point-to-point

isis three-way-handshake ietf

!

router isis

net 49.0002.1720.2602.6029.00

authentication mode md5 level-2

authentication key-chain MY-SECRET-KEYSTRING level-2

metric-style wide

passive-interface Loopback0

redistribute level-2 route-map isis_leak

!

address-family ipv6

multi-topology

exit-address-family

!

access-list 1 permit 192.168.0.0 0.0.0.255

access-list 1 deny any

!

route-map isis_leak permit 1

match ip route-source 1

!

clns host London 00.1921.6800.1019.00

[…]

The JUNOS configuration file follows a slightly different logic. Most notably routing
protocol specific parameters are not in the interfaces {} hierarchy. There is
an additional protocols isis interface {} stanza that holds IS-IS exclusive
parameters. Almost all IS-IS behaviour is configured in the protocols isis {}
stanza. The only IS-IS relevant configuration is the family iso {} stanza underneath
a logical interface which tells the Packet Forwarding Engine (PFE) that we would like
to receive IS-IS PDUs on this interface. One interface, preferably the lo0 interface,
also holds one or more family iso address statements that control the Area
and System-ID settings of the router. IS-IS specific authentication strings are confi-
gured under the protocols isis level or protocols isis interface
level stanza, depending on which PDU type you want to configure. In JUNOS, policy
processing is a protocol-independent thing and so all policy relevant configuration is
done in the policy-options {} stanza. Finally static-host-mappings
for System-ID to Host Name translation services are configured in the system
stanza {}.

Tools 453

JUNOS configuration
The most notable difference between JUNOS and IOS is that the majority of IS-IS param-
eters are configured under the protocols isis {} stanza. For IS-IS interface related
configurations JUNOS features a protocol isis interface {} hierarchy that exclu-
sively carries IS-IS per-circuit configuration.

hannes@Frankfurt> show configuration

[…]

system {

static-host-mapping {

London sysid 1921.6800.1019;

}

}

interfaces {

ge-0/5/0 {

unit 0 {

family inet {

address 172.16.33.10/30;

}

family iso;

}

}

lo0 {

unit 0 {

family inet {

address 192.168.0.8/32;

}

family iso {

address 49.0001.1921.6800.1008.00;

}

}

}

}

protocols {

isis {

traceoptions {

file isis-trace size 10m;

flag error;

flag lsp;

flag state;

}

export lo0-only;

level 1 {

authentication-key “9I7ShyKX7V4aUM8aUjH5TRhS”; #

SECRET-DATA

authentication-type simple; # SECRET-DATA

wide-metrics-only;

}

level 2 wide-metrics-only;

454 15. Troubleshooting

interface all;

interface ge-0/5/0.0 {

point-to-point;

}

}

}

policy-options {

policy-statement lo0-only {

term 1 {

from {

interface lo0.0;

}

then accept;

}

term final {

then reject;

}

}

}

Seeing the configuration and debug logs provides good insight for the majority of
troubleshooting scenarios. Sometimes even the debug output, which often shows just an
interpretation of the data, does not provide sufficient insight into what the router does not
like about a given packet. Network analyzers can display every bit of a given packet and
provide additional intelligence during the troubleshooting process.

15.2.4 Network Analyzers
Network analyzers are an excellent tool for the experienced network troubleshooter
because they unveil what is really transported over the wire. The main disadvantage of
evaluating debug logs is that they show only an interpretation of the protocol and not the
actual content. If you need to deal with (for example) a malformed TLV, then the informa-
tion that the debug log provides is probably not more than a line saying “bogus TLV”. The
network analyzer in contrast does provide you with the exact data, and your vendor support
organization can look for evidence as to what went wrong and how the data is corrupted.

When capturing data using commercial network analyzers, the authors found that all
too often the network analyzer incorrectly interprets some of the newer TLVs, such as the
Extended IS Reach, Multi-Topology IS Reach and their nested sub-TLVs. Surprisingly,
the two open-source network analyzers, tcpdump and Ethereal, have sound support for
IS-IS. Because the software is free and maintained on an ongoing basis, the authors
warmly recommend use of tcpdump and/or Ethereal to troubleshoot your network and
learn about IS-IS at the same time. Another reason to learn about tcpdump is that JUNOS
embeds tcpdump as part of its router software.

Tcpdump in JUNOS is wrapped inside the monitor traffic interface
command. If you enter that command, then tcpdump (with its default settings) will start
producing single line output. If the output does not immediately start, then you should
probably turn off DNS resolution, as the screen output may need to wait for a DNS
response. The no-resolve knob turns off name resolution and makes the analyzer

Tools 455

report one packet per line. Tcpdump also features a multi-line output if the detail flag is
provided as a command option. Note that tcpdump by default only captures the first 96
bytes of an IP packet. While this short capture of the IP packet is sufficient to interpret the
TCP headers (which are the origin of the name “tcpdump”), it is not enough to display the
content of a control plane packet. For example, just recall that a link-state PDU may be up
to hundreds of bytes in size. The size parameter controls the capture length of the data.
For IS-IS, the highest possible packet size is 1492 bytes. However, specifying a capture size
of 1492 is not enough because tcpdump does its capturing on the data-link layer and this
implies that this 1492-byte frame length is the total length of the packet. For Ethernet, you
need to add 17 bytes (Destination MAC Address, Source MAC Address, Length, DSAP,
SSAP, Control – see Figure 4.2 for details) which results in a capture size of 1509. Many
people just use the “default” Ethernet MTU of 1514 instead, as it also catches all IP control
plane packets that can fit on an Ethernet. Tcpdump also allows you to filter the output using
the matching keyword. Unfortunately, the filter string support for IS-IS is not very rich
in the packet-capture library that Juniper is using. It only allows specifying the keyword
isis for filtering just IS-IS frames. The public version of tcpdump has much broader sup-
port for IS-IS: it can filter based on level, PDU type and combinations of those.

Analyzing the traffic on a Gigabit Ethernet interface (for example) would require the
following command string.

JUNOS command output
hannes@Frankfurt> monitor traffic interface ge-0/1/0.0 size 1514 no-resolve

matching isis

08:04:12.675185 In OSI, IS-IS, L2 Lan IIH, src-id 1921.6800.0008, lan-id

1921.6800.0024.02, prio 64, length 1492

08:04:12.972945 Out OSI, IS-IS, L1 Lan IIH, src-id 1921.6800.0024, lan-id

1921.6800.0008.02, prio 64, length 1492

08:04:14.262970 Out OSI, IS-IS, L2 Lan IIH, src-id 1921.6800.0024, lan-id

1921.6800.0024.02, prio 64, length 1492

08:04:14.295254 In OSI, IS-IS, L1 Lan IIH, src-id 1921.6800.0008, lan-id

1921.6800.0008.02, prio 120, length 1492

08:04:16.783397 In OSI, IS-IS, L1 Lan IIH, src-id 1921.6800.0008, lan-id

1921.6800.0008.02, prio 120, length 1492

08:04:16.933018 Out OSI, IS-IS, L2 Lan IIH, src-id 1921.6800.0024, lan-id

1921.6800.0024.02, prio 64, length 1492

08:04:17.734220 In OSI, IS-IS, L1 CSNP, src-id 1921.6800.0008, length 96

08:04:19.525291 In OSI, IS-IS, L1 Lan IIH, src-id 1921.6800.0008, lan-id

1921.6800.0008.02, prio 120, length 1492

08:04:19.732283 Out OSI, IS-IS, L2 CSNP, src-id 1921.6800.0024, length 113

08:04:19.943063 Out OSI, IS-IS, L2 Lan IIH, src-id 1921.6800.0024, lan-id

1921.6800.0024.02, prio 64, length 1492

08:04:20.015298 In OSI, IS-IS, L2 Lan IIH, src-id 1921.6800.0008, lan-id

1921.6800.0024.02, prio 64, length 1492

You can write the captured data to a file which can later be examined using third party
analyzers like Ethereal.

456 15. Troubleshooting

JUNOS command output
hannes@Frankfurt> monitor traffic interface ge-0/1/0.0 size 1514
write-file hello-problem.pcap
Listening on ge-0/1/0.0, capture size 1514 bytes

You can now transfer the file to your workstation where you run your network ana-
lyzer and examine it closer there. Alternatively, you can pipe your captured data over an
SSH session to a UNIX host and make the router a remote probe performing a live cap-
ture as illustrated in Figure 15.2. The captured stream is conveyed using the SSH proto-
col and fed into a network analyzer like Ethereal.

Unfortunately, real-time capturing and decoding cannot be done using the command
line interface. You need to start a shell and become a super-user in order to do that. This
practice is not encouraged by Juniper Networks, because of the potential for great harm
to the router, but under the guidance of very experienced operators or with Juniper
Networks technical assistance, this can be a valuable tool.

JUNOS/tcpdump output
The JUNOS embedded tcpdump command in combination with the SSH protocol can be
a powerful remote capturing “device” for Ethereal.The command assumes that your UNIX
machine is also your X11 display server for your Ethereal session.You have to replace the
USER and REMOTEHOST fields with your username and IP address or name of the
machine where you run Ethereal.

hannes@Frankfurt> start shell

% su

Password:

root@Frankfurt% tcpdump -i ge-0/1/0 -s1514 -w - “isis” | ssh

USER@REMOTEHOST “(ethereal -knSli -)”

Listening on ge-0/1/0, capture size 1514 bytes

USER@REMOTEHOST’s password: <PASSWORD>

Tools 457

Network Cloud

Network
Analyzer

Capture Interface

SSH Connection

FIGURE 15.2. The JUNOS router captures data from one of its control plane interfaces and pipes it
through the Secure Shell (SSH) Protocol to a workstation running the analyzer software

After 1–2 seconds you should see Ethereal starting up, as illustrated in Figure 15.3.
Two windows will be opened. On the foreground capture window you can see brief per-
protocol statistics. The background window is divided into three parts. The top window
is the packet browser which shows a packet per line. The middle section decodes the
selected packet. In the third window there is a hex dump of the packet. A nice function
of Ethereal is that once you select a branch in the middle section, for example a TLV, then
the corresponding hex dump digits do get highlighted.

If the screen output needs to get redirected to a remote station using the X11 protocol,
you first need to give a hint where the display server is located. You need to properly set the
DISPLAY environment variable for specifying the IP address of the X11 server. Changing
environment variables depends on the UNIX shell type. The example shows a remote X11
server and assumes that the shell for changing the DISPLAY variable is the Bourne Again
Shell (bash) that is today the preferred shell on many UNIX-based systems.

JUNOS/tcpdump output
If your display server is not the machine where Ethereal is running, you need to specify
the IP address of the X11 server. Replace the XSERVERHOST string with the name or IP
address of your X11 server.

hannes@Frankfurt> start shell

% su

Password:

root@Frankfurt% tcpdump -i ge-0/1/0 -s1514 -w - “isis” | ssh USER@REMOTEHOST

“(export DISPLAY = XSERVERHOST:0; ethereal -knSli -)”

Listening on ge-0/1/0, capture size 1514 bytes

USER@REMOTEHOST’s password: <PASSWORD>

Ethereal comes in two flavours: the first one features a graphical user interface (GUI).
The GUI version has been utilized in the previous examples. The second one renders the
entire packet as a text-only output that may be used for users that just have terminal
access to a UNIX station. The text version of Ethereal is called Tethereal and displays
the full networking stack, including Layer 2 information of a given packet.

JUNOS/Ethereal output
T-Ethereal provides a very nice text-only output variant displaying the full Networking
Stack and all of its details.

hannes@Frankfurt> start shell

% su

Password:

root@Frankfurt% tcpdump -i ge-0/1/0 -s1514 -w - “isis” | ssh

USER@REMOTEHOST “(tethereal -nVli -)”

Listening on ge-0/1/0, capture size 1514 bytes

USER@REMOTEHOST’s password: <PASSWORD>

458 15. Troubleshooting

FI
G

U
R

E
15

.3
.E

th
er

ea
l s

ta
rt

s
w

ith
 a

 c
ap

tu
re

 w
in

do
w

 g
iv

in
g

br
ie

f p
er

-p
ro

to
co

l s
ta

tis
tic

s
an

d
a

v e
rb

os
e

de
co

de
r w

in
do

w
 in

 th
e

ba
ck

gr
ou

nd

459

Capturing on -

Frame 1 (1509 bytes on wire, 1509 bytes captured)

Arrival Time: Nov 20, 2003 11:39:56.002525000

Time delta from previous packet: 0.000000000 seconds

Time since reference or first frame: 0.000000000 seconds

Frame Number: 1

Packet Length: 1509 bytes

Capture Length: 1509 bytes

[…]

ISO 10589 ISIS InTRA Domain Routeing Information Exchange Protocol

Intra Domain Routing Protocol Discriminator: ISIS (0x83)

PDU Header Length : 27

Version (==1) : 1

System ID Length : 6

PDU Type : L2 HELLO (R:000)

Version2 (==1) : 1

Reserved (==0) : 0

Max.AREAs: (0==3) : 0

ISIS HELLO

Circuit type : Level 1 and 2, reserved(0x00 == 0)

System-ID {Sender of PDU} : 0000.0000.0001

Holding timer : 27

PDU length : 1492

Priority : 64, reserved(0x00 == 0)

System-ID {Designated IS} : 0000.0000.0002.02

IS Neighbor(s) (12)

IS Neighbor: 00:d0:b7:b2:71:cc

IS Neighbor: 00:02:b3:2b:0e:52

[…]

15.3 Case Studies

In this section you will see examples of broken IS-IS configurations. The majority of
problems revolve around adjacency and sub-net configuration which mostly have router-
local impact only. There is, however, a devastating example that can cause an entire net-
work meltdown. Frequent encounters with this latter problem even caused the router
vendors to provide a protection knob that should be turned on.

Most IS-IS problems are problems bringing up an adjacency. Therefore, we will dis-
cuss the main six problems on the topic of adjacencies and how to quickly diagnose what
the problem is.

15.3.1 Broken IS-IS Adjacency
Rather than comparing individual configurations against another, we will start out with
two configurations that encompass in total five mistakes and incrementally troubleshoot
the two configurations.

460 15. Troubleshooting

JUNOS configuration
The complete IS-IS configuration of Frankfurt. We want to run an authenticated IS-IS
Level 1 Adjacency over a SONET Link and route IPv4, IPv6 traffic over the circuit.

hannes@Frankfurt> show configuration

[…]

interfaces {

so-0/2/0 {

description “to London POS4/1”;

unit 0 {

family inet {

address 172.16.33.14/30;

}

}

}

lo0 {

unit 0 {

family inet {

address 192.168.0.8/32;

}

family iso {

address 49.0001.1921.6800.0008.00;

}

}

}

[…]

}

protocols {

isis {

level 1 {

authentication-key “9LkT7dskqf5F/”; # SECRET-DATA

authentication-type md5; # SECRET-DATA

wide-metrics-only;

}

interface so-0/2/0.0 {

level 1 disable;

}

lo0.0;

}

[…]

}

IOS configuration
The IOS configuration of London should match that of Frankfurt.

London#show running-config

[…]

key chain MY-ISIS-PASSWORD

Case Studies 461

key 1

key-string 0 secret789

!

interface POS4/1

description “to Frankfurt so-0/2/0”

ip address 172.16.33.17 255.255.255.252

ip router isis

encapsulation ppp

crc 16

clock source internal

pos scramble-atm

isis circuit-type level-1

!

router isis

net 49.0010.1921.6800.0012.00

authentication mode md5

authentication key-chain MY-ISIS-PASSWORD

metric-style wide

is-type level-1

passive-interface Loopback0

!

Let’s see if the two configurations are working. Nope, neither router sees the other. What
could be wrong?

London#sh clns neighbors

System Id Interface SNPA State Holdtime Type Protocol

hannes@Frankfurt> show isis adjacency

hannes@Frankfurt> show isis interface

IS-IS interface database:

Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric

lo0.0 0 0x1 Disabled Passive 0/0

15.3.1.1 Missing PPP-OSICP Configuration

In our phased troubleshooting approach, first we’ll check the underlying physical and
logical interface:

IOS command output
Only IPCP is up – The OSICP state is listening.

London#show interfaces pos4/1

POS4/1 is up, line protocol is up

Hardware is Packet over SONET

Description: “to Frankfurt so-0/2/0”

Internet address is 172.16.33.13/30

MTU 4470 bytes, BW 155000Kbit, DLY 100 usec, rely 255/255,

load 1/255

462 15. Troubleshooting

Encapsulation PPP, crc 16, loopback not set

Keepalive set (10sec)

Scramble enabled

LCP Open

Listen: CDPCP, OSICP

Open: IPCP

[…]

JUNOS command output
On the JUNOS side we do not even attempt to open up the OSICP because the router is
not configured to do so!

hannes@Frankfurt> show interfaces so-0/2/0

Physical interface: so-0/2/0, Enabled, Physical link is Up

Interface index: 148, SNMP ifIndex: 66

Description: to London POS4/1

Link-level type: PPP, MTU: 4474, Clocking: Internal, FCS: 16,

Payload scrambler: Enabled

Device flags : Present Running

Interface flags: Point-To-Point SNMP-Traps

Link flags : Keepalives

Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3

Keepalive: Input: 291 (00:00:04 ago), Output: 296 (00:00:03 ago)

LCP state: Opened

NCP state: inet: Opened, inet6: Not-configured, iso: Not-

configured, mpls: Not-configured

CHAP state: Not-configured

[…]

On the IOS side, we encounter a circuit that is eager to speak OSICP, but does not
receive any OSI frame from the other side. We can also rule out physical problems at this
point as the Line Control Protocol (LCP) and IP Control Protocol (IPCP) are both up and
running. On the JUNOS side, the output tells us that OSI support is not even configured.
Checking the configuration reveals that we forgot to set the family iso keyword at
the logical interface level (you’d be surprised how often this happens).

JUNOS configuration change
We forgot the family iso on the SONET interface on the JUNOS side. So the PPP-OSICP
did not get started.

hannes@Frankfurt# show | compare

[edit interfaces so-0/2/0 unit 0]

+ family iso;

After adding the family iso statement at the logical interface Level, OSICP comes
up, but our adjacency is still down. What else could be wrong?

Case Studies 463

15.3.1.2 Non-matching Level

Next, we check to see if there is a mismatch in our Level configuration by checking the
debug logfiles.

JUNOS configuration/debug output
The JUNOS trace log reveals that there is a Level mismatch.

hannes@Frankfurt> show configuration protocols isis

traceoptions {

file isis-trace.log;

flag hello detail;

flag error;

}

[…]

*** isis-trace.log ***

Nov 21 23:53:11 Received PTP IIH, source id 1921.6800.0012 on so-0/2/0.0

Nov 21 23:53:11 intf index 69

Nov 21 23:53:11 max area 0, circuit type l1, packet length 4469

Nov 21 23:53:11 hold time 30, circuit id 1

Nov 21 23:53:11 ERROR: IIH from 1921.6800.0012 with no matching

level, interface so-0/2/0.0, circuit type 1

The Frankfurt router complains that it got a Hello from London and there is a circuit
mismatch reported.

IOS debug output
IOS does not detect any Level mismatches.

London#debug isis adj-packets

IS-IS Adjacency related packets debugging is on

*Nov 22 00:49:12: ISIS-Adj: Rec serial IIH from *PPP* (POS4/1), cir type L2,

cir id 01, length 67

*Nov 22 00:49:12: ISIS-Adj: rcvd state DOWN, old state INIT, new state INIT

*Nov 22 00:49:12: ISIS-Adj: Action = GOING DOWN

Note that in the IOS debug file there is no indication for a Level mismatch. But check-
ing the JUNOS configuration, we find out that somebody must have set the Level 1 dis-
able knob on the interface, which prevents a common Level to be found between the
routers during the adjacency establishment process.

JUNOS configuration diff
Clearing the Level 1 disable flag makes the circuit a L1L2 circuit so that both peers
have a common circuit type.

hannes@Frankfurt# show | compare

[edit protocols isis interface so-0/2/0.0]

- level 1 disable;

464 15. Troubleshooting

Changing the pure L2 circuit into a L1L2 or L1 lets the routers have a common Level;
however, there are still other caveats to overcome before out adjacency will go up. For
example, on a Level 1 adjacency, the Areas have to match.

15.3.1.3 Non-matching Area-ID

Depending on the IS-IS circuit type, the Area-IDs need or need not match. For L1 adja-
cencies there needs to be a match of one of the Areas-IDs, but for L2 Adjacencies the
Area-ID is not relevant.

JUNOS debug output
hannes@Frankfurt> show configuration protocols isis

traceoptions {

file isis-trace.log;

flag hello detail;

flag error;

}

[…]

*** isis-trace.log ***

Nov 22 00:09:25 Received PTP IIH, source id 1921.6800.0012 on so-0/2/0.0

Nov 22 00:09:25 intf index 69

Nov 22 00:09:25 max area 0, circuit type l1, packet length 4469

Nov 22 00:09:25 hold time 30, circuit id 1

Nov 22 00:09:25 17 bytes of authentication data

Nov 22 00:09:25 restart RR reset RA reset holdtime 0

Nov 22 00:09:25 ptp adjacency tlv length 1

Nov 22 00:09:25 neighbor state initializing

Nov 22 00:09:25 speaks IP

Nov 22 00:09:25 area address 49.0001 (3)

Nov 22 00:09:25 IP address 172.16.33.13

Nov 22 00:09:25 4371 bytes of total padding

Nov 22 00:09:25 ERROR: IIH from London with no matching areas, interface

so-0/2/0.0, our area 49.0100

JUNOS notes that there is no common Area-ID. It checks the Area-ID because the
circuit-type is set to L1.

IOS debug output
The last change moves the circuit type from L1 to L1L2, however there are still no match-
ing areas.

London#debug isis adj-packets

IS-IS Adjacency related packets debugging is on

*Nov 22 01:05:34: ISIS-Adj: Rec serial IIH from *PPP* (POS4/1), cir type L1L2,

cir id 01, length 48

*Nov 22 01:05:34: ISIS-Adj: rcvd state DOWN, old state INIT, new state INIT

*Nov 22 01:05:34: ISIS-Adj: No matching areas

*Nov 22 01:05:34: ISIS-Adj: Action = GOING DOWN

Case Studies 465

IOS makes a similar log entry in the debug output. As we have no matching areas, we
have two options. Either we can change the circuit-type to be Level-2, or we can change
the Area-ID. In our case, we discover that circuit-type cannot be changed on the London
router and we have to change the Area-ID accordingly.

IOS configuration change
London#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

London(config)#router isis

London(config-router)# no net 49.0001.1921.6800.0012.00

London(config-router)# net 49.0100.1921.6800.0012.00

As the adjacency is still not up (take our word for it), we next check for an authenti-
cation match.

15.3.1.4 Non-matching Authentication

Before troubleshooting authentication information, we need to first find out which PDU
types are authenticated.

JUNOS debug output
JUNOS reports an IIH Authentication failure because per-level configuration authenti-
cates all PDUs including IIHs. Because authentication is always symmetric, the JUNOS
router also expects that all IIHs are authenticated, but that is not the case.

hannes@Frankfurt> show configuration protocols isis

traceoptions {

file isis-trace.log;

flag hello detail;

flag error;

}

[…]

*** isis-trace.log ***

Nov 22 00:23:01 Received PTP IIH, source id 1921.6800.0012 on so-0/2/0.0

Nov 22 00:23:01 intf index 69

Nov 22 00:23:01 max area 0, circuit type l1, packet length 4469

Nov 22 00:23:01 hold time 30, circuit id 1

Nov 22 00:23:01 17 bytes of authentication data

Nov 22 00:23:01 ERROR: IIH authentication failure

The JUNOS router reports an authentication error for IIHs, quite the contrary to the
IOS router, which does not report an authentication error. However, the IS-IS adjacency
gets stuck on the Initialize state.

466 15. Troubleshooting

IOS debug output
On the IOS side, no authentication error is logged because IOS does not expect its Hellos
to be authenticated.

London#debug isis authentication information

IS-IS authentication information debugging is on

London#debug isis adj-packets

IS-IS Adjacency related packets debugging is on

*Nov 22 01:19:34: ISIS-Adj: Rec serial IIH from *PPP* (POS4/1),

cir type L1L2, cir id 01, length 67

*Nov 22 01:19:34: ISIS-Adj: rcvd state DOWN, old state INIT, new state INIT

*Nov 22 01:19:34: ISIS-Adj: Action = GOING UP, new type = L1

Although IOS has enabled MD5 authentication, it authenticates only LSPs and SNPs
and not IIHs. But JUNOS does authenticate all PDU types and also expects authentica-
tion from others, which breaks the adjacency in this case. There are two strategies to over
come this.

IOS configuration change
London#conf t

Enter configuration commands, one per line. End with CNTL/Z.

London(config)#int pos4/1

London(config-if)# isis authentication key-chain MY-ISIS-PASSWORD

London(config-if)# isis authentication mode md5

The first is to configure an additional IIH authentication on the interface.

JUNOS configuration change
hannes@Frankfurt# show | compare

[edit protocols isis level 1]

+ no-hello-authentication;

Most network administrators are too lazy to maintain an additional IS-IS configuration
statement, and it is decided decide to suppress the authentication of IIH PDUs through
use of the no-hello-authentication on the JUNOS router.

15.3.1.5 Non-matching IP Sub-net

As our adjacency is still not up, we check the IP sub-net information using show com-
mands. Additionally we keep an eye on the debug outputs.

JUNOS debug output
hannes@Frankfurt> show configuration protocols isis

traceoptions {

Case Studies 467

file isis-trace.log;

flag hello detail;

flag error;

}

[…]

*** isis-trace.log ***

Nov 22 00:52:45 Received PTP IIH, source id London on so-0/2/0.0

Nov 22 00:52:45 intf index 69

Nov 22 00:52:45 max area 0, circuit type l1, packet length 4469

Nov 22 00:52:45 hold time 30, circuit id 1

Nov 22 00:52:45 17 bytes of authentication data

Nov 22 00:52:45 restart RR reset RA reset holdtime 0

Nov 22 00:52:45 ptp adjacency tlv length 1

Nov 22 00:52:45 neighbor state down

Nov 22 00:52:45 speaks IP

Nov 22 00:52:45 area address 49.0100 (3)

Nov 22 00:52:45 IP address 172.16.33.13

Nov 22 00:52:45 4371 bytes of total padding

Nov 22 00:52:45 ERROR: IIH from 1921.6800.2001 without matching

addresses, interface so-0/2/0.0

JUNOS refuses an adjacency if there is no common IP sub-net.

IOS debug output
London#debug isis adj-packets

IS-IS Adjacency related packets debugging is on

*Nov 22 01:40:52: ISIS-Adj: Rec serial IIH from *PPP* (POS4/1),

cir type L1L2, cir id 01, length 1492

*Nov 22 01:40:52: ISIS-Adj: No usable IP interface addresses in

serial IIH from POS4/1

IOS also checks to see if the Interface Address TLV is within the range of the own
sub-net.

JUNOS configuration change
hannes@Frankfurt# show | compare

[edit interfaces so-0/2/0 unit 0 family inet]

+ address 172.16.33.14/30;

- address 172.16.33.17/30;

In our example, there were two different IP sub-nets configured. Changing one side
back to what was originally allocated should do the trick and at last bring the adjacency
Up. (Don’t worry: it’s not usually this hard in the real world to get adjacencies up, even
in multi-vendor environments.)

468 15. Troubleshooting

IOS debug output
*Nov 22 01:54:50: ISIS-Adj: Rec serial IIH from *PPP* (POS4/1),cir type

L1L2, cir id 01,length 1492

*Nov 22 01:54:50: ISIS-Adj: rcvd state INIT, old state DOWN, new state INIT

*Nov 22 01:54:50: ISIS-Adj: Action = GOING UP, new type = L1

*Nov 22 01:54:50: ISIS-Adj: New serial adjacency

*Nov 22 01:54:50: ISIS-Adj: Sending serial IIH on POS4/1, length 4469

*Nov 22 01:54:50: ISIS-Adj: Rec serial IIH from *PPP* (POS4/1), cir type

L1L2, cir id 01, length 58

*Nov 22 01:54:50: ISIS-Adj: rcvd state UP, old state INIT, new state UP

*Nov 22 01:54:50: ISIS-Adj: Action = GOING UP, new type = L1

*Nov 22 01:54:50: ISIS-Adj: L1 adj count 1

The debug output shows the state transition from the Down to the Up state. Once we
are there, our routers can talk to their neighbours and exchange LSPs. Sometimes routers
exchange a bit too many LSPs, which is undesirable, too – there is a closer description of
this problem in the following case study.

15.3.2 Injecting Full Internet Routes into IS-IS
It is the nightmare of every network operation engineer: getting paged in the middle of
the night and all routers are unreachable. The iBGP mesh is collapsing and the network
is literally falling to pieces. Particularly on JUNOS routers, there was a dangerous trap
that many service providers ran into. In 2002, the Juniper Technical Assistance Center
(JTAC) noticed several incidents of the type we describe here: through human error, a
router attempts to inject the full set of Internet routes into IS-IS Level 2. The generated
flooding and processing load eventually melts down the entire network.

During a network-wide failure, it is hard at first to determine where to look initially for
traces and clues. A good place is the central syslog server. Often a few syslog messages
that are logged just before the network go haywire and these provide a good starting
point.

Syslog server logfile
The Munich router is logging every second that its IS-IS database is overloaded.

[…]

Nov 21 18:22:22 Munich rpd[2235]: RPD_ISIS_OVERLOAD: IS-IS database overload

Nov 21 18:22:23 Munich rpd[2235]: RPD_ISIS_OVERLOAD: IS-IS database overload

Nov 21 18:22:24 Munich rpd[2235]: RPD_ISIS_OVERLOAD: IS-IS database overload

Nov 21 18:22:25 Munich rpd[2235]: RPD_ISIS_OVERLOAD: IS-IS database overload

Nov 21 18:22:26 Munich rpd[2235]: RPD_ISIS_OVERLOAD: IS-IS database overload

[…]

Case Studies 469

By inspecting the syslog server, a set of log entries is spotted that indicates a database
overload by a router running JUNOS. By consulting the documentation (System Log
Messages Reference) we find out that the RPD_ISIS_OVERLOAD message is logged
when the router has no memory (!) or is running out of LSP fragments.

Next, we inspect the link-state database on any router and try to verify if the Munich
router has run out of fragments.

JUNOS command output
The show isis database output reveals that the Munich router is generating 256 LSP
fragments that are purged already.

hannes@Munich> show isis database

[…]

IS-IS level 2 link-state database:

LSP ID Sequence Checksum Lifetime Attributes

Munich.00-00 0x11 0x6dac 982 L1 Overload

Munich.00-01 0xca 0 0 L1

Munich.00-02 0xca 0 0 L1

Munich.00-03 0xca 0 0 L1

Munich.00-04 0xca 0 0 L1

Munich.00-05 0xca 0 0 L1

Munich.00-06 0xca 0 0 L1

Munich.00-07 0xca 0 0 L1

Munich.00-08 0xca 0 0 L1

Munich.00-09 0xca 0 0 L1

Munich.00-0a 0xca 0 0 L1

Munich.00-0b 0xca 0 0 L1

Munich.00-0c 0xca 0 0 L1

Munich.00-0d 0xc9 0 0 L1

Munich.00-0e 0xc9 0 0 L1

Munich.00-0f 0xc9 0 0 L1

[…]

Munich.00-f8 0x1 0 0 L1

Munich.00-f9 0x1 0 0 L1

Munich.00-fa 0x1 0 0 L1

Munich.00-fb 0x1 0 0 L1

Munich.00-fc 0x1 0 0 L1

Munich.00-fd 0x1 0 0 L1

Munich.00-fe 0x1 0 0 L1

Munich.00-ff 0x1 0 0 L1

Pennsauken.00-00 0x33 0xed52 1193 L1

London.00-00 0x3af 0x865e 744 L1

Frankfurt.00-00 0x19 0x8612 980 L1

268 LSPs

[…]

470 15. Troubleshooting

The output looks odd – the Munich router is generating in total 256 fragments, and the
router is overloaded. Why? Inspecting the non-zero fragments shows another interesting
trace:

JUNOS command output
All the Munich non-zero LSP fragments have the garbage collection timer set.

hannes@Frankfurt> show isis database Munich.00-01 extensive

IS-IS level 2 link-state database:

[…]

Munich.00-01 Sequence: 0xca, Checksum: 0, Lifetime: 0secs

Header: LSP ID: Munich.00-01, Length: 40 bytes

Allocated length: 284 bytes, Router ID: 0.0.0.0

Remaining lifetime: 0secs, Level: 1,Interface: 64

Estimated free bytes: 209, Actual free bytes: 244

Garbage collection timer expires in: 1134secs

[…]

The LSP fragments do not contain any data anymore. All of them are still in the
database for their maximum LSP lifetime to avoid re-learning them in case the network
gets partitioned. For our further troubleshooting, this means that somebody has
purged the Munich LSP fragments. In IS-IS the only router that purges LSPs is the orig-
inating router. So we next inspect the Munich router and check out its router configura-
tion file.

JUNOS configuration
The IS-IS configuration looks alright, but there is also an export policy configured which
should be further inspected.

hannes@Munich> show configuration

[…]

protocols {

isis {

export static-to-isis;

level 2 {

wide-metric-only;

}

interfaces {

[…]

lo0.0;

}

[…]

}

}

Case Studies 471

The IS-IS configuration looks alright – all interfaces are referenced. At the top there is
a pointer to an export policy which we will examine closer.

JUNOS configuration
On first sight the static-to-isis policy looks good, however once you check the inden-
tation of the terms and accept statements you will find out that the policy does not do what
the network operator wanted it to do.

hannes@Munich> show configuration policy-options

[…]

policy-statement static-to-isis {

term reject_management {

from {

route-filter 10.0.0.0/8 orlonger;

}

then reject;

}

term static {

from protocol static;

}

then accept;

}

At first sight this policy looks good. However, once we start to compare the indenta-
tion of the then part we realize that the term static does not have a valid then state-
ment. Due to a misconfiguration, it got inserted at the wrong level in the policy. What the
standalone then accept term does is accept every unicast route in the inet.0 routing
tables and mark it for export into the IS-IS link-state database. Because there is no from
statement at the same indentation level as the final then accept statement, we have
an unconditional export of the entire Internet routing table into IS-IS. (The final “then”
logic is executed when no terms match the routes. The logic is here “Is the route 10/8 or
longer?” No, that’s a private address. “Is the route static?” No, it’s an Internet route.
“Okay, then unconditionally accept the route into IS-IS.”)

The distributed storage space that each node may allocate is 1492(–27) * 256 �
375 Kbytes. How many IPv4 prefixes do fit in those 375 Kbytes? Figure 12.11 in Chapter
12 “IP Reachability Information” illustrates the structure and storage requirements of the
Extended IP Reachability TLV #135. Worst case, the TLV consumes 9 bytes and best
case 5 bytes due to variable prefix length packing. For the average Internet route we can
assume a prefix length between /16 and /24 and safely assume a total storage requirement
of 8 bytes per prefix. In a single TLV, on average, 31 TLVs fit, which requires 31 * 8 + 2
(TLV Overhead) � 250 bytes to store. An LSP fragment is at maximum 1492 bytes in
size. For TLV information there is 1492 – Header size (�27) � 1465 space. That means
in total we can store 31 * 5 + 26 � 181 routes per fragment. Inside 256 fragments we can
store around 46 K routes, which is too little to hold the entire Internet routing table. As
soon as the routers hit that limit, it pulls the “emergency brake” and sets the overload bit.

472 15. Troubleshooting

Finally, it cleans up the mess by purging the previously generated LSPs off the distrib-
uted link-state database. And that’s what the router was showing us.

In order to fix the problem, the then accept statement is moved into the term
static.

JUNOS configuration
hannes@Munich> show configuration

[…]

policy-statement static-to-isis {

term reject_management {

from {

route-filter 10.0.0.0/8 orlonger;

}

then reject;

}

term static {

from protocol static;

then accept;

}

}

After committing the change, you will still see all those stale fragments in the data-
base. They will be kept in the database until the garbage collection timer times out. Using
default values, after a period of 20 minutes they are removed automatically.

JUNOS command output
After the router has changed, the broken routing policy the Overload Bit is automatically
cleared.

hannes@Munich> show isis database

IS-IS level 2 link-state database:

LSP ID Sequence Checksum Lifetime Attributes

Munich.00-00 0x1c2 0x2d3b 1192 L1 L2

Pennsauken.00-00 0xc77 0xec5e 711 L1 L2

Frankfurt.00-00 0x198 0xdd86 933 L1 L2

14 LSPs

[…]

The database looks normal again, and the Overload Bit has automatically been
cleared.

Because that problem was encountered many times in the field, Juniper Networks
finally introduced a prefix-export limiter that optionally controls the export behaviour
and suspends route export if a predefined threshold is reached.

Case Studies 473

474 15. Troubleshooting

JUNOS configuration
The prefix-export-limit knob protects the rest of the network from a malicious
policy by applying a threshold filter for exported routed.

hannes@Munich> show configuration

[…]

protocols {

isis {

export static-to-isis;

level 2 {

wide-metrics-only;

prefix-export-limit 2500;

}

}

}

The amount of prefixes heavily depends on the size of your network. Good design
advice is to set it to double the total number of IS-IS Level 1 and Level-2 routers in your
network – The minimum number of routes should be 1000 and the maximum number of
routes about 10,000. Then you have some growth for even larger numbers of routes that
need to get leaked from Level 1 to Level 2.

15.4 Summary

Most IS-IS problems can be resolved quickly if you stick to a troubleshooting plan and
check from Layer-1 of the OSI Reference Model right up to the Application Layer. In
IS-IS, the Application Layer represents the link-state database that holds the network’s
link state PDUs. The network engineer needs to develop an understanding of what func-
tions each layer is performing and what tools he has available to gather information.
After information gathering, the collected data needs to be analyzed and interpreted,
which requires knowledge of the show commands and debug outputs. For detecting mis-
configuration on a router, the network engineer needs to understand where the IS-IS rele-
vant data in the configuration are stored.

The majority of IS-IS problems are related to adjacency formation. The network engineer
needs to get familiar with all sorts of debug output for IOS and JUNOS. Just looking at
the IS-IS specific configuration is often not enough to resolve a problem. We have
demonstrated in the Internet route export case study that understanding of route export
and policy processing is paramount for resolving complex problems.

16

Network Design

For a long time, link-state protocols were believed not to scale. However, today there are
operational networks with more than 1200 routers in a single level. Still, networks that run
link-state protocols need to be carefully designed and a lot of factors need to be considered
to get to such a scale. By ignoring certain reasonable constraints, you can easily break a
network in certain scenarios. In this chapter you will learn about the critical IS-IS network
design factors, all forms of router stress, including flooding stress, SPF stress and forward-
ing state change stress, as well as what things to consider to build robust, fast-converging
networks.

16.1 Topology and Reachability Information

In service provider networks there are always at least two protocols in use. The first is an
IGP (which could be OSPF or IS-IS), and the other is BGP. One of the first questions
asked by networking novices is why do we need both? It turns out that all IGPs (IS-IS,
OSPF, EIGRP) lack one fundamental thing, which is flow-control. For IGPs, there is no
way to tell an adjacent router that their updates have overwhelmed the receiver and the
sender should throttle down. The only way to deal with the situation is to throw away the
updates and wait for re-transmission. However, that is still a dangerous game, as it may
offload stress at the expense of the sending router, which needs to queue retransmissions
and therefore consumes CPU and memory. Careful protocol heuristics need to be imple-
mented to make sure that both the sending and receiving router do not take themselves
out of service. Dave Katz, a software engineer with Juniper Networks, who can be
blamed for writing the majority of IGP implementations on the Internet (his own self-
definition) puts the complexity around finding the right heuristics in a single quote:

Link State Protocols are hard! (Dave Katz)

What network engineers at service providers have been doing is to apply a divide and
conquer strategy and separating topology from reachability information. Topology infor-
mation contains the skeleton of the network – it is a graph that describes how the routing-
nodes are connected to each other. It does not contain any information about customer
networks and server networks, or so on. Ideally, it does not even contain information
about the directly connected sub-nets. Figure 16.1 shows that the only information that the
routers advertise is their loopback IP address, which is necessary to bring up an iBGP full-
mesh distribution network which handles bulk transport of the routing information.

475

476 16. Network Design

When you run IS-IS over a link you typically advertise your local IP sub-net in your
IS-IS LSPs. There is even the notion that local IP sub-nets should not be announced by
IS-IS, but rather by BGP. Historically there has not been an option to preclude certain IP
sub-nets from being announced. However, recent routing software allows you to change

BGPBGP

BGP

BGPBGP

BGP

Washington

IS-ISIS-IS

IS-IS

IS-ISIS-IS

IS-IS

192.168.1.11/32 172.16.33.0/24

Pennsauken

192.168.1.18/32 172.16.33.0/24

New York

192.168.1.12/32 172.16.33.0/24

London

192.168.1.17/32 172.16.33.0/24 192.168.1.13/32 172.16.33.0/24

Frankfurt

192.168.1.14/32 172.16.33.0/24

Paris

FIGURE 16.1. The minimal routing information that IS-IS needs to provide is the /32 of the
Loopback IP address for bringing up the iBGP mesh. All customer routes are packed on BGP

that behaviour. In IOS, there is a single knob that changes the advertising behaviour of
directly connects sub-nets. Once you configure the passive-only knob, the routing
software walks down the list of configured interfaces and looks for interfaces that are
marked as passive. Recall that passive means that you include that interface’s
sub-net in your routing update, but you do not try to establish a neighbour relationship or
an adjacency over that interface. The loopback interface is by default passive and so
if you configure the passive-only option, only the loopback IP address of the router
is advertised in its LSP.

IOS configuration
In IOS controlling whether directly connected route get advertised is provided using the
passive-only knob.

New-York# show running-config

[…]

router isis

advertise passive-only

!

[…]

In JUNOS there is no specific knob to control advertising behaviour. In JUNOS you
write a policy for achieving that task. Later you call that policy as export policy in the
protocols isis {} branch.

JUNOS configuration
In JUNOS you need to write an explicit policy that rejects all routes beside sub-nets on the
lo0.0 interface.

hannes@Frankfurt# show

[…]

protocols {

isis {

export lo0-only;

[…]

}

}

policy-options {

policy-statement lo0-only {

term lo0 {

from interface lo0.0;

then accept;

}

term final {

then reject;

}

[…]

Topology and Reachability Information 477

The nice thing about the JUNOS policy is that you may explicitly control the level to
suppress direct routes by introduction of a to {} statement. The following example
shows how to restrict to the loopback0 interface related routes inside Level 2 LSPs only.

policy-options {

policy-statement lo0-only {

term lo0 {

from interface lo0.0;

to {

protocol isis;

level 2;

}

then accept;

}

term final {

then reject }

}

}

[…]

}

BGP has perfected flow-control capabilities because it runs on top of the Transmission
Control Protocol (TCP). Flow control at the TCP level is built into the protocol: as soon
as a receiver cannot keep up processing inbound routing updates, it can easily slow down
transmission of acknowledgements or even drop the inbound update and indirectly indi-
cate that the sender should back off and send information at a lower speed. Originally
BGP was intended to process a certain maximum of routes. Yakov Rekhter, an Internet
architect with Juniper Networks relates:

Kirk Lougheed (Cisco Systems) and myself’s goal was to build a routing protocol able
to convey 1000 routes and not fall into pieces – If you consider the total routes being
today in the Internet we pushed the envelope a bit (Yakov Rekhter)

Based on BGP’s superb scaling capabilities, the idea here is to “borrow” the existing
BGP distribution mesh being used for transport of Internet routes for internal routes
as well.

The conclusion as to why you always need two protocols is therefore: IS-IS scales
too poorly for conveying a bulk amount of routes, however, it can quickly discover a
topology and provide routing connectivity between router loopback IP addresses. BGP
heavily depends on these IGP-supplied routes to bring up the iBGP. Second, BGP is
really in the dark when it comes to ascertaining the distance between a pair of routers.
Internal BGP sessions are not “targeted” and therefore need an IGP to resolve routes and
to give BGP speakers directions.

In order to come up with a design recommendation, let’s first evaluate the forms of
stress that routers are exposed to and develop a set of critical design factors based on
those insights. From there we will set up some rules to follow when designing an IS-IS
network.

478 16. Network Design

16.2 Router Stress

Generally routing software can exhaust resources in three possible areas:

1. Bandwidth
2. CPU
3. Memory

The next three sections investigate IS-IS implementations to see if they suffer from any
limitations in those three areas. The first area is bandwidth – in IS-IS, the main band-
width consumer is related to the flooding of LSPs.

16.2.1 Flooding
Unlike link-local packets like Hellos (IIH) or Synchronization packets (SNP), transmit-
ting link-state PDUs (LSPs) has a network-wide bandwidth usage impact. Once a router
floods LSPs, it is using bandwidth equal to the number of links in a given topology times
the size of the LSP. Worst case, it can be that network-wide transmission of an LSP
comes at a cost of using the number of all links times the size of a LSP squared. The big
gap between the best and the worst case (recall the best case is linear behaviour and the
worst case is N^2 behaviour) is solely explainable by the way the topology is meshed.
Consider Figure 16.2, where in a strict ring topology of six routers there is no duplicate

Router Stress 479

Paris

Ring Topology Full-mesh Topology

Pennsauken

New York

Washington Frankfurt

London

Pennsauken

New York

Washington

Paris

Frankfurt

London

FIGURE 16.2. In a dense-meshed environment there are lots of duplicate LSPs to process

transmission of an LSP. As soon as a link breaks, the LSP travels round until every node
gets a copy. Note that for greater visibility the propagation of only one LSP is shown. Of
course, in real networks both ends of the link that breaks would originate a new LSP. As
soon as you add links to the topology, the more redundant the transmission of LSPs gets.
In the ring-topology each router sees the LSP one time.

The worst case is a full-mesh of all routers, where a single router failure triggers
(N – 1) LSPs being flooded over (N – 2) links (� O(N 2)) through the network. The big
problem in a dense- or full-mesh environment is that nodes that already got a copy of
LSPs receive many redundant duplicates with the same information.

An additional source of flooding stress comes from turning on the TE extensions.
Once you turn on features like Traffic Engineering, DiffServ Traffic Engineering or Auto
Bandwidth, then the TEDs throughout the network topology need to be updated through
the use of the IS-IS flooding sub-system. That means that every router in the network
sees (and needs to see) accurate TE information. However, if the TE implementation
permits changes to flooding timers, then let having very conservative timers guide your
design. TE extensions are a major source of LSP updates and there should be an effort to
reduce these to the minimum possible.

It is recommended that you consider the topology to evaluate the stress resulting from
receipt of duplicate LSPs. Densely meshed environments scale poorly in flooding environ-
ments. Try to avoid full-mesh or near-full mesh topologies. Sometimes a lot of extra
redundancy does not turn into more resiliency.

16.2.2 SPF Stress
Link-state routing protocols were once believed to be CPU intense algorithms that
exhausted an embedded system’s sparse resources. Because of that belief, both link-state
IGPs (OSPF, IS-IS) have provisions to split the size of the link-state domains to smaller
units. In OSPF multiple areas, and in IS-IS two levels, are an attempt to spare the control
plane CPU when doing the SPF run.

A lot has changed in the last decade. CPUs became (in line with Moore’s Law) faster by
a factor of 8000; Trunk bandwidth grew from T1 speeds to OC-192c/STM-64. The only
thing that has not changed at all is the paranoid thinking that SPF may exhaust the CPU
resources of a router. The fact is, the demand that SPF puts on router resources has been
outpaced by the processing power of modern CPUs. Table 16.1 shows how SPF execution
fares on modern route processors like the Cisco Systems GRP or a Juniper Networks RE
3.0. The CPU requirements of an SPF operation are well understood and well documented
by computer scientists. The fundamental relationship is O(N * log(N)), which describes a
curve where the CPU requirements grow a little more than linearly, with N being the num-
ber of total routers in the network. In practice it is a little more than just log N due to the
2-way check that is needed to verify that a node is connected on both ends and not a dead end.

The results from the simulation in Table 16.1 are impressive. It means that processing
a grid of 2000 routers, which are in total connected by 5000 links, has a typical execu-
tion runtime of only 100–245 milliseconds. If you consider this table then it is obvious
that raw SPF execution time is not a problem for large IS-IS networks. So what is it then?

480 16. Network Design

Why are we all so scared of routers running excessive number of SPF runs back to back?
What is it besides the SPF calculation itself that scares network operators so much?

16.2.3 Forwarding State Change Stress
The purpose of the SPF calculation is to find out the shortest path to every edge of the
network. However, just the insight that there are better paths available is not enough.

There are no good things, unless you do them! (Erich Kästner)

The router has to pass on the new proximity results to a subsystem called the resolver,
which is used to map third party next-hops to forwarding next-hops. Consider Figure
16.3, if the link between Washington and New York breaks, the SPF calculation will be
finished in a matter of microseconds. Each IS-IS speaker is also a BGP speaker and car-
ries several thousand active BGP routes. If the IS-IS topology changes, then the BGP
routes that depend on IS-IS need to get changed as well. The resolver needs now to back-
track through all the BGP routes and verify that the BGP next-hop is affected by a change
in the core topology. As you can imagine, walking down a table of several hundreds of
thousands of BGP route-entries is a resource intensive task. In our example, there are
tons of forwarding state changes to do: all Washington and New York routes need to be
changed in a very short time.

After the BGP dependencies have been worked out, this may generate changes in the
BGP topology as well: recall that the IGP distance is part of the BGP route selection
process. But that is only half of the story, as those things still occur on the control plane.

Router Stress 481

TABLE 16.1. Modern route processors can calculate topologies for
thousands of nodes and links sub second.

SPF runtime (ms)

Juniper Networks Cisco Systems
Routers Links Routing Engine 3.0 GRP 12000

100 250 1,92 4,80
200 500 4,97 12,42
400 1000 12,49 31,22
600 1500 21,18 52,94
800 2000 30,67 76,67
1000 2500 40,78 101,94
1500 3750 68,11 170,27
2000 5000 97,68 244,21
2500 6250 128,98 322,45
3000 7500 161,69 404,22
4000 10000 230,53 576,33
5000 12500 303,09 757,72
6000 15000 378,67 946,67
7000 17500 456,82 1142,04
8000 20000 537,19 1342,98
9000 22500 619,55 1548,86
10000 25000 703,67 1759,18

The forwarding state change of tens of thousands of routes may stress several sub-systems
of an Internet core router. It turns out that changing a forwarding state is one of the most
expensive operations in a router. Meanwhile, both Juniper and Cisco have found a way to
pass on third party next-hop information to the line-cards and retain the dependency of
BGP routes to IS-IS speakers to forwarding interfaces. More on passing on third party next-
hop information, and why it is not always a good idea to attempt to fully resolve a route to
its forwarding next-hop, can be found in Chapter 10, “SPF and Route Calculation”.

482 16. Network Design

Wash D.C.

Metric 4

Metric 2

Metric 4 Metric 2

Metric 1Metric 1

Metric 4 Metric 4

Pennsauken

Frankfurt

London

Washington

New York

Paris

BGP

40 K active
routes

BGP

25 K active
routes

BGP

30 K active
routes

BGP

15 K active
routes

BGP
20 K active

routes

BGP

10 K active
routes

FIGURE 16.3. The resolver needs to track and map BGP next-hops to the shortest path resulting
from the SPF calculation

16.2.4 CPU and Memory Usage
The two main things that utilize the CPU most in an IS-IS router are the SPF calculation
and the resolver. SPF calculation puts a short burden on the system but even in large
topologies that burden does not last more than 200 ms using modern route processors. As
discussed in the previous section, the far bigger CPU hog is the resolver, which maps BGP
routes to forwarding next-hops. SPF execution runtime is ultimately a non-issue; however,
the burden that the resolver can put on the system needs to be carefully examined.

In the 1990s, during the explosive growth of the Internet, routers were constantly short
of memory. Since then network service providers are cautious about the memory usage
of their routing protocols. There is almost no IS-IS-related documentation regarding
memory consumption. The majority of IS-IS implementations use memory in three
areas:

1. Link-state database
2. SPF result table
3. Storing neighbour information

The link-state database size is the easiest to predict. It contains mostly raw data that
was extracted from the TLVs in an IS-IS PDU. There are also overhead and index struc-
tures so the IS-IS software can quickly traverse the database when it is looking for a cer-
tain LSP. As a rough guideline, one can state that the size of the link-state database is
about double the size that individual LSPs consume on the wire. For example, if the net-
work knows about 100 LSPs with an average length of 400 bytes each, then the size to
store this information in the router software is 100 * 400 * 2 �80 KB.

The size of the SPF result table depends largely on how many IP prefixes are known
to IS-IS inside the network. A good estimation here is that each prefix consumes about
70 bytes. For example, if you have 1600 IS-IS prefixes in your network, then the mem-
ory consumption on the control plane is 112 KB.

The neighbouring table is the most complex one to calculate as all the flooding state
and retransmission list needs to be kept on a per adjacency basis. That structure is also
dependent on the size of the link-state database, because all the flooding states are tied to
both the LSP and the adjacency. There is a lot of clever pointer work involved here, and
the overhead to do efficient flooding is enormous. A good approximate figure is that this
table is about 50 times the average LSP size multiplied by the number of active adjacen-
cies. For example, if the average LSP is about 400 bytes and the number of adjacencies
is eight, then the memory consumption is 400 * 50 * 8 �160 K.

If you sum the three memory areas up, then the result for a large network is unlikely
to exceed 4–5 MB in total. In IS-IS, the memory consumption is minimal given that
there are mainly route processors with 256 MB–2 GB memory deployed in the field.
Interestingly, there are large overhead structures in the LSP databases to increase LSP
lookup speed and to keep flooding state even for large numbers of adjacencies. This is just
more evidence that memory consumption for IS-IS networks with big core routers is a
non-issue.

Router Stress 483

16.3 Design Recommendations

Through the years of designing large IS-IS networks, and based on the experience of
NOC engineers and software engineers at the big router vendors, the authors have come
up with the following design tips to design truly scalable networks. Those recommenda-
tions are not rigid, that is, you do not need to follow them all to the letter. To be a good
network designer, you have to find a healthy balance between what the products can do
and what you want to achieve.

The rest of this chapter draws on many of the topics and ideas discussed throughout
this book. There is no need to repeat more than the basics of the discussions, however, so
we don’t present all of the gory details all over again.

16.3.1 Separate Topology and IP Reachability Data
Perhaps the most important rule is keeping topology and IP reachability data separate.
You saw that IGPs are not very good at transporting large numbers of routes, so just
avoid it and pass the job to BGP. In large (more than 1000 routers per level) you may
even decide to advertise directly connected routes in BGP as well. Given that an average
IS-IS core router has about five or six directly attached sub-nets, then you clearly want to
avoid that extra 2500–3000 prefixes at the IS-IS level in order to keep convergence times
within an upper bound. An ideal IS-IS LSP contains just a single IP prefix, which is the
router’s loopback IP address, plus Extended IS Reach TLVs that point to neighbouring
routers.

Tcpdump output
An ideal LSP just conveys a single IP prefix per router and passes all other routing infor-
mation via BGP.

12:36:45.587565 OSI, IS-IS, length: 405

hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

L2 LSP, lsp-id: 2092.1113.4009-00, seq: 0x000002fd, lifetime: 1198s

chksum: 0xe984 (correct), PDU length: 185, Flags: [L1L2 IS]

Area address(es) TLV #1, length: 4

Area address (length: 3): 49.0001

Protocols supported TLV #129, length: 1

NLPID(s): IPv4

IPv4 Interface address(es) TLV #132, length: 4

IPv4 interface address: 192.168.1.1

Hostname TLV #137, length: 10

Hostname: Washington

Extended IS Reachability TLV #22, length: 99

IS Neighbor: 1921.6800.1077.00, Metric: 4, sub-TLVs present (12)

IPv4 interface address (subTLV #6), length: 4, 172.17.1.6

IPv4 neighbor address (subTLV #8), length: 4, 172.16.1.5

484 16. Network Design

IS Neighbor: 1921.6800.1043.00, Metric: 4, sub-TLVs present (12)

IPv4 interface address (subTLV #6), length: 4, 172.16.33.38

IPv4 neighbor address (subTLV #8), length: 4, 172.16.33.37

IS Neighbor: 1921.6800.1018.00, Metric: 4, sub-TLVs present (12)

IPv4 interface address (subTLV #6), length: 4, 172.16.33.25

IPv4 neighbor address (subTLV #8), length: 4, 172.16.33.26

Extended IPv4 reachability TLV #135, length: 9

IPv4 prefix: 192.168.1.1/32, Distribution: up, Metric: 0

Authentication TLV #10, length: 17

HMAC-MD5 password: 68e18feb2e29257113e4bb6580169310

16.3.2 Keep the Number of Active BGP Routes per Node Low
Vendors have come up with smart representations of BGP routes and how those routes
depend on IS-IS routes. However, there is one fault condition where even smart route
representations inside a router do not gain us much. If an entire BGP speaker disappears,
then when the BGP speaker goes down the BGP control plane needs to re-route all those
prefixes, which of course takes time. If an IS-IS router is carrying a large number of
active routes, then it takes proportionally longer if that BGP router goes down. Figure
16.4 shows that, on the left-hand side, Washington is a “hotspot” BGP speaker that car-
ries the majority of BGP routes. If this speaker goes down, then you need to re-route all
120 K routes, which can cause a network wide outage of up to 3 minutes. The logical step
is to spread those 120 K routes among several routers as shown on the right-hand side of
Figure 16.4.

In well-developed peering meshes, the average number of routes per border router is
not more than 10 K. In our example, because of a lack of routers, we still did not put more
than 30 K routes per node. In practice, if you receive more than 10 K routes per peer, then
you may need to consider a redundant router and spread the incoming prefixes over the
two redundant routers. Re-routing 10 K prefixes if the active router breaks down can be
done in a matter of 5–10 seconds.

16.3.3 Avoid LSP Fragmentation
IS-IS has plenty of space (precisely 375,040 bytes per LSP) in the distributed database.
Despite this vast amount of information that an individual IS-IS speaker can originate,
you typically do not want to use that storage size – ever. You should try to accommodate
all the information that you need in maxLSPsize (1492) – LSP header (27) � 1465
bytes. There may be a number of additional LSP updates if you cross an LSP boundary
and have to break things up into another segment. Consider Figure 16.5 to see what happens
if you are at the edge of Fragment 0 and an additional adjacency comes up. Router
1921.6800.1018 decides that it needs to break up another segment. Router 1921.
6800.1018 generates the fragment and floods it. The troubles start if any of the router’s
other sub-nets or adjacencies become unavailable. Assume that Adjacency #4 falls down,
and then the entire TLVs that follow this particular adjacency gets shifted, and also may
fall into another fragment. Considering the example in Figure 16.5, there is no need to

Design Recommendations 485

486

F
ra

n
kf

u
rt

L
o

n
d

o
n

N
ew

 Y
o

rk

F
ra

n
kf

u
rt

L
o

n
d

o
n

B
G

P

B
G

P
B

G
P

B
G

P

B
G

P

B
G

P

B
G

P

B
G

P

P
en

n
sa

u
ke

n

20
K

 a
ct

iv
e

ro
u

te
s

12
0K

 a
ct

iv
e

ro
u

te
s

W
as

h
in

g
to

n

P
ar

is

20
K

 a
ct

iv
e

ro
u

te
s

P
en

n
sa

u
ke

n

30
K

 a
ct

iv
e

ro
u

te
s

N
ew

 Y
o

rk

30
K

 a
ct

iv
e

ro
u

te
s

W
as

h
in

g
to

n

20
K

 a
ct

iv
e

ro
u

te
s

P
ar

is

25
K

 a
ct

iv
e

ro
u

te
s

15
K

 a
ct

iv
e

ro
u

te
s

FI
G

U
R

E
16

.4
. I

n
a

w
el

l-
de

ve
lo

pe
d

pe
er

in
g

m
es

h
th

e
B

G
P

ro
ut

es
 a

re
 a

lm
os

t e
ve

nl
y

di
st

ri
bu

te
d

ov
er

 th
e

en
tir

e
ne

tw
or

k

487

T
LV

s
E

xt
d-

IS
 R

ea
ch

 N
ei

gh
bo

ur
 #

1
E

xt
d-

IS
 R

ea
ch

 N
ei

gh
bo

ur
 #

2
E

xt
d-

IS
 R

ea
ch

 N
ei

gh
bo

ur
 #

3
E

xt
d-

IS
 R

ea
ch

 N
ei

gh
bo

ur
 #

4
E

xt
d-

IS
 R

ea
ch

 N
ei

gh
bo

ur
 #

5
E

xt
d-

IS
 R

ea
ch

 N
ei

gh
bo

ur
 #

6
E

xt
d-

IS
 R

ea
ch

 N
ei

gh
bo

ur
 #

7
E

xt
d-

IS
 R

ea
ch

 N
ei

gh
bo

ur
 #

8
E

xt
d-

IS
 R

ea
ch

 N
ei

gh
bo

ur
 #

9
E

xt
d-

IS
 R

ea
ch

 N
ei

gh
bo

ur
 #

10

L
S

P
 1

92
1.

68
00

.1
01

8.
00

-0
0,

S
eq

u
en

ce
 0

x1
,

L
if

et
im

e
12

00
s

L
S

P
 1

92
1.

68
00

.1
01

8.
00

-0
1,

S
eq

u
en

ce
 0

x1
,

L
if

et
im

e
11

95
s

T
LV

s
E

xt
d-

IS
 R

ea
ch

 N
ei

gh
bo

ur
 #

11

T
LV

s
T

LV
s

1
2

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
1

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
2

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
3

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
4

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
5

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
6

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
7

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
8

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
9

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
10

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
1

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
2

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
3

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
4

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
5

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
6

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
7

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
8

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
9

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
10

E
xt

d-
IS

 R
ea

ch
 N

ei
gh

bo
ur

 #
11

L
S

P
 1

92
1.

68
00

.1
01

8.
00

-0
0,

S
eq

u
en

ce
 0

x2
,

L
if

et
im

e
11

95
s

L
S

P
 1

92
1.

68
00

.1
01

8.
00

-0
0,

S
eq

u
en

ce
 0

x2
,

L
if

et
im

e
11

97
s

L
S

P
 1

92
1.

68
00

.1
01

8.
00

-0
1,

S
eq

u
en

ce
 0

x2
,

L
if

et
im

e
11

97
s

em
pt

y
T

LV
 b

lo
ck

FI
G

U
R

E
16

.5
. I

S-
IS

 f
ra

gm
en

ta
tio

n
m

ay
 c

au
se

 e
xc

es
s

L
SP

 u
pd

at
es

 if
 a

dj
ac

en
ci

es
 w

an
de

r
ac

ro
ss

 s
ev

er
al

 f
ra

gm
en

ts

use Fragment #1 now, as everything would easily fit into Fragment #0. Fragment #1 is
tossed using a network-wide purge. The trouble here is that a single change in a router’s
adjacency may cause several fragments to get re-aligned. ISO 10589 recommends spar-
ing the top 10 per cent of LSP space for problem scenarios like this. That is, when an
LSP is built, then only the first 1318 bytes (1465 – 10 per cent) are used for data. The top
10 per cent are reserved to take up “wandering adjacencies” from higher fragments as
those fragments shrink below a 146-byte fill level.

There is a lot of clever heuristics involved (you could even pad lost adjacencies using
the Padding TLV #8 in order to avoid fragment shifts); however, most implementations
keep those heuristics to a minimum. In order to avoid fragment shifts, the best approach
is to avoid fragmentation at all.

Tcpdump output
An adjacency carrying full TE extensions consumes 75 bytes on the wire.

Extended IS Reachability TLV #22, length: 75

IS Neighbor: 2092.1113.4007.00, Metric: 5, sub-TLVs present (64)

IPv4 interface address (subTLV #6), length: 4, 172.16.1.6

IPv4 neighbor address (subTLV #8), length: 4, 172.16.1.5

Unreserved bandwidth (subTLV #11), length: 32

priority level 0: 9953.280 Mbps

priority level 1: 9953.280 Mbps

priority level 2: 9953.280 Mbps

priority level 3: 9953.280 Mbps

priority level 4: 9953.280 Mbps

priority level 5: 9953.280 Mbps

priority level 6: 9953.280 Mbps

priority level 7: 9953.280 Mbps

Reservable link bandwidth (subTLV #10), length: 4, 9953.280 Mbps

Maximum link bandwidth (subTLV #9), length: 4, 9953.280 Mbps

Administrative groups (subTLV #3), length: 4, 0x00000000

If you consider that you almost need no space for IP Reachability-related TLVs, there
is approximately space for 18 * 75 bytes of full-blown adjacencies using the full-set of
TE sub-TLVs, which ought to be enough even for larger core routers.

16.3.4 Reduce Background Noise
IS-IS has the nice advantage over OSPF in that IS-IS can control its own LSP refresh
rate. In IS-IS the max-LSP-age is a countdown function, which is user configurable. That
is, each router is required to refresh its LSP (refresh just means bump the sequence num-
ber and leave the contents unchanged) in less than max-LSP-age. The recommended
value for implementers is to set the max-LSP-age refresh timer to a value less than 300
seconds, but this is very low. The default value of the max-LSP-age is set to 1200 sec-
onds, which is also the recommended value mentioned in ISO 10589. If you keep the

488 16. Network Design

default value, or use the 300 value, you end up tolerating a lot of “refresh noise” based
on the relatively small interval of 1200 seconds (20 minutes). For example, in a network
consisting of 400 routers, this means on average every 3 seconds a network-wide flood
of an LSP from some router even when the network is quiet (there are no link flaps, and
no topology changes, and so on).

Both IOS and JUNOS allow you to change that default value of 1200 seconds to get
to a lower amount of refresh noise in your network. The recommended value is to set
the max-LSP-age timer to 65,535 seconds, which extends the refresh period to 18.2
hours and therefore reduces the refresh noise by a factor of 50. There are no side-effects
of changing the default value, and it remains an open question for router vendors as to
why this higher value is not made the default value, because every service provider
changes it to this value anyway. Keep in mind that in IOS you need to set both the lsp-
age timer as well as the lsp-refresh timer and subtract the 300 seconds to get a
proper refreshing. JUNOS internally calculates a “sane” timer based on the configured
lsp-age.

16.3.5 Rely on the Link-layer for Fault Detection
Many service providers believe that the key for getting to sub-second convergence is to
tweak all the timers in a router, particularly the Hello and Hold timers. Unfortunately
today some implementations of routing protocols are not real-time capable. If you make
your non-real-time capable IS-IS implementation generate a Hello every 333 ms on hun-
dreds of adjacencies, this may cause some side-effects. Consider the processing of a big
BGP batch run, where the router may not be able to revisit the code that submits the
Hellos, which in turn may cause network-wide churn due to missed Hellos.

Considering that not all vendors support real-time control planes for IS-IS, we have to
go down the road of the lowest common denominator. In many router implementations,
generation of link-layer messages like keep-alives are handled by the forwarding complex,
which typically does run a real-time OS (or at least a tweaked OS that is close enough). In
order to get real-time detection, we offload this task to the forwarding complex. Fault
detection works reasonably well on certain interface technologies like SONET/SDH. No
surprise here! SONET/SDH have the best liveness protocol you can think of. Among the
SONET/SDH overhead are bytes (K1/K2, K3, K4) that carry Remote Defect Indicator
(RDI) bits which are immediately set if there is a problem along the SONET/SDH link.
Due to SONET/SDH requirements, that message will be sent, worst case, within 50 ms of
a failure and travel through every node along the path.

In the ATM world, end-to-end fault detection is performed by operation and manage-
ment (OAM) cells that are inserted by routers at both ends of a Virtual Connection (VC).
The OAM cells are a nice liveness protocol that can perform fault-detection for IS-IS
as well.

The only remaining problem is Ethernet. Because of its inherent simplicity, there is no
link-layer protocol where you could embed Ethernet keep-alive messages. Historically there
was never any possibility to get quick fault detection on Ethernet except through tuning
IS-IS Hold timers. But now there is a solution called bi-directional fault detection (BFD) for
this purpose. BFD is described in draft-katz-ward-bfd-00.txt and the protocol and its

Design Recommendations 489

mechanisms are simple: The idea is to set up a high frequency (�100 ms) exchange of UDP
packets. If that exchange is disrupted there must be a problem with the underlying media and
the link can be declared down. As soon as there are interoperable BFD implementations it
will become the method of choice as a liveness protocol for Ethernet.

Table 16.2 shows a short summary of the preferred interface media type fault-
detection protocols over IS-IS.

As for every major interface type there is a high-frequency fault detection protocol
available and so there is no need to abuse IS-IS to provide that function. It is our recom-
mendation to use the per-interface media type-dependent fault-detection protocols and
leave IS-IS with its default Hello timers.

16.3.6 Simple Loopback IP Address to System-ID
Conversion Schemes

The 6-byte System-ID field has an inherent drawback. For administering System-IDs
there are almost no address management tools available that can cope with 6-byte
address entities. For the network service operator there are two choices:

1. Develop a custom address management tool for 6-byte System-IDs
2. Do not manage System-IDs – rather auto-derive it from IPv4 loopback addresses

Typically, network service providers do not want to maintain yet another list of addresses,
and therefore there are very simple mapping concepts for converting IPv4 loopback
addresses to System-IDs. It is recommended to keep these schemes as simple as possible.
The simplest form is the binary coded decimal (BCD) conversion where the IP address
is represented in decimal notation and the resulting digits make up the System-ID. See
Figure 16.6 for a few conversion examples.

490 16. Network Design

TABLE 16.2. For every interface media type there is a
high-frequency fault-detection protocol available.
Interface media type Liveness protocol

SONET/SDH SONET/SDH RDI
ATM OAM cells
Ethernet Bi-directional fault detection

192.168.13.1

193.83.223.237

172.1.14.18

IP Address System-ID

1921.6801.3001

1930.8322.3237

1720.0101.4018

FIGURE 16.6. The best conversion tool is a simple binary coded decimal (BCD) conversion

Simple System-ID schemes also have the advantage that once you need to troubleshoot
complex synchronization and flooding problems, it is convenient to have simple schemes
to spot on certain routers.

Tcpdump output
When you are (for example) troubleshooting a synchronization problem, then it is handy if
you can easily derive the IPv4 address of routers by use of a simple mapping scheme.

21:14:07.712478 OSI, IS-IS, length: 1478

L2 CSNP, hlen: 33, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

source-id: 6b01.c219.07fa.00, PDU length: 275

start lsp-id: 1921.6800.1001.00-00

end lsp-id: 1921.6800.1039.00-00

LSP entries TLV #9, length: 240

lsp-id: 1921.6800.1001.00-00, seq: 0x00000562, lifetime: 5014s,

chksum: 0x03dc

lsp-id: 1921.6800.1003.00-00, seq: 0x0000073a, lifetime: 31107s,

chksum: 0xdb8b

lsp-id: 1921.6800.1005.00-00, seq: 0x0000050c, lifetime: 5205s,

chksum: 0xa8bf

lsp-id: 1921.6800.1006.00-00, seq: 0x00000d20, lifetime: 30639s,

chksum: 0x2699

lsp-id: 1921.6800.1007.00-00, seq: 0x0000089f, lifetime: 52194s,

chksum: 0x74ad

lsp-id: 1921.6800.1011.00-00, seq: 0x00000319, lifetime: 61707s,

chksum: 0xc69e

lsp-id: 1921.6800.1011.00-01, seq: 0x0000008e, lifetime: 44126s,

chksum: 0x6e4d

lsp-id: 1921.6800.1013.00-00, seq: 0x000002c0, lifetime: 36610s,

chksum: 0xb05d

lsp-id: 1921.6800.1013.00-01, seq: 0x000000b0, lifetime: 5052s,

chksum: 0x0e21

lsp-id: 1921.6800.1013.00-03, seq: 0x0000029f, lifetime: 11790s,

chksum: 0x5bfa

lsp-id: 1921.6800.1033.00-00, seq: 0x00000318, lifetime: 11255s,

chksum: 0xbb6e

lsp-id: 1921.6800.1034.00-00, seq: 0x000006f4, lifetime: 48962s,

chksum: 0x634f

lsp-id: 1921.6800.1037.00-00, seq: 0x000005bf, lifetime: 44818s,

chksum: 0x4701

lsp-id: 1921.6800.1038.00-00, seq: 0x000013fc, lifetime: 8664s,

chksum: 0x93d4

lsp-id: 1921.6800.1039.00-00, seq: 0x000014b9, lifetime: 17862s,

chksum: 0x2894

Particularly when you need to parse packet dumps like the above using network ana-
lyzers, and you do not have the name cache ready, then simple conversion logic makes

Design Recommendations 491

troubleshooting much easier. You are doing operations and support people a big favour if
you avoid fancy and complicated System-ID schemes.

16.3.7 Align Throttling Timers Based on Global Network Delay
In most IS-IS implementations there are many timers that the network operator can
adjust. In order to build a network that converges in the sub-second range, you often need
to tweak those timers. The first thought may be the faster the better, however, that’s not
always the case. The typical throttles that are on by default are LSP origination and SPF
delay timers. Both JUNOS and IOS have a similar strategy to apply these throttles. Both
implementations in common behave fast (almost no delay) for the first events in a series.
However, the more quickly changes come, the more restrictive, and hence slower, the sys-
tem behaves. This is achieved as a step function in JUNOS (the first three events are han-
dled the fast way, and then the system immediately backs off to slow behaviour) and in
IOS the router gets slower using an exponential curve. However, after three or four events,
the system fully backs off to the slower behaviour. The art of good network design is to
find a healthy compromise so that the majority (95 per cent) of network events falls under
the fast window and you can take full advantage of the open throttles. Consider Figure
16.7. When parts of a network fail, then there is always more than one LSP in flight. Once
the link between Washington and New York breaks, both routers have to update their
LSPs. Ideally both LSPs arrive at all the routers at the same point in time.

Now you need to find a compromise between reasonably fast behaviour and waiting
long enough that you can catch and process an SPF run for all the LSPs belonging to a
particular network fault condition. How long is long enough? If you take a closer look at
how an incident is processed, then the dominating element after mutual detection of a
link-break is the propagation of the LSP. LSP propagation with reasonably fast circuits
(greater then OC-3/STM-1 speeds) is mostly a function of the light-speed in a fibre plus
the LSP processing delay of routers. A good estimation for the average global flooding
delay is the worst case delay for network control traffic, plus the average hop count, multi-
plied by 10 ms (average LSP processing delay).

Speed of light in fibres is about 200.000 km/s � 200 km/ms

Example 1: Continental network (diameter 4.000 km) spanning over average 6 routers.

4.000 km/200 km/ms � 6 * 10 ms � 20 ms � 6 * 10 ms � 80 ms

Example 2: Intercontinental network (diameter 30.000 km) spanning over an average of
8 routers.

30.000 km/200 km/ms � 8 * 10 ms � 150 ms � 8 * 10 ms � 230 ms

It is recommended to change the LSP origination timer to a value that safely catches most
link flaps. It should not be set too aggressively. A good recommendation here is 150 ms,
which gives the router enough time to fully build an LSP no matter how large it may be.

It is recommended that you change the SPF delay timer based on the calculation for
the average processing and LSP propagation delay. A recommendation for delaying the
SPF calculation is between 50 ms and 250 ms depending on network size.

492 16. Network Design

Design Recommendations 493

New York LSP

Washington LSP

Pennsauken

Frankfurt

London

Washington

New York

Paris

FIGURE 16.7. For true fast-convergence routing the throttling behaviour should match the LSP
propagation properties of the network

16.3.8 Single Level Where You Can – Multi-level
Where You Must

IS-IS has many useful scaling tools built in. One of them is the multi-level orientation
that allows having hundreds of routing domains composed of hundreds of routers and
routes between them. An important question to ask yourself is how much scalability
do you really need? A couple of years ago, everybody in the communication industry was

494 16. Network Design

crazy over scaling, and even pushing the envelope for scalability was not enough for
some network service providers. Fortunately today some normality (some say sanity) has
come back to the industry, and most people now realize their true scaling needs and the
associated time-span until a next generation of network and network routers are needed.
According to our experience, for the majority of networks, there is a simple design rule,
which is to start with a single level of IS-IS. Unless your topological domain (IS-IS level)
grows to a total number of beyond 800–1500 routers, there is no need to split things up.
Do not be misled and think that splitting up a single level network into a multi-level net-
work must automatically improve the scaling properties in all dimensions of that net-
work. There are some examples where the additional complexity of processing two
topological domains may result in worse resource demands. A good case study is shown
in Figure 16.8. In a given multi-level network, in order to still get optimal BGP routing,
you need to turn on route leaking and propagate all /32 loopback routes. An individual /32
prefix originating in Area 49.0100 Level 1 is leaked up to the Level 2 Area 49.0001 and,
due to route leaking, it will be propagated down to Area 49.0200 Level 1. If you now sup-
pose (for example) that the San Francisco router goes down, then the timing properties
of all the individual operations are:

1. Flood inside Level 1 Area 49.0100 (20ms)
2. Atlanta: SPF delay, local SPF calculation, leak to Level 2, LSP build delay

(100 ms � 10 ms � 100 ms)
3. Flood inside Level 2 Area 49.0001 (20 ms)
4. Amsterdam: SPF delay, local SPF calculation, leak to Level 1, LSP build delay

(100 ms � 10 ms � 100 ms)
5. Flood inside Level 1 Area 49.0200 (20 ms)
6. Stockholm: SPF delay, local SPF calculation (10 ms � 10 ms)

If you sum up all of these operations then the total Level-1-to-Level-1 convergence
takes 500 ms compared to the single level flooding delay, plus SPF delay and SPF calcu-
lation (130 ms). Although the network should behave better, it actually got worse by a
factor of 4 in terms of convergence.

Typically, you start a green-field design with a single Level-2 IS-IS network. You may
ask why to start with Level 2 first and not with Level 1, and extend it later to a Level-2
network? Figure 16.9 shows the two transitioning examples. On the top, the migration
from a Level-2 to a multi-level network works without any disruption at all. Only two
level settings need to be changed. On the bottom the conversion from a Level-1 to Level-
2 is troublesome, because Level-1 adjacencies require that the Area address matches on
both ends, and in order to create several Level-1 areas you need to renumber the areas
and touch every router. This means that for a short time you must disrupt your service. In
the top example we assume that the network administrator has allocated the appropriate
distinct Area-IDs so that they can change the level anytime. In Level 2 routing, different
Area-IDs are tolerated – the Area-ID does not need to match. A little piece of tolerance
is generally a good recipe for easy transitioning, and here it helps to be able to renumber
the Area-IDs without any disruption. That is good news, as you do not need to worry
about addressing from the start. You can at a later stage change the entire IS-IS Area
addressing and add anything at any time.

495

F
ra

n
kf

u
rt

L
o

n
d

o
n

W
as

h
in

g
to

n

N
ew

 Y
o

rk

P
ar

is

M
ia

m
i

S
an

 J
o

se
V

ie
n

n
a

M
u

n
ic

h

A
m

st
er

d
am

A
tl

an
ta

S
an

 F
ra

n

A
re

a
49

.0
10

0
A

re
a

49
.0

00
1

Le
ve

l 2
-o

nl
y

P
en

n
sa

u
ke

n

S
to

ck
h

o
lm

A
re

a
49

.0
20

0

FI
G

U
R

E
16

.8
.I

n
a

tw
o

le
ve

l I
S-

IS
 n

et
w

or
k

pr
op

ag
at

io
n

th
ro

ug
h

al
l l

ev
el

s
do

es
 s

lo
w

 d
ow

n
co

nv
er

ge
nc

e

2
2

2
2

1
1

1
1

1
2

2
1

1
2

2
1

A
m

st
er

d
am

L
o

n
d

o
n

A
tl

an
ta

N
ew

 Y
o

rk
A

m
st

er
d

am
L

o
n

d
o

n
A

tl
an

ta
N

ew
 Y

o
rk

A
m

st
er

d
am

L
o

n
d

o
n

A
tl

an
ta

N
ew

 Y
o

rk
A

m
st

er
d

am
L

o
n

d
o

n
A

tl
an

ta
N

ew
 Y

o
rk

49
.0

10
0

P
en

n
sa

u
ke

n

49
.0

00
1

L
ev

el
 2

-o
n

ly

49
.0

20
0

M
u

lt
i L

ev
el

49
.0

10
0

P
en

n
sa

u
ke

n

49
.0

00
1

49
.0

20
0

L
ev

el
 1

-o
n

ly

49
.0

00
1

P
en

n
sa

u
ke

n

49
.0

10
0

P
en

n
sa

u
ke

n

49
.0

00
1

49
.0

20
0

M
u

lt
i L

ev
el

FI
G

U
R

E
16

.9
. L

ev
el

 2
-o

nl
y

to
 m

ul
ti

-l
ev

el
tr

an
si

tio
n

is
 e

as
ie

r
th

an
 L

ev
el

 1
-o

nl
y

to
 m

ul
ti

le
ve

l ,
as

 it
 d

oe
s

no
t r

eq
ui

re
 r

en
um

be
ri

ng
 A

re
a-

ID
s

496

497

In the case where you have a massive number of routers, or certain smaller routers
with limited CPU and memory resources, you may decide to run a multi-level network.
Best current practice is to have a point of presence (POP) where all the internal routers,
reflectors, access servers and servers are routed using Level-1 routing. One or two L1L2
routers provide core access as illustrated in Figure 16.10.

Note the link between the two core routers – both a Level 1 and a Level 2 adjacency is
established between the core routers. This is an example where one physical link can be
shared between two IS-IS topologies. The purpose of the link is for backup in case there
is a topology break either in the core or in the edge.

A POP-centric design has the nice advantage that there is a clean separation between
core and edge, which is also typically run by different teams at a service provider. So
there are almost no incidents where the edge-router department at a service provider
modifies core-router related configuration and vice versa (some call this the missing
cross talk problem). At large service providers it often turns out that technology has to
follow organizational requirements. The POP centric design perfectly reflects that idea.

16.3.9 Do Not Rely on Default Routes
Default routes are a nice tool for scaling the network, particularly for routers that do not
have the CPU and memory resources to load and hold full BGP Internet routing tables.

POP design

49.0100

49.0900

2 2

12

1

11 11 1

1

1

L2

L1L2

L1

L2

L1L2

L1 L1 L1

FIGURE 16.10. Common multi-level designs have two L1L2 routers and intra-POP routing is
provided using L1 routing

Design Recommendations 497

498

However, in an Internet environment, any form of default routing disturbs more than it
does good. By introducing a default route, you are also keeping out more specific entries
that may contain valuable information and harm network properties like convergence.
Consider Figure 16.8, where San Francisco and Stockholm are BGP speakers in differ-
ent areas. In order to calculate a meaningful metric between the two BGP speakers the
L1L2 (Atlanta, Amsterdam) routers leak all /32 addresses down in the Level 1. Next,
suppose that the San Francisco router becomes unreachable through a topology break in
the core. The Atlanta router builds a new Level 2 LSP, which does not contain San
Francisco’s loopback IP address. Amsterdam quickly notices that San Francisco speaker
is unreachable within the Level 2 domain and does not leak the prefix further down in
Level 1. The Stockholm Level 1 router now tries to resolve the BGP routes through any
other IGP route, which is in this case the default route. The default route is locally gen-
erated by all L1 IS-IS routers because the L1L2 routers have the Attached (ATT) Bit set
as part of their Level 1 LSP. BGP thinks that the other end is still reachable and does not
realize (due to the default route) that the San Francisco router is not available anymore.
If there is a direct iBGP connection between San Francisco and Stockholm, then as a last
resort the BGP session will time out. However, if the San Francisco prefixes are learned
via a BGP Route Reflector infrastructure, then there is no way for Stockholm to realize
that a remote BGP speaker is down.

Most router implementations have a configuration option that ignores the ATT Bit in
Level 1 LSPs and hence suppresses generation of a local default route. Going back to
Figure 16.8, that means that all Level 1 BGP speakers are configured not to listen to ATT
Bits. Then the resolver immediately knows that there are no alternate paths available, and
the BGP routes are immediately withdrawn and alternate paths become active.

Try to design your core network so that it does not rely on a default route in any sin-
gle place. Try to avoid any form of explicit 0/0 route embedded in IP Reachability TLVs
and actively filter those routes on any L1L2 choke point. Also try to control all implicit
default routes that may be locally generated through the ATT Bit. If there are no default
routes in the core network, then your end-customers will greatly benefit from the
improved network convergence.

16.3.10 Use Wide-metrics Only
Both IS-IS implementations discussed in this book ship with a compatibility mode where
both old-style and wide-style metrics are advertised in a router’s LSP. That dual support
for both old-style TLV #2, #128, #130 and new-style TLV #22, #135 comes at some cost.
The drawback is that the metrics of the old-style topology and the new-style topology
have to stay congruent in order to produce non-divergent topologies. The clipping of
metrics makes the new-style metrics, although they have a broader metric width, behave
like the old-style 6-bit metrics and does not carry any advantage despite being compat-
ible at all costs. The default settings of JUNOS and IOS are either small-metrics and
compatibility mode. It is recommended to turn off generation of any form of old-style
TLV. All recent routing software has support for wide metrics, and there are no disad-
vantages to suppressing any old-style TLVs. Most real-world IS-IS router configurations
turn off small metric generation and it is just a matter of time before router vendors pick

498 16. Network Design

Design Recommendations 499

up the deployed reality and it becomes the default behaviour in JUNOS and IOS. Often
downwards compatibility is preferred when changing defaults, and generally software
engineers are reluctant to change behaviour. However, downward compatibility at all
costs is not always the smartest way to evolve a protocol.

16.3.11 Make Use of the Overload Bit
The Overload (OL) Bit was intended to be an indicator that a router ran out of resources.
Today it is used for administration purposes in order to avoid persistent transit traffic or
to avoid the delay of transit traffic until the BGP mesh has been brought up. It is a con-
venient tool to avoid traffic flowing over certain nodes. The SPF calculation tries to find
the shortest path between a pair of nodes in the IS-IS topology, however, sometimes the
shortest path through a node may not be desired at all, particularly when it has to be
routed over small-bandwidth routers serving (for example) as a route reflector. Consider
Figure 16.11, where the core link between Router Munich and Router Frankfurt fail and
the traffic can be re-routed over the dual homed route reflector. However, the route reflec-
tor is just attached with OC-3/STM-1 link speed, and if inadvertently abused as a transit
router, may fully congest those links. Good connectivity of route reflectors is a desired
property and multi-homing is often a way of achieving this.

If you statically set the Overload Bit, then all routers consider your route reflectors as
non-viable transit paths for passing traffic. Any Edge Node, such as data centre access
routers, may be candidates for setting the Overload Bit statically.

16.3.12 Turn on HMAC-MD5 Authentication
IS-IS is believed to be an inherently secure protocol because it natively runs on OSI
Reference Model Layer 2 and hence an attacker cannot inject any malicious packets
from remote locations, as can be done with the IP routing protocols. But there is no such

Route
reflector

30% load
oc-48

1% load
oc-3

1% load
oc-3

FrankfurtMunich

RR

Overload

FIGURE 16.11. Static setting of the Overload Bit saves the route reflector from forwarding transit
traffic

500 16. Network Design

500

thing as too much security. Part of the problem with securing IS-IS well was that until
recently Cisco Systems did not ship HMAC-MD5 authentication support with their soft-
ware, and simple text authentication does not yield true protection. Despite that lack,
many service providers decided not to turn on authentication. But do not be misled – the
security of your IS-IS network should not be regarded lightly. There are dedicated toolkits
like Nemesis http://www.packetfactory.net/projects/nemesis/, which can generate all
sorts of routing protocol packets, including IS-IS. There are forms of attacks known
where a hacker having access to your flooding domain via some Ethernet segment can
easily inject bogus LSPs and take all the routers in your network out of service. A dread-
ful form of attack called the end-of-sequence-space attack is illustrated in Figure 16.12.
Every 10 seconds the DIS on that LAN transmits a full CSNP which contains all LSP-
IDs of the network. The attacker needs to wiretap those CSNPs and extract MAC
addresses and source IDs of IS-IS routers in a LAN in order to spoof some LSPs. Next,
the attacker forges so-called purge LSPs which are typically used to revoke an issued
LSP before it expires (this is sometimes called premature ageing).

Tcpdump output
06:56:44.928898 OSI, IS-IS, length: 54

L2 LSP, hlen: 27, v: 1, pdu-v: 1, sys-id-len: 6 (0), max-area: 3 (0)

lsp-id: 1921.6800.1018.00-00, seq: 0xffffffff, lifetime: 0s

chksum: 0x0000, PDU length: 27, Flags: [L1L2 IS]

49.0900

lsp-id: 1921.6800.1001.00-00
 seq: 0x00000562, life:5017s
lsp-id: 1921.6800.1003.00-00
 seq: 0x0000073a, life:3110s
lsp-id: 1921.6800.1006.00-00
 seq: 0x00000d20, life:5219s
lsp-id: 1921.6800.1034.00-00
 seq: 0x000006f4, life:48962s

CSNP
source 1921.6800.1018.00
MAC 0090:69ab:7860

LSP
lsp-id 1921.6800.1001.00-00
MAC 0090:69ab:7860

Milan 1 Milan 2

Attackers
Host

FIGURE 16.12. In an unauthenticated IS-IS environment it is very easy to take down an entire
network using an end-of-sequence-space attack

The LSP in question does not contain any TLV at all. Note the sequence number
0xffffffff – this is the highest sequence number possible. When the packet is flooded
through the Level 2 domain, it is ultimately received by the router with System-ID
1921.6800.1018. This router realizes that it was not the originator of that packet. Whenever
a router sees non-self originated LSP carrying their very own System-ID number, they try
to increment the sequence number and re-issue an accurate version of their LSP. However,
that is not possible any more because the sequence space is exhausted. ISO 10589 requires
that a router that reaches end-of-sequence space goes dormant for a max-LSP-age period.
Most routers are configured with a max-LSP-age of 65,535 seconds, which is 18.2 hours.

Can you imagine the turmoil if all your routers go dormant for 18.2 hours and your
iBGP distribution mesh falls to pieces? And it does not take much in the way of resources
to achieve that – just an open Ethernet segment and a possibility to inject spoofed packets.
Realize the small effort involved: no brute force Denial of Service attack is needed to
take down an entire service provider’s network, just a few hundred spoofed LSPs that can
easily be generated with common security tools.

Security through obscurity does not generally work well. Running an IS-IS network
without proper authentication using cryptographically strong algorithms like HMAC-
MD5 is grossly negligent. Given the potential threat of an attack to the IGP, every net-
working architect should be concerned and it should be mandatory to turn on IS-IS
strong authentication.

16.3.13 Turn on Graceful Restart/Non-stop Forwarding
Once the IGP fails, a network is literally breaking into pieces. If the IGP goes down, the
BGP mesh will fail, and subsequently routing and forwarding is severely disrupted.
Modern routing software is written where some components share a common fate. If, for
instance, there is a bug in the resolver, then the entire routing process will crash. After a
couple of seconds a watchdog component may find out that the process has been falling
on its face and restart the faulty routing sub-system. The software will behave like on a
cold start and send out IS-IS Hellos with no neighbour-related state mentioned in the
adjacency-related TLVs (#6, #240), which will cause neighbouring routers to drop those
adjacencies. Graceful restart/non-stop forwarding helps to protect the IGP subsystem in
case of a failure. After being restarted, the router will request a graceful restart by setting
the Restart Request Bit in TLV #211, which will cause neighbouring routers that support
graceful restart/non-stop forwarding not to take down adjacencies for a grace-period (typ-
ically 180 seconds). Graceful restart/non-stop forwarding is all about tolerance of nodes
that have failed previously. It is recommended to turn graceful restart/nonstop forwarding
on wherever possible. You gain more availability of your network in case of local software
failure and the problem does not spread network-wide anymore.

16.4 Conclusion

The biggest improvement for getting to a scalable IS-IS network is separating IP reach-
ability information from IS reachability information and do not let IS-IS carry IP routes,

Conclusion 501

502 16. Network Design

except for the bare minimum needed to bring up the iBGP transport mesh. Once the
iBGP transport mesh has been brought up BGP carries all IP information including link-
local IP sub-net prefixes. That design choice is no real choice – it is paramount – all the
other options depend on what you expect from the network and what is doable with the
prevailing hardware/ software combination. Ultimately, one has to listen to what end-
customers are expecting and what kind of services have to be modelled on top of that
backbone. For good network designs there are two important insights. First, you always
have to make a compromise. Networks are complex and changes of any kind have multi-
dimensional impact. If you optimize on one direction then you deliberately have to jeop-
ardize the other. So pick carefully which of the three areas you want to optimize on:
scalability, stability or convergence. While it would be a highly desirable goal to maxi-
mize all three, in practice you can only optimize on two. The second insight is an old rule
of systems design – keep it simple. Before exploring complex matters of route leaking and
multi-level designs, first answer the question as to whether you really need all that com-
plexity. Would the network work even if you go with a single level design, and what would
be the overall scalability impact? Practical experience says that modern IS-IS implemen-
tations are more scalable than people think, and keep some sanity, sometimes network
designers try to seek solutions for non-existent problems.

17

Future of IS-IS

503

Writing a book about IS-IS is a never-ending task. During the writing of this book a lot
that was originally planned for this future chapter got implemented in routing software
and is now available and deployed in the Internet. It became clear to the authors that
whatever we put into this chapter would just be a snapshot of the thoughts and published
Internet drafts at one particular time. You will find a lot of proposals here that may make
their way into final products, and some ideas that will ultimately be tossed aside. This
chapter is about a whole spectrum of IS-IS extensions, ranging from very ambitious pro-
jects like Generalized MPLS (G-MPLS) to very pragmatic ones like iBGP auto-discovery.
However, this chapter is not limited to just a snapshot of the Internet drafts in mid 2004. The
IS-IS universe is ever-expanding, and we will have to ask if it is a legitimate concern to
enhance the IS-IS protocol at all costs, particularly for functions that it was not ori-
ginally designed for.

17.1 Who Should Evolve IS-IS?

IS-IS is evolved by different standards bodies. The IETF is supposed to refine specifica-
tion of IP-related extensions, and the ITU ought to take care of any modifications to the
base specification. As part of the agreement between the IETF and ITU, there is a div-
ision of the assignable TLV space. The ITU is supposed to assign the lower 127 TLVs,
and the IETF has been given the upper 127 TLVs. However, as shown in Chapter 13, “IS-
IS Extensions”, the IETF got away from their home turf and published specifications that
are outside their assigned responsibilities – the Multi Topology Extensions and all
generic IS-IS functions like Traffic Engineering, Authentication and Checksumming
related TLVs (222, 22, 10, 12) violate this division. These TLVs have been specified and
submitted in a time-to-market fashion, mostly to overcome the slow decision-making
process within the ITU. There are voices in the IETF that would either force the two stan-
dards bodies to work together, or completely transfer responsibility for the IS-IS protocol
from the ITU-T to the IETF. Dr Tony Li, once, IETF ISIS-WG chair, proposed just this
merging once on the IETF ISIS-WG mailing list.

Let me offer a germ of an idea: As has been pointed out, there is a great deal of overlap between
the actual folks doing the work in both organizations. No matter where we host it, it’s the same
folks, doing the same thing. Why then, does it really matter, where the group is hosted? Why not
have just one joint, integrated working group, which reports to two bodies? This way, the group
has the clear authority to issue definitive documents. These documents get published as BOTH ISO
standards and RFCs.

The involvement of different standards bodies raises a plethora of issues. Because the
IETF is not the “owner” of IS-IS, none of its documents go on the IETF standards track
process. The standards track is a multi-year process that ensures protocol maturity and
interoperability between different vendors. All the different stages of the maturity process
is documented as RFCs and at the end of the standards track process there is promotion
of the protocol to an Internet Standard, which not many documents achieve. As soon as
the Internet Standard status is reached, the document becomes a normative reference in
the ITU sense. Although the ITU’s standards track process may take several years, one
could argue that the ITU is much faster in this respect. The difference between the two
standardization bodies is how they approach and handle standardization. In the IETF,
things are pretty much evolution driven: the IETF defines a problem, Internet drafts get
published and in many cases the equipment vendors ship software based on the Internet
drafts, which are at this point not normative references at all. This process has the advan-
tage of getting a new IS-IS feature deployed quickly, sometimes within six months (at the
risk of changing the software several times unless the Internet draft has matured). In the
ITU, there is much more emphasis on getting the first document flawless through rigid
reviews and (of course) plenty of time. The ITU believes that specifications have to be
finalized before they can be used in actual product shipments. While that approach is
much more “clean slate”, it runs the risk of missing the market during all these time-
consuming review cycles. Meanwhile, the ITU has practically resigned from the task of
evolving IS-IS. All of the work is done in the IETF. But because the ITU still formally owns
the base protocol, the IETF must not publish any IS-IS-related RFCs as standards track
RFCs, but rather as informational RFCs. Informational RFCs do not have the status of a
normative specification – they are just supposed to make sure that things are documented.
However, there is a paradox in that the ISIS-WG is the only valid source for further IS-IS
development, and yet has to publish all IS-IS extensions as non-normative documents, the
informational RFCs. Moreover, the ITU refers to the published IS-IS informational RFCs,
and therefore is blessing the “informational” RFCs as normative references!

The double standardization, or lack of it, remains a real problem in the IS-IS community.
And there are no signs that the situation will get better. Reunion of the IP and optical
layer through G-MPLS will be the next severe challenge for the two IS-IS standardiza-
tion bodies. Then there will be a full clash in terms of responsibility. Transmission net-
works are a true domain of the ITU, and recently all the IS-IS control plane-related
extensions have been done at the ISIS-WG inside the IETF. It is the authors’ opinion that
the ITU should formalize what is the de facto status today and transfer responsibility for
IS-IS to the ISIS-WG in the IETF and promote all IS-IS related extensions to IETF stand-
ards track documents.

17.2 G-MPLS

A networking stack in a service provider’s network looks quite different today than it
looked not long ago. Figure 17.1 shows a typical networking stack of the 1990s: there are
several layers of networking protocols transporting the IP application. IP is wrapped on top
of ATM, which performed traffic engineering functions. Next, there is a SONET/SDH

504 17. Future of IS-IS

layer that is necessary for provisioning fixed pipes for the ATM trunks. Finally the
SONET/SDH frame needs DWDM and Optical Cross Connect (OCX) technologies to
get transported over the fibre.

Compare this relatively massive layering to today’s networking layers. ATM got elim-
inated due to the rise of MPLS. SONET/SDH is no longer used for provisioning circuits.
The only remnants of SONET/SDH technology is the frame format. Today, IP is trans-
ported almost natively over a DWDM infrastructure. There has been a massive consolida-
tion of transport technologies. The rise of IP technology set a trend here: either a networking
layer gets eliminated or its functions are ported into an IP routing or signalling protocol.
MPLS is a good example here: a lot of ATM functions, such as the idea of source rout-
ing, CSPF and label swapping, made their way into a set of IP protocols. If you continue
that trend, then IP will again likely control the next layer of networking beneath. This is
the optical layer.

17.2.1 Problems in the Optical Network Today
The optical layer today is a closed network by itself. It consists of optical amplifiers and
cross-connects which multiplex and de-multiplex wavelengths over optical fibres. All
optical paths are provisioned manually. The manual nature of optical provisioning is quite
counterintuitive – the strange thing about optical networks is that although almost every-
thing is standardized, there is no open signalling protocol to set up optical channels and
trails. As a result of this lack of a sound provisioning protocol, optical vendors have come
up with their own proprietary software that does not interoperate with other vendors’
methods. Service providers in general source equipment from several vendors, because they
do not want to invest completely in proprietary technologies and get locked into a certain
vendor’s technology. As a result, the lowest common denominator is often picked and
service providers set up their optical trails manually. The disadvantage of manual provi-
sioning is obvious: too often it is tedious and error-prone. Much worse, it is time-consuming
and it is not attractive to vendors if they keep losing customers because of too slow
provisioning procedures.

The manual setup of optical channels creates the environment that the IP world has to
live in. This is known as overlay network. Overlay networks and their impact and scaling

G-MPLS 505

ATM

DWDM / OXC

IP

TDM

FIGURE 17.1. In the 1990s there were several layers of transport layers, most of them performing
redundant functions

damage to link-state routing protocols were explained in Chapter 14, “Traffic Engineering
and MPLS”. The cost of transporting IP data is today increasingly questioned, and the
main problem of the high cost of IP transport is the lack of any real underlying topology
that is tuned to IP.

17.2.2 Cost of Transport
Consider Figure 17.2, where the underlying optical topology consisting of optical ampli-
fiers and cross-connects that connects the higher level IP topology is much more diverse
and complex. Although to the IP topology, the trail from London to Frankfurt appears to
be attractive, considering the full network stack reveals a different picture. It is quite
expensive to relay IP traffic between London and Frankfurt as the traffic has to pass
through several regeneration stages on its way between the two cities. The overall cost of
transmission is dominated by the number of regenerator hops of the optical topology. If
the IP world would have had the full picture of the underlying topology, it could produce
more accurate IP costs that would reflect the real cost of transmission.

G-MPLS fixes the above two problems: it offers a unified routing and signalling layer
for both the IP and the optical world. First, IP nodes can gather the structure of the
optical topology and calculate the cost for IP transport accordingly. Next, optical com-
ponents can signal optical channels using a standardized protocol (RSVP-TE).

Transitioning from the prevailing method of running the optical and IP network as dis-
joint networks to a full G-MPLS model requires three main migrations.

1. Transitioning from pure manual provisioning to a full signalled environment
2. Transitioning from the world of vendor proprietary protocols to the IP world of open

protocols
3. Opening the optical layer to devices to the routing layer

Taking those three steps requires a lot of changes. Not every network service provider
is willing to take all three steps at once. There is more demand for a constant evolution
of networks than a rapid revolution, with the admirable goal of not destabilizing the net-
work. Also, consolidation of networking elements has to pay off at the end of the day.
Further reduction of operating expenses is the main driver for the G-MPLS ideas. However,
many teams at service providers, especially optical groups, fear that their jobs may become
obsolete if they pass on too much control to a consolidated, unified control plane. Today,
full-scale G-MPLS causes much anxiety and so many service providers try to split up the
migration into a two-step migration model. The first migration step is called the overlay
model and the second step is called the peer model. The two models do not contradict each
other, they can be seen more as complementary steps. Many optical vendors use the term
hybrid model to reflect the fact that both models can be implemented at the same time.

17.2.3 Overlay (UNI) G-MPLS Model
The overlay model can best be characterized taking migration Step 1 and 2 (outlined
above) towards G-MPLS, but not taking Step 3. So the optical topology is beefed up and
now encompasses dynamic signalling using IP routing and signalling protocols; however,

506 17. Future of IS-IS

it does not yet reveal the topology of the optical domain to the IP routing layer. The router
is typically treated as a client and the interface to the routers is termed a User to Network
Interface (UNI). Consider Figure 17.3 where the router is requesting a direct link between
Munich and Washington. The optical core now tries to find an optical trail with the low-
est number of regeneration stages and sets up the path.

Once the path is up and running, the IP world treats that path just as if it were a real
physical interface and includes it in the flooding topology of the IP world. Setting up

G-MPLS 507

Optical Topology

 IP Topology

oc-48
metric 4

oc-48
metric 4

oc-48
metric 4

oc-48
metric 4

oc-48
metric 4

oc-48
metric 4

Frankfurt

London

Paris Amsterdam

Madrid

FIGURE 17.2. The cost of transmission may vary from the IP cost due to the lack of visibility
between the networking layers

many optical trails using UNI-like signalling creates about the same problem ATM net-
works had, and is the reason most ATM networks have now been abandoned. As UNI inter-
faces, the optical trails make you create another overlay network, only this time on the
optical layer. Chapter 14, “Traffic Engineering and MPLS”, gives some reasons as to how
overlay networks stress the IGPs and often produce strange routing decisions. Hiding the
topology creates many support-related problems too. If the IP team does not know where

508 17. Future of IS-IS

Optical Topology

IP Topology

oc-48
metric 4 oc-48

metric 4

oc-48
metric 4

oc-48
metric 4

oc-48
metric 4oc-48

metric 4

Optical UNI
Interface

Optical UNI
Interface

Frankfurt

London

Paris Amsterdam

Madrid

FIGURE 17.3. By connecting the router with a UNI interface the optical topology is not revealed to
the IP routers

their core trunks are routed, the Network Operations Center will have a hard time cor-
relating local link faults to the global faults of the LSP mesh. Therefore it is essential to
convey how the real optical path looks to the routers. Unfortunately, due to the UNI-like
separation between optical network and client (router), there is little room for giving such
feedback. A place where this kind of information could live is the Route Record Object
(RRO) that should return the real path that a label switched path is taking. Research
groups have identified the modifications to the RRO necessary to accommodate optical
paths that have been computed and set up outside the IP domain. It remains questionable
from a philosophical standpoint why at first hiding everything, and then eventually dis-
closing it, is a consistent and repeated model, but an odd one to base a networking archi-
tecture upon.

The overlay (UNI) model is a nice start for deploying the new G-MPLS routing and
signalling protocols. It gives the optical engineers exposure to the IP world of addressing,
signalling and routing, which is certainly a non-technical challenge. As soon as you want
to roll it out on a larger scale, the inherent technical scaling limitations of optical net-
works are revealed. You clash completely with the restrictions of overlay networks and get
a déjà vu of recent times when ATM overlay cores were pushing the limits of existing
technology, a whole seven years ago.

In order to not repeat the mistakes from the past, the full-scale G-MPLS deployments
need to have complete vision into the underlying optical topology, which is what the peer
G-MPLS model describes.

17.2.4 Peer G-MPLS Model
The G-MPLS peer model represents the full conclusion of all three migration steps. The
idea is that all components in a network, including

• Packet switches (routers)
• TDM switches (SONET/SDH cross-connects (TXC))
• Optical switches (lambda and fibre cross-connects (OXC))

all run an instance of a common routing and signalling protocol. The common routing
protocol could be enhanced versions of IS-IS or OSPF. It is the authors’ opinion that IS-IS
finally will prevail as the routing protocol of choice in the unified routing cloud. IT will
most likely be IS-IS mainly because IS-IS has been successfully deployed on a larger scale
in IP networks, but also because the core IP routing teams do not want to run the risk of
destabilizing the network by introduction of a new protocol. There is a belief in the mar-
ket that IS-IS scales much better than anything else, but that belief is largely because of
implementation issues. The fact is that the only well-implemented, multivendor IGP today
is IS-IS. By continuing on its evolutionary path, IS-IS will remain, at least in the minds
of network service operators, the IP IGP that scales, and therefore will likely be the can-
didate for a deployment of thousands of G-MPLS nodes in a given domain.

In G-MPLS each component in the network runs a control plane either in-band or
out-of-band. That is a shift from pure IP routing, where routing protocols were always
running on an in-band channel (in-band just means the signalling and traffic travel on the
same channels). There is an Internet draft (draft-ietf-ccamp-lmp) which describes the

G-MPLS 509

Link Management Protocol (LMP) that allows the control planes of G-MPLS devices to
talk to each other without the need for an in-band control channel. Figure 17.4 illustrates
the concept of an out-of-band control plane.

Suppose there are three interfaces between a pair of optical cross-connects that need
to get advertised. As we cannot run IS-IS on those three links in-band, we must utilize
the Link Management Protocol for discovering the bandwidth, the ID, and the state of
each link and report it back to IS-IS. LMP goes through three stages:

1. Control Channel (CC) start up
2. Interface discovery and TE-ID mapping
3. Interface testing

First, a control channel is brought up. During that step, two-way connectivity is
verified and the Control Channel IDs (CCiDs) are exchanged. The control channel

510 17. Future of IS-IS

Frankfurt OXC London OXCAmsterdam OXC

Out of band channel Out of band channel Out of band channel Out of band channel

LMP LMP LMP LMP

Frankfurt London

FIGURE 17.4. The Link Management Protocol features out-of-band control plane interaction

Frankfurt OXC Amsterdam OXC

out of band channel

62

41

54

55

77

88

89

90

17

18

Local

62
41
54
55
77

Remote

88
89
90
17
18

Status

Up
Up
Up

Down
Up

Local

88
89
90
17
18

Remote

62
41
54
55
77

Status

Up
Up
Up

Down
Up

LMP

FIGURE 17.5. The Link Management Protocol allows control planes to discover interfaces and
update interface state

additionally features high-speed detection of control plane failures and generates Hello
messages typically at the pace of every 150 ms.

Figure 17.5 illustrates the next step, where both systems report and mutually discover
the interfaces as well as the TE-IDs of those interfaces. Part of this discovery phase is also
to find out about the interface switching type, which could be packet, TDM or lambda-
based. Finally, all the interfaces are verified and reported either as up or down.

Once IS-IS learns about all the interfaces and interface properties such as bandwidth,
TE-ID, and switching capability it has enough information to update its link-state PDU and
advertise the link properties between the two switching nodes as sub-TLVs in the extended
IS-Reach TLV #22. In the next section there is a list of these sub-TLVs and their contents.

IS-IS now has full visibility of all interfaces in the network and the interface switch-
ing capabilities. However, relaying of user traffic is not yet possible at this point. The
higher switching layers like the packet or TDM switching devices still rely on the bring-
ing up of the optical switching layers first. Consider Figure 17.6 for an example of how
the optical switching layers are brought up.

1. The TDM cross-connect in Paris signals that it needs a lambda (wavelength) capable
of transporting an OC-192c/STM-64 (10 Gbps) frame to Amsterdam via RSVP-TE.
As the cross-connect in Paris now has complete knowledge of the optical topology, it
could also predetermine the route or base it on constraints like hop count, delay, etc.

2. The lambda between Paris and Amsterdam can now be used for carrying higher layer
traffic. In order to make it available to the higher switching layers, the routers use
a technique called forwarding adjacencies. Chapter 14, “Traffic Engineering and
MPLS”, contained a short introduction to forwarding adjacencies and an example of
how an existing TE tunnel is re-advertised in the IS-IS topology. In G-MPLS a similar
technique is used. Whenever a lower switching layer sets up a tunnel, it re-advertises
the TE-Tunnel in the higher switching layer. The forwarding adjacency needs to be
marked so that the lambda switching layer does not “see” the adjacency anymore
(for the reasons why this must happen, see Chapter 14). G-MPLS marks forwarding
adjacencies by means of the Switching Capability field. In the example, the lambda
tunnel between the TDM cross-connects gets advertised as an OC-192c/STM-64 pipe
that has TDM switching capabilities. Each lambda cross-connect will ignore any adja-
cency of a lower switching layer for consideration of LSP setups at its own level in the
networking hierarchy.

3. The router in Madrid signals via RSVP that it needs a TDM channel of SONET/SDH
OC-48c/STM-16 speed (about 2.5 Gbps) to London and provides the desired path.
After successful path establishment the TE tunnel is again re-advertised as a higher
switching layer forwarding adjacency. This time the signalled OC-48c/STM-16 pipe
gets re-advertised and marked as an interface with packet switching capabilities. This
will “poison” it for any TDM switch and make it usable only by other routers.

4. The router now has a packet switching-capable tunnel between Madrid and London.
The final step is to signal a packet Label Switched Path from a local POP router in the
G-MPLS cloud (Madrid in this case) to any other (London) via RSVP and make use of
the additional OC-48c/STM16 pipe by forwarding IP traffic down the packet switching
Label Switched Path. Note that the IP routers in Paris, Amsterdam, Frankfurt are still

G-MPLS 511

512 17. Future of IS-IS

TDM Topology

Optical Topology

IP Topology

Paris Amsterdam

Madrid

Frankfurt

London

oc-48
metric 4

Paris Amsterdam

Madrid London

4

Frankfurt

London

Paris Amsterdam

Madrid

2

3

1

FIGURE 17.6. Each provisioned tunnel in the switching hierarchy N is represented as a forwarding
adjacency of switching capability N � 1

isolated because there have been no paths established for them by the lower-layer
switching layers.

Forwarding adjacencies are powerful tools for bringing up the network incrementally.
Note that in the previous example a packet-over TDM-over lambda switching path has
been used to illustrate the concept of multiple switching hierarchies. A network does not
need to support all switching layers. If network service providers want to eliminate their
SONET/SDH TDM network, one could also make (for example) the routers signal the
lambdas directly.

17.2.5 IS-IS G-MPLS Extensions
The G-MPLS extensions to IS-IS are sub-TLVs to the extended IS Reach TLV #22. The
sub-TLVs are listed in Table 17.1. The first (sub-TLV 4) is a redefinition. Originally defined
in Internet Draft draft-ietf-isis-traffic-05, sub-TLV 4 was intended as a link-local identi-
fier that should carry a unique number to identify unambiguously a link in the traffic
engineering database. The sub-TLV is intended for unnumbered interfaces (those lacking
IP addresses) and used to carry a 4-byte value. Most implementations used to fill that
sub-TLV with their loopback address. There is one problem with using a loopback
address as link-identifier: the loopback address does not uniquely identify a link between
a pair of routers. The current G-MPLS Internet draft draft-ietf-isis-gmpls-extensions-19
extends that sub-TLV to 8 bytes. Now, the combination of the loopback addresses between
a given pair of routers can be used to uniquely identify the link between the two.

The Link Protection Type sub-TLV #20 tells other routers how risky it is to use a cer-
tain link. It does that by advertising the protection switching scheme of the underlying
media. Values indicating that the underlying topology runs over a shared fibre, that other
circuits run unprotected, as well as full blown 1:1 protection schemes, can be expressed.
Table 17.2 lists the allocated protection scheme code points.

G-MPLS 513

TABLE 17.1. Sub-TLVs that are used for conveying G-MPLS data inside IS-IS.
Sub-TLV Length Name

4 8 Link Local/Remote Identifier
20 2 Link Protection Type
21 36 Interface Switching Capability Descriptor

TABLE 17.2. Protection codes that may be
announced for a G-MPLS link.
Code Protection method

0x01 Extra Traffic
0x02 Unprotected
0x04 Shared
0x08 Dedicated 1:1
0x10 Dedicated 1 � 1
0x20 Enhanced
0x40 Reserved
0x80 Reserved

The most important sub-TLV, as far as G-MPLS is concerned, is the Interface Capability
Switching Descriptor sub-TLV #21. Figure 17.7 shows the structure of that sub-TLV. First,
it has some information about the level of the underlying link in the optical hierarchy.

Table 17.3 shows the most common switching codes. There are values for virtually
every switching technology defined. Ranging from packets to TDM, and from lambdas
to even raw fibres, every interface in the optical hierarchy can be expressed.

17.2.6 G-MPLS Summary
Large parts of the standardization work for IS-IS G-MPLS have been finalized as of
2003. However, neither of the two big router vendors has yet shipped routing software

514 17. Future of IS-IS

subTLV Type

subTLV Length

21

Bytes

1

1

Max LSP Bandwidth at priority 0 4

Max LSP Bandwidth at priority 1 4

Max LSP Bandwidth at priority 2 4

Max LSP Bandwidth at priority 3 4

Max LSP Bandwidth at priority 4

Max LSP Bandwidth at priority 5

Max LSP Bandwidth at priority 6

Max LSP Bandwidth at priority 7

4

4

4

4

Switching
Capability

Encoding Res. 4

36

Switching Capability-specific
information

variable (0–219)

FIGURE 17.7. The Interface Switching Capability Descriptor sub-TLV #21

TABLE 17.3. The Switching type indicates the multiplexing
and de-multiplexing capabilities of the link.
Code Switching type

1 Packet-Switch Capable-1
2 Packet-Switch Capable-2
3 Packet-Switch Capable-3
4 Packet-Switch Capable-4
51 Layer-2 Switch Capable
100 Time-Division-Multiplex Capable
150 Lambda-Switch Capable
200 Fiber-Switch Capable

that supports G-MPLS Extensions for IS-IS. Cisco has not shipped IOS routing software
with G-MPLS extensions. Juniper Networks started (in JUNOS 5.6) G-MPLS support
for OSPF, which seems to be the favourite IGP for the optical vendors for some reason.
There seems to be sentiment in the optical community that IS-IS, because of its encoding
style (Ethernet LLC, PPP-OSI) and the required operating systems infrastructure (most
operating systems lack kernel support for OSI), was tied to OSI and therefore they stayed
away from IS-IS. The router vendors, on the other hand, did not feel any pressure from
the market to support G-MPLS extensions due to lack of implementation on the optical
side. So one side was saying “Here’s G-MPLS for OSPF to start” and the other was saying
“Don’t bother! We run IS-IS!” Neither side can figure out why the other doesn’t get it.

G-MPLS is built around the idea of an integrated environment and common routing
and signalling protocols for all equipment types. The ironic thing is that today, although
G-MPLS extensions have been specified for all protocols, there is no common denom-
inator yet. The majority of packet switching networks are based on IS-IS, but all that the
optical infrastructure could support is OSPF. The authors believe that service providers
are not willing to make a radical change in the core IGP, mostly because of the efforts and
investments being made of maturing IS-IS to this point. So unless the optical vendors
clean off their glasses and provide G-MPLS IS-IS implementations, there will not be any
great progress in the G-MPLS idea. At best, we expect first production deployments in
the 2005, 2006 timeframe.

There have always been concerns about the scalability and suitability of a 2-level rout-
ing hierarchy. The next section discusses a proposal on how to extend the 2-level to a
multi-level (8-level) routing hierarchy.

17.3 Multi-level (8-level) IS-IS

ISO 10589 offers two distinct levels as a tool for splitting up a topological domain into a
smaller one in order to scale the network. Today the two levels are sufficient for even large
networks with thousands of routers. However, emerging technologies like the G-MPLS
peer model, where the topology of transmission and SONET/SDH networks will be exposed
to IS-IS, seriously pose the question if the two topology levels of IS-IS are enough.

Until now, no Internet drafts have been published for introducing a higher number of
topological levels to IS-IS. There has been just some remarks on the ISIS-WG mailing list
that this would be relatively easy to do. Figure 17.8 shows the structure of the IS-IS com-
mon header. A key to the easy extension of IS-IS is the 8-bit wide PDU-Type field, which
may be used to indicate up to 256 distinct PDU types. Today, the three most significant
bits (MSB) are reserved for future use and could be used for specifying further PDU
types. Only the lower 5 bits are used today for encoding the existing PDU types. Figure
17.8 shows a list of the PDU types used by IS-IS today.

Table 17.4 has a listing of hypothetical code points that could be used for an 8-level
IS-IS protocol. Note that there are four code points per level that need to be allocated for
packaging Hellos, LSPs, CSNPs and PSNPs.

There is no need to make a differentiation between point-to-point (p2p) Hellos and
LAN Hellos like 2-Level IS-IS does today. Proposals like running p2p PDUs over

Multi-level (8-level) IS-IS 515

516 17. Future of IS-IS

Intra-domain Routing Protocol Discriminator

Header Length Indicator

Version/Protocol ID Extension

0x83

Bytes

1

1

1

1

1

1

1

1

1

ID Length

PDU TypeR
0

R
0

R
0

PDU Version

Reserved

Maximum Area Addresses

6 (0)

1

3 (0)

0

PDU specific fields 17–33

TLV section 0–1467

15
16
17
18
20
24
25
26
27

Level 1 LAN Hello
Level 2 LAN Hello
 p2p Hello
Level 1 Link State PDU
Level 2 Link State PDU
Level 1 CSNP
Level 2 CSNP
Level 1 PSNP
Level 2 PSNP

Type Name

FIGURE 17.8. The PDU-Type field in the IS-IS common header has room for 256 distinct PDU
types

LAN circuits for pseudonode elimination, as described in draft-ietf-isis-igp-p2p-over-lan-
02.txt, heavily dilutes the usefulness of separating the two different Hello types. So the
draft proposes sending a p2p Hello inside an Ethernet frame. Even worse: the one-time
optimization of running distinct p2p Hellos over a media turns out to be a legacy that
now causes more problems than it solves. For example, because of this Hello separation,
things like multi-level authentication are not possible today over p2p circuits. The low-
est Level (Level 1) always contributes the authentication string for any occurrence of the
Authentication TLV #10. So the best thing would be to avoid that problematic PDU type
once and for all and create a new common Hello PDU type that can be used for all levels
and for all circuit Figure 17.19 list such a hyptothetical PDU the LAN Hello format has

TABLE 17.4. A list of hypothetical code points
that could be used for an 8-level enhancement
of the IS-IS protocol.
PDU type PDU name

32–39 Reserved
40 Level 3 Hello
41 Level 3 LSP
42 Level 3 CSNP
43 Level 3 PSNP
44 Level 4 Hello
45 Level 4 LSP
46 Level 4 CSNP
47 Level 4 PSNP
… …
60 Level 8 Hello
61 Level 8 LSP
62 Level 8 CSNP
63 Level 8 PSNP

Multi-level (8-level) IS-IS 517

all the necessary fields to run both over a LAN and a p2p infrastructure. Certain fields like
the Priority and DIS LAN-ID do not make any sense on p2p circuits and hence should be
set to zero, but they do no harm by just being there.

Today there is no draft even describing a multi-level IS-IS. Just the idea that it can be
done in general exists, along with some excerpts taken from the IETF ISIS-WG Mailing
List. There is not even any serious discussion about multi-level IS-IS. Offloading virtually
all of the IP reachability information to BGP has made scaling efforts to reduce the amount
of IP reachability information with the introduction of additional hierarchy levels a point-
less exercise. The authors have discussed the 8-level IS-IS proposal for three reasons:

1. Showing that it can be done without any major protocol rework
2. Educational purposes (everybody was reminded that the PDU-type field is 8 bits wide)
3. Showing protocol engineers that it is always a good idea to leave some spare bits in the

protocol headers (some actually object to this practice)

The first point is increasingly important, and once again OSPF is an example of how
not to engineer a protocol. For the third time, OSPF ran out of bits again, because the

Intra-domain Routing Protocol Discriminator

Header Length Indicator

Version/Protocol ID Extension

0x83

Bytes

1

1

1

1

1

1

1

1

1

ID Length

 PDU Type
R
0

R
0

R
0

PDU Version

Reserved

Maximum Area Addresses

6 (0)

1

3 (0)

0

TLV section 0–1467

15,16

27

Circuit type 1–255

Source ID

Holding Time

PDU Length

PriorityR

Designated IS LAN-ID

1

ID Length (6)

2

2

1

ID Length (6) � 1

FIGURE 17.9. A common Hello PDU that can be used for all levels and all circuits types which
shares the semantics of the LAN Hello PDU

518 17. Future of IS-IS

architects failed to add enough spare bits which were later required to evolve and extend
the protocol further.

The next future extension to IS-IS deals with the amount of information that an indi-
vidual System-ID can originate for the LSP database, and how to scale it up further.

17.4 Extended Fragments

Now, at the end of the big Internet “gloom and doom age”, service providers have begun
exploring almost every aspect of how to save costs in their router infrastructure. A still
open issue is the question of: “How do I eliminate intra-POP links and keep the cost per
managed device the lowest possible?” The best answer today is to collapse different router
functionalities into a bigger, consolidated router. Collapsing core transport and access
functionality into a single box is often called vertical pooling as opposed to the horizon-
tal pooling approach which combines different edge (access) services separate from the
core. Figure 17.10 shows how an existing POP infrastructure is collapsed both horizon-
tally and vertically to a single, large POP router. From a logical point of view, the smaller
routers with a few links are consolidated towards one big router with many links, repre-
senting the entire POP.

Because the consolidated POP router has to terminate all the core circuits, there was
some fear in the IS-IS community that the distributed LSP storage space that each router
can originate (approximately 350 Kbytes) might get exhausted due to all the IS-Reach
TLVs that need to get stored in the LSP fragments. In Chapter 6, “Generation, Flooding
and Ageing LSPs”, there was a more detailed explanation of the term distributed LSP
storage space and a breakdown of how much information an individual router can ori-
ginate. What can be done to avoid exhausting the LSP transport space is to make the sin-
gle big router appear as multiple routers in the IS-IS topology by issuing smaller LSPs
with different System-IDs. The different System-IDs are then connected using a simple
star topology, and the IS Reach cost between those aliased systems is always zero.

"Classical" POP

Core Rouer 1 Core Router 2

Public
Peering
Router

VPN
Router

Customer
Peering
Router

BRAS

Consolidated POP

FIGURE 17.10. The traditional POP layout gets replaced by a big all-in-one router which terminates
the whole set of edge services

Extended Fragments 519

Draft RFC 3786 increases the breadth of a single collapsed router by making the sin-
gle router appear as a set of routers, as shown in Figure 17.11. Ironically, the result from
a logical perspective looks a bit like the original topology before the consolidation took
place. The draft describes a method for a collapsed router to express zero cost adjacen-
cies. However, according to ISO 10589, zero cost adjacencies are illegal for non-pseudon-
ode fragments and so must not be issued in IS Reach TLV #2 and the IS-Extended Reach
TLV #22.

In order to stay backwards compatible, a new IS-Alias TLV #24 is defined which can
issue zero cost adjacencies. The TLV format is illustrated in Figure 17.12. The format is
almost identical to the IS-Reach TLV #22 (See Chapter 12, Figure 12.8) except the Metric
field is missing, which is no big surprise because the Metric is implicitly zero. If the router
needs to originate a non-zero adjacency, then the sender originates this adjacency using
a regular Extended IS-Reach TLV #22.

Today there is no support in IOS and JUNOS for the IS Alias TLV #24, mainly because
even in the largest core routers, the typical amount of IS adjacencies easily fits in 1 or 2
out of the 256 possible fragments. This may change when router vendors ship their multi-
shelf systems like the HFR (Cisco) or TX (Juniper) for the first time. Given today’s router
hardware, there is no space-related problem at all for storing the adjacencies of large
routers. However, there is another place where the limit of 255 fragments may become
a problem, which is the L2L1 router in combination with route leaking. When route
leaking is configured, the L2L1 router has to re-package all the /32 prefixes from the
core into a Level 1 LSP. More about route leaking was covered in Chapter 123 “IP
Reachability Information”. In large networks today, 5000–6000 prefixes are advertised,
and that takes 30–40 fragments in the Level 1 LSPs. If the 256 fragment limit is crossed
some day (around 42,000 prefixes), which is unlikely, then an L2L1 speaker could issue
the IS Alias TLV #24 for scaling the IP reachability information. Today, the extended
fragments draft does not solve a real problem. However, it is nice to know that, due to the
flexibility of IS-IS, even the 256 fragments limit is not a dead-end for the protocol.

Multiple System-IDsSingle System-ID

0 0

0 00 0
1921.6800.1001

1921.6800.1001

1921.6800.1002 1921.6800.1003

1921.6800.1004 1921.6800.1005

1921.6800.1006 1921.6800.1007

FIGURE 17.11. A single router generates several System-IDs and connects them through zero-cost
adjacencies

520 17. Future of IS-IS

In recent years IS-IS has become a topology discovery tool. There is now an extension
under discussion which would add also service discovery capabilities to IS-IS, which
allows setting up iBGP routing automatically.

17.5 iBGP Peer Auto-discovery

Because of the current lack of IS-IS applicability for transporting the bulk amount of
Internet routes, the Border Gateway Protocol (BGP) is heavy utilized to convey routing
reachability information of all kinds. Except in MPLS environments, where you have
BGP-free cores by design, BGP is configured on every router. Larger networks have
about 500–1500 BGP routers which need to be connected through a mesh of iBGP (inter-
nal BGP) connections. Applying the good-old full-mesh is certainly not an option for
networks of that size. The two techniques used to scale the number of paths and iBGP
sessions in the network today are route reflection and confederations. Figure 17.13 illus-
trates that both approaches achieve the goal of session and path reduction by splitting up
larger domains into smaller ones. In a confederation, the large Autonomous System is
split into smaller sub-ASs. In a route reflection environment, the flat iBGP mesh gets
divided into clusters. The sub-domains in turn may or may not be full-meshed internally
all over again. In a confederation environment one could further divide the sub-domain

TLV Type

TLV Length

Neighbour-ID

optional subTLV Value

24

Bytes

1

1

ID Length (6) �1

3–245

1

1

1–243

subTLVs Length

optional subTLV Type

optional subTLV Length

Neighbour-ID

optional subTLV Value

ID Length (6) �1

3–*

1

1

1–*

subTLVs Length

optional subTLV Type

optional subTLV Length

FIGURE 17.12. The IS-Alias TLV #24 looks almost identical to the IS-Reach TLV #22

F
u

ll
m

es
h

 iB
G

P

R
o

u
te

 R
ef

le
ct

io
n

C
lu

st
er

0.
0.

0.
1

C
lu

st
er

0.
0.

0.
3

C
lu

st
er

0.
0.

0.
2

T
o

p
 L

ev
el

F
u

ll
M

es
h

C
o

n
fe

d
er

at
io

n

su
b

A
S

 6
50

01

su
b

A
S

 6
50

02

su
b

A
S

 6
50

03
 R

R
R

R

R
R

R
R

FI
G

U
R

E
17

.1
3.

B
ot

h
co

nf
ed

er
at

io
ns

 a
nd

 ro
ut

e
re

fle
ct

or
s

re
du

ce
 th

e
ov

er
al

l n
um

be
r o

f p
at

hs
 in

 th
e

ne
tw

or
k

by
 s

pl
itt

in
g

th
e

bi
g

ro
ut

in
g

m
es

h
in

to
 s

m
al

le
r

do
m

ai
ns

521

522 17. Future of IS-IS

into “sub-sub-domains” by introducing a level of route reflection in the sub-AS. That would
also work in a Route Reflection environment. A cluster of routers can serve another clus-
ter of routers.

There is no need (or desire) here to further elaborate on the different methods of iBGP
scaling techniques. However, it is now obvious that the resulting iBGP mesh is a lot more
complicated to describe once you are using one of the two iBGP scaling tools. Furthermore,
maintaining the iBGP mesh, which means verifying that all routers are homed to the
right cluster and are all producing consistent routing decisions, is a daunting task for the
operation teams at all service providers.

The Internet Draft draft-raszuk-isis-bgp-peer-discovery describes a method that Route
Reflectors and Confederation sub-ASBRs (Autonomous System Border Routers) can
use to advertise their capabilities to terminate iBGP sessions. The magic carpet to trans-
port those announcements is a TLV, the number of which has not yet been determined by
IANA. This is illustrated in Figure 17.14.

The TLV is part of the LSP that is flooded inside an IS-IS level. Upon receipt of such
a TLV the receiving router checks to see if it wants to connect to that router. Figure 17.15
shows an example of how iBGP provisioning times can be radically reduced.

All Level 2 routers are part of the full mesh and advertise that they want to be full-mesh
speakers in the IS-IS Level 2. Once that information is received by any Level 2 router,
those routers try to connect to and bring up the BGP full mesh. In Level 1 the situation is
a bit different. The L1L2 router advertises that it is a route reflector and so all the Level
1 routers connect to the proposed route reflectors.

TLV Type

TLV Length

IANA

Bytes

1

1

BGP Identifier 4

Frag 2

Checksum 2

Flooding Reserved 2

Autonomous System(s) or
confederation sub-AS(s) sub-TLV

variable

F D

BGP Reserved

IPv4/IPv6 Peering Address
sub-TLV

AFI/SAFI for mesh topologies
sub-TLV

AFI/SAFI for reflection topologies
sub-TLV

variable

variable

variable

FIGURE 17.14. The BGP discovery TLV empowers an IS-IS speaker to automatically provision the
iBGP distribution mesh

Capability Announcement 523

The authors of the draft keep emphasizing that this method should not replace the cur-
rently prevailing method of manual configuration, but rather should be taken in baby steps.
Auto iBGP Peer discovery is seen as a complementary technique to foster a softer transi-
tion for fully automated peer discovery. Especially for larger networks, this seems to be
a promising technique for migration from an overly cautious route reflection design to a
full-mesh BGP setup producing good routes with diverse paths.

17.6 Capability Announcement

The IS-IS working group has been busy in the last 5 years producing a lot of extensions
to the base protocol. All of the extensions are documented as Internet drafts which ultim-
ately get published as informational RFCs, not normative references. There is now
increasing concern that the extensions to IS-IS are getting to be a pick-and-choose

Route Reflection

Cluster
0.0.0.1

IS-IS Level 1

Cluster
0.0.0.3

IS-IS Level 1
Cluster
0.0.0.2

IS-IS Level 1

TopLevel
Full Mesh

IS-IS Level 2

RRRR

RRRR

FIGURE 17.15. The Level 1 routers are looking for route reflector announcements, where the Level 2
routers are looking for full-mesh partner announcements

self-service shop for vendors. That is, certain extensions are implemented and certain
others are not. As shown in Chapter 15, “Troubleshooting”, there are failure patterns that
resulted from the router’s ability to process and understand a TLV correctly. For the trou-
bleshooting process it becomes important to assess the router’s capabilities in that regard.
How does the network operations engineer know what TLVs a troublemaking router
understands? Logging into that router, checking the router operating system version,
going to the vendor’s website, and looking what TLVs can be processed is often an awk-
ward and cumbersome way of getting capability information. Figure 17.16 shows the
structure of a TLV that could convey the information that a certain router can process.

This TLV is, like the Hostname TLV, a purely informational or convenience TLV that
only addresses informational issues. There are no routing or traffic engineering decisions
affected by the existence or non-existence of a bit in this TLV. It is purely a tool for giv-
ing the NOC engineer help supporting the network. The Capability TLV #242 triggered
an interesting question: how much information should a routing protocol really carry?
This a good question especially when there is non-routing and non-topology data involved.

17.7 Conclusion

The further extension of the IS-IS protocol is not going to stop anytime soon. Additional
functionality is required by many service providers and will continue to force evolution
of the protocol. However, there is some recent discomfort caused by this functional growth.
Many network engineers share the view that virtually all routing protocols are being
overloaded across the board. IS-IS is no exception to that concern. Functionalities like
Hostname Resolution (TLV #137), iBGP router auto-discovery and Capability Announce-
ment are utilizing the flooding sub-system of IS-IS to get non-IP routing-related data
across the network. As discussed in Chapter 13, “IS-IS Extensions”, there is always a
tradeoff between new functionality and stability because software needs to go through a

524 17. Future of IS-IS

Bit

0–3
4
5
6
7
8
9
10
11
12
13
14–31

TLV Type

TLV Length

242

Bytes

1

1

Reserved 3

total subTLV length 1

subTLV Type 1

subTLV length 1

Capability Vector 4

F Reserved 1

other optional subTLVs variable (N * 4)

T D

1

Capability Vector

Capability Name

Reserved
IS-IS graceful restart capable
IS-IS and BGP blackhole avoidance capable
IS-IS wide metric processing capable
IS-IS short metric processing capable
IS-IS hmac-md5 authentication capable
IS-IS Traffic Engineering support
IS-IS point-to-point over LAN
IS-IS Path Computation Server discovery
M-ISIS capable
IS-IS IPv6 capable
For future assignments

FIGURE 17.16. The important content of TLV 242 is the Capability Vector Sub-TLV #1 which con-
tains the one set bit per supported capability

maturity cycle. IS-IS is a bit special in that respect because IS-IS represents a very criti-
cal part of the routing sub-system in a service provider network. If you overload BGP
with a new functionality, then most likely bugs will stay within the given boundaries of
that sub-system. For example, a bug in the MPLS-VPN code is unlikely to impact public
BGP routing on the Internet. However, whenever you start to add new functionality to IS-IS,
then you need to touch the LSP origination code, which is a much more dangerous place to
play. The impact here may be much more catastrophic, as virtually all sub-systems in a
network rely on a proper working IGP. If the IGP fails then everything else starts to fail:
things like bogus TE databases, torn-down RSVP sessions, LDP sessions to a collapsing
BGP mesh could easily result. So one needs to ask the question: How much “overloading”
of the IGP is really useful? Perhaps the wise answer is to take a look at the risk versus the
reward of certain functionality. In IS-IS, the risk of destabilizing things is very high
and very real, so one needs to make a solid case for adding functionality to solve a real
engineering problem.

While it makes perfect sense to add new functionality in order to solve engineering
problems like producing new services for BGP, or consolidating infrastructure (as in the
G-MPLS case), it is somewhat dangerous to jeopardize the stability of the current IS-IS
code base for convenience or administrative functions like capability announcements.
It is the authors’ opinion that the IS-IS community should stay away from the temptation
to enhance such fragile portions of the network with functionality that yields, at best, a
questionable or intangible gain.

What is right or wrong, and what functionalities will finally be deployed in our net-
works, will always remain an open issue.

Walter would like to close this chapter with something called Walter’s First Rule of
Networking, formulated after more than 35 years of networking experience:

When the new stuff is more risky to deploy, and more complex than the workaround – use the
workaround!

Hannes would like to close this last chapter with an insight from Pedro Marquez, a well
respected protocol engineer who was at Cisco Systems and now works for Juniper
Networks. Pedro was concerned about the IP-only zealots – in response he used to say:

No one is paying vendors for not doing things – however we need to still keep some common
sense!

Conclusion 525

Index

527

AAL-5 399–400
Active configuration 68
Addresses

In ISIS 96
IP 96–98
IP model 98–100
IP to OSI 102–103
NET 92–93, 100
OSI 100–104

Example 104
Private, in ISIS 103–104

Adjacency 85
Failure scenario 124–129
Scaling for LANs 183–186
Table 28

Administrative distance 145
Administrative tagging 324, 339
Aggregated routes 45–46
AFI 103
APS, and adjacency failure 124–126
Architecture, see Router architecture
Area Address TLV #1 241
Areas 83–84

IDs 92, 101, 103–104
OSPF v. ISIS 85
Merging 92
Migration 90–92
Multiple IDs 91
Re-numbering 92
Splitting 92

ASICs 16, 32
ATM

AAL-5 399–400
And MPLS 402–404
Flooding LSPs on 166–67
Overhead for TCP/IP 399
Overlay networks 395–400

Atomic-module kernel 25
ATT bit 89, 143
Attribute typeblock 144, 155

Authentication
Implementation 356–358
Interoperability 364
IOS 358
IP Authentication TLV #133 317–318
Of routing information 351
On p2p links 355
Suppression of 361
TLV #10 211, 351
Use recommended 499–500
Weaknesses in ISIS 353

Auto-bandwidth for ISIS 320
Auto-calculation of metric 319
Auto-completion 39

BCD encoding of IP address 102
Bellman-Ford 2, 4
BFD 137
BGP

And forwarding tables 276–279
And ISIS 274–276, 481–482
Auto-peering 522–523
And the IGP 160–161
Discovery TLV 522
Peer discovery 522–523
Recommendations for ISIS 485
Route reflectors 162, 522
Route resolution 273
Route selection 274
Scaling 479

Bidirectional fault detection 137–139
Bit bucket 45
Bits

ATT 89, 143
EXP 404
I/E 302–303, 312
Overload see overload bit
Up/down 331

Broadcast interface 80
Buffer Size TLV #14 244

Candidate configuration 68
Capability TLV #242 524
Carrier-class 23, 31
Case studies 460

Broken adjacency 460
Missing PP-OSICP 462
Non-matching area-ID 465
Non-matching authentication 466
Non-matching IP subnet 467
Non-matching level 464

CDP 50, 52, 80
CEF 27
Cell-based MPLS (L2 MPLS) 402–404
Checksum 365

For non-LSP PDUs 367–368
TLV #12 365, 368

Circuit type 112, 115
Cisco

7500 Series 27–30
And ISIS 6
CLI 35
EIGRP 6
IOS listings see Configuration examples,

IOS
IOS logging 22
IOS software 31
GSR 30–31
VIP 29

CLI 16, 21, 225
IOS 35–36

Activating configuration 47–50
Configuration see Configuration
examples, IOS
ISIS database see ISIS database
Example 39 see also Commands, IOS
ISIS and 50

JUNOS 35–36, 56
Activating configuration 68–69
Auto-completion 39
CLI 35, 56
Configuration examples see
Configuration examples, JUNOS
Configuration mode 39
Example 37 see also Commands,
JUNOS
Help 38
ISIS and 59
ISIS database see ISIS database
ISIS implementation 37, 63–65

Logging 22
Software 33

CLNP 43, 301
CLNS 43, 80
Commands

IOS
Configure network 47
Configure terminal 39, 47, 466–467
Copy 49
Debug isis 53, 132, 232–233
Debug isis adj-packets 449–450, 464,
468
Debug isis authentication 467
Debug isis update-packets 450
Enable 39, 43
Exit 48
Interface pos 5/3 48
No hello padding 118
Reload 49
Router isis 39
Show cdp neighbor 50, 52
Show clns interface 198, 202, 226, 306,
443
Show clns neighbor 47, 113, 116, 316,
387, 390, 443
Show clns traffic 171–172
Show debug 54
Show interface pos 3/0 46–47, 462
Show ip route 145, 445
Show isis database 95–96, 143, 174,
199, 310, 335, 340–341, 350, 374, 443
Show isis hostname 107, 349
Show isis spf-log 266, 444
Show isis topology 444
Show logging 53–54
Show mpls ldp tunnels 420
Show mpls traffic-engineering topology
423
Show mpls traffic-engineering tunnels
415
Show privileges 43
Show running configuration 45, 56, 75,
327, 360, 373
telnet 42
terminal monitor 54
undebugging all 55

JUNOS
Commit 68
Configure 39, 63, 105

528 Index

Delete 67
Edit 65
Exit 65
Monitor 72, 451, 456
Request 58
Rollback 68
Set interface 67
Show 66, 70
Show bfd session 139
Show cli authorization 57
Show interfaces 62, 225–226, 463
Show isis 38
Show isis adjacency 105, 106, 114, 115,
315, 345, 385, 391, 446
Show isis database 37, 96, 143,
157–158, 174, 194, 311, 337, 342–343,
350, 375, 446, 470, 471, 473
Show isis hostname 107, 349
Show isis interface 60, 137, 197, 201,
210, 306, 445
Show isis route 145
Show isis spf log 266, 386, 447
Show isis spf results 448
Show isis statistics 172, 220
Show ldp neighbor 421
Show log 132, 243, 464
Show log isis-trace 71
Show mpls lsp ingress 416
Show route 448
Show route protocol isis 146
Show route table inet6.0 protocol isis
375
Show ted database 423
Show | compare 463–464, 467–468
Start shell 457
telnet 57
top 65, 66

Compatibility announcements 523–524
Conclusions see Summaries
Configuration examples

IOS
Adjacency scenario 461–462
Administrative tagging 339, 341
Advertise passive only 477
Authorization 359
Basic 40
Changing configuration 47–49
CSNP interval 209
ERO (MPLS) 412–413

Forwarding adjacency 434
Hello interval 136
Host names 346–347
IPv6 373
ISIS (complete example) 452
LDP 418
LDP tunnels 431
LSP bandwidth limit 177
LSP generation interval 179
LSP parameters 150
LSP transmit interval 176
Mesh group 170
Mesh group blocking 169
Multi-topology 386
Multiple IP addresses per interface 314
No hello padding 118
NETs 104
Overload bit (dynamic) 163
Overload bit (static) 161
Passive ISIS 306
Policy 75
PRC interval 268
Pseudonode suppression 198
Redistribute RIP into ISIS 310
Retransmission interval 181
Retransmission throttle 182
Route leaking L1 to L2 338
Route leaking L2 to L1 334–335
RRO (MPLS) 415
SPF compatibility 264
SPF hold down 261
Static ISIS metric 322
Tagging 339, 341
TE tunnels 425
Three-way handshake 131

JUNOS
Activating configuration 68–70
Adjacency scenario 461
Administrative tagging 342–342
Advertise passive policy 477–478
Authorization 355, 361–362
Authorization suppression 363–365
Area merging 93
Area renumbering 95
Area splicing 94
Basic 39
BFD liveliness 138
Checksum 366
Configuration mode 63–65

Index 529

Configuration examples (cont'd)
CSNP interval 209
ERO (MPLS) 414
Export static to ISIS 471–472
Flags (traceoptions) 451, 464
Forwarding adjacencies 434
Hello interval 136
Host names 346–347
IGP updates 437
IPv6 374–375
ISIS (basic example) 66–68
ISIS (complete example) 454
LDP 431
LDP tunnels 431
LSP parameters 152
LSP transmit interval 177
Mesh group 170
Mesh group blocking 169
Multi-topology 383
NETs 105
Overload bit (dynamic) 163
Overload bit (static) 162
Passive ISIS 305
Policy see routing policy examples
Prefix export limit 474
Pseudonode suppression 197
Reference bandwidth 320
RIP export policy 312
Route leaking L1 to L2 338
Route leaking L2 to L1 336
Routing policy (advertise passive) 477–478
Routing policy (basic) 76–77
Routing policy (export static to ISIS)
471–472
SPF compatibility 264
SPF delay 262
Static ISIS metric 323
Suppress authorization 363–365
Suppress new-style TLVs 328
Tagging 342–343
TE tunnels 425–426
Traceoptions (ISIS flags) 451, 464

Configuration mode 36, 39
COS 28, 156

MPLS 404
RSVP 408

Content checking, on TLV 298
CPU load, SPF 264–265
CR-LDP 408

Crankback 428
CSNP 208, 218, 220, 236, 239–240

Authorization 365
Header 211
PDU 211–213
Synchronization 214

CSPF 422
Calculation 428

Datagram 12
DCC 103
Debug isis 53, 132, 232–233
Debug isis adj-packets 449–450, 464, 468
Debug isis authentication 467
Debug isis update-packets 450
Debugging 40, 52

Adjacencies 132
Authentication 359–360, 363
Commands

Debug isis (IOS) 53, 132, 232–233
Debug isis adj-packets (IOS) 449–450,
464, 468
Debug isis authentication (IOS) 467
Debug isis update-packets (IOS) 450
Monitor (JUNOS) 451, 456
Show | compare (JUNOS) 463–464,
467–468
Show log (JUNOS) 464

Bogus IP address 316–317
ISIS

In IOS 53
In JUNOS 70

MTU size 232–233
DEC 2, 31
DECNet

Phase IV 2
Phase V 2, 4

DiffServ 14
Dijkstra 2, 248
Distributed database 141–142
Distribution of prefixes 329–331
Direct translation of IP address 102–103
DIS 113, 188 (see also DR)

And psuedonodes 183
Election 173, 199
ID (JUNOS) 201–202
Pre-emption 200
Priority 199–200
Redundancy 202

530 Index

DR 113, 183 (see also DIS)
In OSPF 203

Drafts
Draft-ietf-isis-igp-p2p-over-lan-03 (P2P

over LAN) 196
Draft-ietf-isis-traffic-05 (G-MPLS)

513
Draft-ietf-isis-wg-multi-topology

(multi-topology) 324
Draft-katz-ward-bfd-v4v6-1hop-00 (BFD)

137
Draft-martin-neal-policy-isis-admin-tags

(admin tags) 324
Draft-raszuk-isis-bgp-peer-discovery (BGP

peer discovery) 522
DNS 106, 347
Drop-dead timer 112
Dynamic hostname 345
Dynamic Hostname TLV #137 347

E.164 103
EBGP see BGP
EIGRP 6
Emacs 40
Encapsulation 81
End system 12, 13
Equal-cost paths 399
ES-IS 100
Ethereal 232, 457–458
Ethernet encapsulation 81
Examples see Configuration examples
EXP bits 404
Explicit route object (ERO) 412–422
Extended IP Reachability TLV #135 318,

324–325
Extended IS Reachability TLV #22 293,

318
Extensibility 5, 289–291

Fabric 17, 30, 32
Failure scenarios, adjacency

APS 124–126
Parallel links 126–127

Fault detection 489–490
FIB 18, 30

And CEF 27
And RIB 19–21
Juniper 32

Filter-based forwarding 14

Filters, route see Routing policy
Finite state machine 109, 133
Flag-day migration 376
Flags

IOS 53
JUNOS 70

Flat forwarding table
276–277

Fletcher checksum 366–267
Flooding 164–165

In OSPF 329–330
Issues 165–168, 395, 479
Meltdowns due to 296
Mesh-groups and 168

Flow control 159–160
Of LSAs 175
In ISIS 436

Forwarding 15
adjacencies 433
In LDP 418
plane 16, 18–19
tables 17, 276–279

FPCs 32, 62
FPGA 16
Fragment 0 241

Wander 242
Space 243

Fragment-ID 154, 191
Fragmentation 223

Extended 518–520
IP 228–229
For ISIS 230–232
LSPs 485–488

FreeBSD 33, 57, 61
Full SPF run 258–267

Generation interval of LSPs
178

Graceful restart 388–389
Use recommended 501

G-MPLS 504
ISIS extensions for 513–514
Issues 505–506
Overlay 506–509
Peer 509–512
Summary 514–515

GSR 30–31
GUI 35

Index 531

Handshaking 109, 166
2way (P2P) 119, 123–124, 133
3way 119–122, 134, 179

P2P 128–129
Problems with 124–127

Header, ISIS message 110
Hello messages 109–110, 124–128, 135–136,

206, 234
Capabilities 284–285
LAN 111, 183–184
P2P 114
Scheduling 185
Suppressing 304–305
Targeted 430

Help for commands 38
Hidden routes 76
Hierarchical forwarding table 278–279
HMAC-MD5 351, 356, 368

Use recommended 499–500
Hold down timer 134

SPF 258
Holding time 112, 115, 143
Hop-by-hop routing 14
Hostname, dynamic 345
Hosts 13

iBGP see BGP
ICD 103
IDRP Information #131 313–314
I/E bit 302–303, 312
IETF, ISIS WG 6, 503–504
IGP, and BGP 160–161
IGP metrics see Metrics
Incremental SPF run 270–272
Interface address, ISO 100–104

Example 104
Interface names 44

IOS 46
JUNOS 60
Virtual

In JUNOS 80
Loopback 44–45, 99–100, 105, 339, 432,
477, 490
Null 45

Internal tracking 137
Internet drafts see drafts
Interprocess communications 24–26
Interworking issues

Metrics 327

IPv6 376–378
IOS 35–36, see also Cisco

Activating configuration 47–50
Configuration see Configuration examples,

IOS
Interface names 46
ISIS database see ISIS database
Example 39, see also Commands, IOS
ISIS and 50

IP address 17
Model 98–100
Prefix 17, 96–97

IP Authentication TLV #133 317–318
IP External Reachability TLV #130 309, 313
IP Interface Address TLV #132 131, 298, 314
IP Internal Reachability TLV #128 304
IPv6 370–372

Interoperability 376–378
IPv6 Reachability TLV #236 372
IS Alias TLV #24 520
IS Neighbors TLV #6 122, 134
IS Reachability TLV #2 109, 186, 301–302
ISIS

8-level 515–516
Addresses 96, 100–104

Area-ID 101
Examples 104
IP addresses 102–103
NSEL 101
Private 103–104
System-ID 101–102

Areas 83–84,
IDs 92, 101, 103–104
OSPF v. ISIS 85
Merging 92
Migration 90–92
Multiple IDs 91
Re-numbering 92
Splitting 92

ATT bit 89, 143
Authentication

Implementation 356–358
Interoperability 364
IOS 358
IP Authentication TLV #133 317–318
On p2p links 355
Suppression of 361
TLV #10 211, 351
Use recommended 499–500

532 Index

Weaknesses in ISIS 353
BGP and 274–276, 481–482
Cisco 6
Common header 110
Configuration

Basic 66–68
IOS 451
JUNOS 452

Configuration examples see Configuration
examples

Database 142–143, 433 see also Link-state
database

Defined 1
DIS 113, 188 (see also DR)

And psuedonodes 183
Election 173, 199
ID (JUNOS) 201–202
Pre-emption 200
Priority 199–200
Redundancy 202

Distribution of prefixes 329–331
Encapsulation

802.3 81
SNAP 231–232

Extended fragmentation 518–520
Extensibility 5, 289–291
Extensions 345
Flooding and TED 436
Full Internet routes 469
Future of 503
G-MPLS extensions 513–518
Graceful restart 388–389
IETF and 6
Interface 80
Intergration with IP 5
IOS commands for see Commands, IOS
IP addresses and 102–103
IPv6 370
JUNOS commands for see Commands,

JUNOS
LDP and 421
Levels

8-level ISIS 513–518
Defined 85
L1 85–87, 112, 142, 144, 155, 240, 331
L1L2 85–87, 112, 115, 156, 159, 240,
331, 339
L2 85–87, 112, 143–144, 146, 155, 240,
331

Recommendations 493–494
Liveliness 135–136
LSDB 141–142, 433 see also Link-state

database
LSPs see LSPs
MAC addresses and 80
Messages

Common header 110
Hello 109–110
LAN hello 111
P2P hello 114

Metrics 14, 193, 267, 294–295 301
Auto-bandwidth 320
Auto-calculation of 319–320
And traffic engineering 393
Interworking issues 327
Example 250–253
New-style 318
Old-style 301–302, 304–205, 327
Static 320–322
Wide 304, 318, 408

MTU size 82, 230–232
Checking 116
Issues 230–232

Multi-topology 379
Neighbor liveliness detection 135–136
NETs 92–93, 100
On NSFNet 3–4
Origin of 2–4
OSI-RM and 79–80
Overload bit 154, 156–157, 159

Application 159–160
Fragments and 244
Setting 161–163
Use recommended 499

Padding 116, 234–235
Private addresses 103–104
Pseudonode 153, 183, 186–187, 301

And SPF calculation 254–256
Representation 188
Suppression of (P2P) 196
System-ID selection 191–193

PSNP 208, 218, 236–238
And authorization 365

Purging LSPs 172–175
Expiration of 174

Route leaking, ISIS 87–90
Level 1 to Level 2 337
Level 2 to Level 1 331–334

Index 533

ISIS (cont'd)
Route resolution 247, 273–276
Routing policy 55, 73, 76–77, 310, 312,

336, 471–472, 477–478 see also Route
leaking

Sample network
Addresses 8
Topology 7

Scaling 475
LANs 183–186
Levels and 494–497

Show commands see Commands
SNAP encapsulation 231–232
SPF calculations 94, 126, 144, 156, 208,

241, 247
Stress 479

CPU and memory 483
Flooding 479
Forwarding state change 481
SPF 480

Synchronizing database see Link-state
database, synchronization

TLVs see TLVs
Troubleshooting 439, 460 see also

Troubleshooting, commands
Broken adjacency 460
Missing PP-OSICP 462
Non-matching area-ID 465
Non-matching authentication 466
Non-matching IP subnet 467
Non-matching level 464

ISO 10589
Basics 1, 3, 79, 178–179, 181
Flooding 296
Hellos and LSPs 220
IPv6-IPv4 376
Jitter 185–186
MTU size 234
Oddities 102, 116, 131, 156, 218

New-style metrics 318
Pseudonode priority 257
TLV use 345

Reachability information 301
ISPs 28, 102

Jitter, for timers 185
Juniper

JNBI 77
JUNOS

Activating configuration 68–69
Auto-completion 39
CLI 35, 56
Configuration examples see
Configuration examples, JUNOS
Configuration mode 39
Example 37 see also Commands,
JUNOS
Help 38
ISIS and 59
ISIS database see ISIS database
ISIS implementation 37, 63–65
Logging 22
Software 33

M-series 31
T640 159

JUNOS see Juniper

Kernel 23–26
Atomic-module 25

L1, L1L2, L2 see Levels
Label request object (LRO) 412
Label stacking 404
Labels, MPLS 402
LAN-ID 106, 173, 200
LANs

Scaling ISIS for 183–186
Synchronization on 208

Layer 2 MPLS (cell-based MPLS) 402–404
Layer 2 overlays 395–400
Layer 3 MPLS (Packet-based MPLS)

404–408
LDP 408, 417–418

And ISIS 427
And RSVP-TE 428–430

Length check, on TLVs 296–297
Levels, ISIS

Defined 85
L1 85–87, 112, 142, 144, 155, 240, 331
L1L2 85–87, 112, 115, 156, 159, 240, 331,

339
L2 85–87, 112, 143–144, 146, 155, 240,

331
Recommendations 493–494
Scaling 494–497

Link-state database 37, 94, 142, 160
And fragments 243
Example 250–253

534 Index

Locking 258
Modeling 193
Size 186, 243
Synchronization 205

On LANs 208
On P2P 216–217
Periodic 218
With CSNP PDUs 211–213

Liveliness 135–138
Logging 22, 41

In IOS 53–54
In JUNOS 70–72

Logical interfaces 60
Login

IOS 42
JUNOS 57

Loopback interface 44–45, 99–100, 105, 339,
432, 477

And System-ID 490
LSAs (OSPF) 288–289
LSDB see Link-state database
LSP 109, 146–147, 191, 240

Entry TLV #9 211, 213, 236–237
Flooding 141–142, 164–168
Fragmentation 485–488
Generation interval 178
Purging 172–175

Expiration of 174
Revision control 146–150

Sequence numbers 147–148
Lifetimes 149
Periodic refreshes 149

Structure 152–153
Throttling 174–176
Transmit interval of 176

LSP-IDs 105–106, 143, 152, 154, 213

M-series 31
MAC address 80, 122, 196, 199, 317
Mask, network 97
Maximum length check, on TLVs 296–297
Maximum MTU 229, 244
Memory, use in ISIS 483
Mesh groups 168, 218
Messages, ISIS

Common header 110
Hello 109–110
LAN hello 111
P2P hello 114

Metrics 14, 193, 267, 294–295 301
Auto-bandwidth in ISIS 320
Auto-calculation of 319–320
And teaffic engineering 393
Interworking issues 327
ISIS example 250–253
New-style 318
Old-style 301–302, 304–205, 327
RIP 205–206
Static 320–322
Wide 304, 318

Only 408
Migration

Area 90–92
Merging 92
Re-numbering 92
Splitting 92

Modes
Operator 36
Configuration 36

MPLS 393
cell-based (Layer 2 MPLS) 402–404
For traffic engineering 402
Introduction to 402–408
Layer 2 (cell-based MPLS) 402–404
Layer 3 (packet-based MPLS) 404–408
Labels 402
packet-based (L3 MPLS) 404–408
Signaling 408

MTU 83, 214, 225–226
Check 116, 234
ISIS 230–232
Maximum 229, 244
Sizes 227

Multi-topologies Supported TLV #229 241,
379, 381–382

Multi-topology IP Reachability TLV #235
384

Multi-topology IS Reachability TLV #222
382

Neighbour 15
Discovery 109
Livliness 135
Route 270

NET 92–93, 103, 240
Configuring

IOS 104
JUNOS 105

Index 535

NET (cont'd)
Examples 104
Selector 101

Network
Analysis 455–456
Design 475
Mask 97
Recommendations 484

New-style metrics 318, 324–325, 327
Next-hop 14, 17, 98, 483
NLRI 285
NLPID 307, 376
NLSP 5
NLSRP 80
Node ID 191, 194, 200
Non-extensible routing protocol 283–285
NSEL 101
NSFNet 3

Meltdown 296
Null interface 44
NVRAM 35, 47

Objects, RSVP-TE 410
Old-style metrics 301–302, 304–205, 327
Old-style TLVs

IP reachability 304–305
IS reachability 301–302

Opaque LSAs 289
Operator mode 36–39
OS see router OS
OSI-RM 1, 52, 61, 76, 124, 223–225
OSPF 4

Areas 85, 89
AS numbers 104
DR 113
Extending 285–289
Hello message 286
Issues 87
LSA type field 288
Prefix distribution 329
Reference bandwidth 319
Routing leaking 88

Overlay network 395–397
Overload bit 154, 156–157, 159

Application 159–160
Fragments and 244
Setting 161–163
Use recommended 499

P2P 80, 218
Adjacency State TLV #240 128, 134
Authorization for 355
Hello message 114
Over LAN 196

Packet-based MPLS (L3 MPLS) 404–408
Padding TLV #8 116, 234–235
Partial SPF run 267–268
Partition repair 155
Path MTU discovery 229–230
PDU

CSNP 208
Length 115
PSNP 208

Penultimate router 408
Permanent interface 60
PFE 31–32, 61
Physical interface 60
PICs 32, 62
Policy routing 14
PRC 268
Pre-emption of DIS 200
Prefix

Distribution 329–331
Insertion 247, 276–278
IP address 97

Priority, DIS 199–200
Private addresses in ISIS 103–104
Privilege level 58
Prompt 36, 39, 63
Proteon 36
Protocols Supported TLV #129 307, 370–371,

376
Pseudonode 153, 183, 186–187, 301

And SPF calculation 254–256
Representation 188
Suppression of (P2P) 196
System-ID selection 191–193

PSNP 208, 218, 236–238
And authorization 365

Purging LSPs 172–175
Expiration of 174

QOS see COS

Reachability information 301
Recommendations

Authentication 499–500
BGP for ISIS 485

536 Index

Graceful restart 501
HMAC-MD5 499–500
Levels 493–494
Network design 484
Overload bit 499

Record-route object (RRO) 415
Restart Signaling TLV #211 390
Revision control, of LSPs 146–150

Sequence numbers 147–148
Lifetimes 149
Periodic refreshes 149

RIB-in 17
RIB-local 18, 30
RIB to FIB 19–21
RIP 205–206
RFC

1070 3
1191 229
1195 1, 292, 304, 309, 317, 329, 331, 337,

370, 375–376
1483 128
1518 97
1918 8, 45, 104
2205 408
2370 285, 289
2961 430
2966 329, 331, 334, 337
2973 168
3021 99
3036 417
3209 409
3359 317
3373 128–129
3784 326, 328

rollback 68
Route-maps 55
Route leaking, ISIS 87–90

Level 1 to Level 2 337
Level 2 to Level 1 331–334

Route reflector 162, 522
Route resolution 247, 273–276
Router

Access 36
Architecture 11, 16
Cisco 27–31
Configuration file 35, 47–50
Control plane 19, 21
Forwarding plane 18
Juniper Networks, Inc. 31–33

Model 15
OS 24–26, 57
Technology example 26

Routes
Default 497–498
Export 312

IOS 74
JUNOS 75

Import 76
Routing 12

Engine 31–32, 61
Hierarchy 86–87
Loop 331
Policy 41, 55, 73, 76–77, 310, 312, 336,

471–472, 477–478 see also Route
leaking

Protocols 281–283, 283–285
Sub-system 22
Tables 17

RP-FIB 18
RSP 27
RSVP 408–409
RSVP-TE 409

Sample network addresses 8
Sample network topology 7
Sanity check, TLV 295–296
SAR 399–400
Scaling

BGP 479
LANs 183–186
Levels and 494–497
ISIS 475
With MPLS 404, 428

Scheduler 23–26
Atomic module 25

Self-synchronization 183–184
Shell see Commands
Shim header 404
Show commands see Commands
SNAP header 399
SNP 236 see also CSNP, PSNP
Software maturation 320–322
SONET/SDH 124–126
Source ID 115
Source routing 14, 393
SPF

Algorithm 248
And pseudonodes 254–256

Index 537

SPF (cont'd)
Calculation 83, 94, 126, 144–145, 147,

156, 208, 241, 247
CPU load 264–265, 480–481
Defined 2
Diversity 257
Example 249–253
Incremental 270–272
Partial run 267–268
Runtime 266
Self-protection 259–261
Sorting 303–304

Start shell see Commands
Static LSPs 408
Static metrics 320–322
Stress 479

CPU and memory 483
Flooding 479
Forwarding state change 481
SPF 480

Sub-TLVs 281, 293–295
And traffic engineering 427
Minimum and maximum length 298
Overrun checking 297–298
Shading 8

Summaries
Adjacency 140
CLI 77–78
CSNP (and PSNPs) 222
Design recommendations 501–502
DIS 203–204
Extensions to ISIS 387, 391
Fragmentation 245
Future 524–525
ISIS basics 107–108
LSP basics 182
MPLS signaling 422
PSNP (and CSNPs) 222
Route leaking 344
Router architecture 33–34
SPF runs 279
TLVs 299
Traffic engineering 437
Troubleshooting 474

Switching 17, 28
VIP 29

Synchronization 205
LSPs 214
On LAN 208

On P2P 216
Self 183–184

System-ID 101–102, 112, 240, 301
And pseudnode 191–193
Duplicate 175
Loopback 490

Tables
Adjacency 28
CEF 27
Forwarding 17
RIB-IN 17
RIB-local (RIB) 18, 30
RIB to FIB 19–21
RP-FIB (FIB) 18, 30, 32
Routing 17

Tagging 339
Targeted hellos 430
Tcpdump listings

Adjacency TLV 130
Authorization 352–253, 356, 370
BFD 138
BGP next-hop 273
Checksum 366, 370
CSNP 239
DIS election 200–201
DIS purge 201
DIS redundancy 203
External reachability TLV 293
Full TE extensions 488
Hello timer 136
Hostname 348
Ideal LSP 484–485
IP external TLV 310
IPv6 371, 373
IS neighbor TLV 123
Jitter (of timers) 185–186
JUNOS interface 73
Loopback/system-ID mapping 491
LSP 154–155, 236
LSP interval timer 178
MTU 232
Multi-topology 381–382
Multiple IP interface addresses 315
New-style metrics 324
Padding TLV 117, 118, 235
Protocols supported TLV 308–309
Pseudonode 190–191
Pseudonode suppression 196–197

538 Index

PSNP 238
Graceful restart 390
RSVP-TE 410, 424, 426
TE sub-TLVs 435

TDP (Cisco) 418
TE Router ID TLV #134 427
TED 422, 428
Text authorization 351
Throttling LSPs 174–176
Timers

Adjusting 492
Drop dead 112, 136
Hello 136–137
Hold down 134

For SPF 258
Holding 112
Jitter for 185

TLV
Content pattern checking 298
Discrete length 298
Encoding 291, 293
For extensibility 281
Format 289–291
Lost of 292
Minimum-maximum length 297
Sanity checking 295–296
Shading 9
Sub-TLV 293–295 see also Sub-TLV
Type

Area Address #1 241
Authentication #10 211, 351
BGP Discovery #IANA 522
Buffer Size #14 244
Capability #242 524
Checksum #12 365, 368
Dynamic Hostname #137 347
Extended IP Reachability #135 318,
324–325
Extended IS Reachability #22 293, 318
IDRP Information #131 313–314
IP Authentication #133 317–318
IP External Reachability #130 309, 313
IP Interface Address #132 131, 298, 314
IP Internal Reachability #128 304
IPv6 Reachability #236 372
IS Alias #24 520
IS Neighbors #6 122, 134
IS Reachability #2 109, 186, 301–302
LSP Entry #9 211, 213, 236–237

Multi-topologies Supported #229 241,
379, 381–382
Multi-topology IP Reachability #235
384
Multi-topology IS Reachability #222
382
P2P Adjacency State #240 128, 134
Padding #8 116, 234
Protocols Supported #129 307, 370–371,
376
Restart Signaling #211 390
TE Router ID #134 427

Traceoptions 70, 132
ISIS flags 451

Traffic engineering 328, 393
Database (TED) 422, 428
DiffServ aware 435–436
Objects for 410
Overlays 394–396
With CSPF 422
With MPLS 402
With RSVP-TE 409–410

Transmit interval of LSPs 176
Troubleshooting 41

Case studies 460
Broken adjacency 460
Missing PP-OSICP 462
Non-matching area-ID 465
Non-matching authentication 466
Non-matching IP subnet 467
Non-matching level 464

CDP 50
Commands for 442

Debug isis (IOS) 53, 132, 232–233
Debug isis adj-packets (IOS) 449–450,
464, 468
Debug isis authentication (IOS) 467
Debug isis update-packets (IOS) 450
Monitor (JUNOS) 451, 456
Show clns interface (IOS) 443
Show clns neighbor (IOS) 47
Show interface (JUNOS) 463
Show interface pos 3/0 (IOS) 462
Show ip route (IOS) 445
Show isis adjacency (JUNOS) 446
Show isis database (IOS) 443
Show isis database (JUNOS) 446,
470–471, 473
Show isis interface (JUNOS) 445

Index 539

Troubleshooting (cont'd)
Show isis spf log (JUNOS) 447
Show isis spf results (JUNOS)
448
Show isis spf-log (IOS) 444
Show isis topology (IOS) 444
Show log (JUNOS) 456, 464,
447
Show route (JUNOS) 448
Start shell (JUNOS) 457–458

Configuration (JUNOS) 69
ISIS 439, 441

Flow control 440
Tools for 441

MPLS 422
Network analyzer 455–456
System-IDs 105–106

UNIX 33, 36, 57
Un-numbered interface 100
Up/down bit 331

URLs
Cisco documentation 56
Dijkstra 248
Ethereal 232
FreeBSD 57

VIP 29, 32
Virtual interfaces

In JUNOS 80
Loopback 44–45, 99–100, 105, 339, 432,

477
And SYS-ID 490

Null 45
VPN 404

Wander 242
Weight 145
Wide-metrics 304, 318

Only 408

Y2K 149

540 Index

